
Available online at http://scik.org

J. Math. Comput. Sci. 7 (2017), No. 5, 895-911

ISSN: 1927-5307

A MODIFIED MECHANICAL QUADRATURE FORMULA AND ITS EXTENSIONS

XIAO-YU LONG, XIAN-CI ZHONG∗, LI-HUA ZHANG

School of Mathematics and Information Science, Guangxi University, Nanning, Guangxi 530004, China

Copyright c© 2017 Xiao-Yu Long, Xian-Ci Zhong and Li-Hua Zhang. This is an open access article distributed under the Creative Commons

Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract.The typical mechanical quadrature formula is modified as∫ b

a
f (x)dx≈

n

∑
i=0

m

∑
j=0

A(i, j) f ( j)(xi),

where f (x) ∈C(m)[a,b] and A(i, j) are the quadrature weights. Based on the Taylor-series expansion technique, the

methods for determining the quadrature weights A(i, j) with the known quadrature points xi are given. The cor-

responding convergence and error estimate are made, then a sequence of Romberg-like quadrature formulae are

analyzed. The modified mechanical quadrature formulae are further extended to solve the Riemann-Liouville frac-

tional integral. Numerical results are carried out to show the effectiveness of the proposed methods by comparing

some known methods. The proposed methods can be used to solve various linear and nonlinear integral equations

with continuous and weakly singular kernels arising in practical physics, mechanics and engineering.

Keywords: modified mechanical quadrature formula; convergence and error estimate; Romberg-like quadrature

formulae; Riemann-Liouville fractional integral
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1. Introduction
Since many definite integrals cannot be solved directly by using the Newton-Leibniz formula,

numerical integration formulae are very important to evaluate approximately their values. For
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f (x) ∈C[a,b], the typical quadrature formula is given as

I[ f ] =
∫ b

a
f (x)dx≈

n

∑
i=0

Ai f (xi), (1.1)

with the weights Ai and the quadrature points xi ∈ [a,b] (i = 0,1, · · · ,n). A method of giving Ai

and xi is that of evaluating the definite integral I[ f ] such as the Newton-Cotes quadrature for-

mulae, the Gaussian quadrature formulae and so on [1]. In the formula (1.1), one only considers

the contributions of the values f (xi) to the integrals. However, in a practical application, it is

not enough only to consider the values of f (x) on the points xi, since some experimental data

may give the values of f (xi) and the derivatives f ( j)(xi) ( j = 1,2, · · · ,m). For example, in order

to determine the displacement S of the moving object, one should measure the instantaneous

velocity V (ti) and the acceleration a(ti) on the discretization points ti ∈ [a,b]. According to

(1.1), it is easy to evaluate the displacement S as

S =
∫ b

a
V (t)dt ≈

n

∑
i=0

AiV (ti). (1.2)

Clearly, in (1.2), one has neglected the values of a(ti). It motivates us strongly to consider

the contributions of a(ti) to the displacement S. Then we may get more accurate results of the

displacement S and decrease the quantity of the measuring points ti.

Moreover, it is noted that a complicated function can be approximated by using the Hermite

interpolation and the cubic spline interpolation, where the first-order derivative and the second-

order derivative of the functions are used respectively [2]. In order to generally consider the

jth-order derivatives of the function f (x) for j = 1,2, · · · ,m, here we propose that the typical

mechanical integration formula (1.1) is modified as

I[ f ] =
∫ b

a
f (x)dx≈

n

∑
i=0

m

∑
j=0

A(i, j) f ( j)(xi), (1.3)

where f (x) ∈C(m)[a,b] and f ( j)(xi) stand for the values of the jth-order derivative of f (x) with

respect to x on the points xi. A(i, j) and xi are the quadrature weights and the quadrature points

respectively. When m = 0, the formula (1.2) is reduced to that in (1.1). On the other hand, it

is noted that the fractional integrals and derivatives have attracted much attention due to their

applications in engineering and physics [3,4]. It is very important to give numerical methods
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for evaluating the fractional integrals [5-8]. So the formula in (1.2) will be extended to compute

the fractional integrals.

To achieve the objectives of formulating the formula in (1.2) together with its extensions and

applications in evaluating the fractional integrals, the paper is organized as follows. In Section

2, a sequence of methods for determining A(i, j) and xi will be given by using the Taylor-series

expansion formula. The corresponding convergence and error estimate will also be addressed.

Section 3 will give a sequence of Romberg-like quadrature formulae. The modified mechanical

quadrature formula is extended to solve the Riemann-Liouville fractional integral in Section 4.

Numerical results are carried out to show the effectiveness of the proposed methods in Section

5. Section 6 shows the main conclusions.

2. Determination of the quadrature weights

From the viewpoint of practical applications, the methods of determining the quadrature

weights A(i, j) and the quadrature points xi in the formula (1.2) should be given. Usually, similar

to Newton-Cotes quadrature formulae, it is convenient to choose the equidistant quadrature

points as

xi = a+ ih, i = 0,1, · · · ,n, h =
b−a

n
. (2.1)

When f (xi) and the first-order derivatives f ′(xi) are known, the piecewise Hermite interpolation

polynomial can be used to determine the coefficients A(i, j). Furthermore, if we know the values

of f (xi), f ′(xi) and f ′′(xi), the spline interpolation function of degree three is suitable to give

the coefficients A(i, j). In what follows, generally if the values of f ( j)(xi) (i = 0,1, · · · ,n, j =

0,1, · · · ,m) are known, we give a simple method of determining the coefficients A(i, j) based on

the Taylor-series expansion technique.

Now by using the equidistant quadrature points, we obtain

∫ b

a
f (x)dx =

n−1

∑
i=0

∫ xi+1

xi

f (x)dx = h
n−1

∑
i=0

∫ 1

0
f (xi +hξ )dξ , (2.2)
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where the variable change of x = xi+hξ is used. It is assumed that f (xi+ξ h) can be expanded

as the following Taylor series

f (xi +ξ h) = f (xi)+ · · ·+
f (m)(xi)

m!
(hξ )m +

f (m+1)(xi +θihξ )

(m+1)!
(hξ )m+1, (2.3)

where 0 < θi < 1. Then inserting (2.3) into (2.2), one has∫ b

a
f (x)dx≈

n−1

∑
i=0

m

∑
j=0

h j+1

( j+1)!
f ( j)(xi), (2.4)

and the remainder

R1 =
hm+2

(m+1)!

n−1

∑
i=0

∫ 1

0
f (m+1)(xi +θihξ )ξ m+1dξ .

It is further supposed that f (m+1)(x) is continuous on [a,b]. Then based on the second integral

mean value theorem, there exists ξi ∈ (0,1) such that

R1 =
hm+2

(m+1)!

n−1

∑
i=0

f (m+1)(xi +θihξi)
∫ 1

0
ξ

m+1dξ

=
hm+2

(m+2)!

n−1

∑
i=0

f (m+1)(xi +θihξi).

Under the consideration of

m≤ 1
n

n−1

∑
i=0

f (m+1)(xi +θihξi)≤M, (2.5)

where M and m are the maximum and the minimum of f (m+1)(x) on [a,b] respectively, we have

R1 =
nhm+2

(m+2)!
f (m+1)(η1) =

(b−a)hm+1

(m+2)!
f (m+1)(η1), (2.6)

with η1 ∈ (a,b).

Comparing (1.3) and (2.4), it is found that

A(i, j) =
h j+1

( j+1)!
, i = 0,1, · · · ,n−1; j = 0,1,2, · · · ,m,

and

A(n, j) = 0, j = 0,1,2, · · · ,m. (2.7)

From (2.7), it is seen that here we have neglected the values of f ( j)(b) ( j = 0,1,2, · · · ,m). That

is, the values of f ( j)(b)( j = 0,1,2, · · · ,m) have no contributions to the numerical integration

formula in (2.4).
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On the other hand, application of the variable change x = xi+1−hξ yields∫ b

a
f (x)dx =

n−1

∑
i=0

∫ xi+1

xi

f (x)dx = h
n−1

∑
i=0

∫ 1

0
f (xi+1−hξ )dξ . (2.8)

Under the assumption of

f (xi+1−hξ ) = f (xi+1)+ · · ·+
f (m)(xi+1)

m!
(−hξ )m +

f (m+1)(xi+1− θ̄ihξ )

(m+1)!
(−hξ )m+1,

where 0 < θ̄i < 1, we have∫ b

a
f (x)dx≈ h

n−1

∑
i=0

m

∑
j=0

(−h) j

( j+1)!
f ( j)(xi+1), (2.9)

with the remainder

R2 = h
(−h)m+1

(m+1)!

n−1

∑
i=0

∫ 1

0
f (m+1)(xi+1− θ̄ihξ )ξ m+1dξ =

(b−a)(−h)m+1

(m+2)!
f (m+1)(η2).

for η2 ∈ (a,b). Based on the formula (2.9), it follows

A(i, j) =−
(−h) j+1

( j+1)!
, i = 1, · · · ,n; j = 0,1,2, · · · ,m,

A(0, j) = 0, j = 0,1,2, · · · ,m.

Generally, the sum of (2.4) and (2.9) with the parameter ω leads to∫ b

a
f (x)dx≈ (1−ω)

n−1

∑
i=0

m

∑
j=0

h j+1

( j+1)!
f ( j)(xi)−ω

n

∑
i=1

m

∑
j=0

(−h) j+1

( j+1)!
f ( j)(xi)

=
m

∑
j=0

h j+1

( j+1)!

{
(1−ω) f ( j)(a)+ω(−1) j+2 f ( j)(b)

+
n−1

∑
i=1

[(1−ω)−ω(−1) j+1] f ( j)(xi)

}
,

(2.10)

and for i = 1, · · · ,n−1, j = 0,1,2, · · · ,m, it gives

A(0, j) = (1−ω)
h j+1

( j+1)!
,

A(i, j) = [(1−ω)−ω(−1) j+1]
h j+1

( j+1)!
,

A(n, j) = ω(−1) j+2 (−h) j+1

( j+1)!
,

together with the remainder

R3 = (1−ω)R1 +ωR2.
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When ω = 0, the formula in (2.10) is reduced to that in (2.4) and when ω = 1, the formula in

(2.9) can be derived from that in (2.10). Furthermore, we have the following theorem.

Theorem 1 It is assumed that

‖ f (m+1)(x)‖∞ = max
a≤x≤b

| f (m+1)(x)|= M <+∞.

Then when m→+∞ or h→ 0, the formulae (2.4), (2.9) and (2.10) are convergent to the definite

integral I[ f ] with

R1→ 0, R2→ 0, R3→ 0.

Proof From (2.5), we have

|R1| ≤
hm+2

(m+1)!
M

n−1

∑
i=0

∫ 1

0
ξ

m+1dξ =
nhm+2

(m+2)!
M =

(b−a)hm+1

(m+2)!
M.

It is easy to see that when m→ +∞ or h→ 0, one arrives at R1→ 0. Similarly, we can obtain

R2 → 0 and R3 → 0. So the formulae (2.4), (2.9) and (2.10) are convergent for m→ +∞ or

h→ 0.

3. Romberg-like quadrature formulae

In the above section, several methods for determining the coefficients A(i, j) are given by using

the Taylor-series expansion technique. In order to derive high-order approximation methods

from low-order ones, it is seen that the extrapolation method of Richardson is effective. Here

we further apply the ideas of Romberg quadrature formulae to the proposed methods and the

derived ones are called as Romberg-like quadrature formulae.

Based on the formula (2.4), we define

I =
∫ b

a
f (x)dx≈ 1T m

n =
n−1

∑
i=0

m

∑
j=0

h j+1

( j+1)!
f ( j)(xi), n≥ 1. (3.1)

From the remainder R1, after some computations, one can get

I− 1T m
n

I− 1T m
2n
≈ 2m+1,
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and

I ≈ RT1 =
2m+1

1T m
2n− 1T m

n

2m+1−1
.

In what follows, we analyze the error estimate of the Romberg-type quadrature formula RT1.

One has the following theorem

Theorem 2 Suppose that f : [a,b] → R is (m + 2)-times continuously differentiable. The

Romberg-type quadrature formula RT1 has the following error estimate

|I−RT1| ≤
(b−a)2hm+1

(m+2)!(2m+1−1)
‖ f (m+2)(x) ‖∞

with h = (b−a)/n.

proof We can calculate that

|I−RT1|=
∣∣∣∣2m+1(I− 1T m

2n)− (I− 1T m
n )

2m+1−1

∣∣∣∣ .
Moreover from the expression of R1 and h = (b−a)/n, it is seen that

I− 1T m
2n =

hm+2

2m+2(m+1)!

2n−1

∑
i=0

∫ 1

0
f (m+1)(xi +θiξ h/2)ξ m+1dξ

=
hm+2

2m+2(m+1)!

2n−1

∑
i=0

f (m+1)(x̄i)
∫ 1

0
ξ

m+1dξ

=
hm+2

2m+2(m+2)!
∑

2n−1
i=0 f (m+1)(x̄i)

2n
2n

=
(b−a)hm+1

2m+1(m+2)!
f (m+1)(η3)

where the integral mean value theorem and the intermediate value theorem have been used with

xi = a+(hi)/2, xi < x̄i < xi +h/2 and η3 ∈ [a,b]. Similarly, we have

I− 1T m
n =

hm+2

(m+1)!

n−1

∑
i=0

∫ 1

0
f (m+1)(yi +ϑihξ )ξ m+1dξ

=
hm+2

(m+1)!

n−1

∑
i=0

f (m+1)(ỹi)
∫ 1

0
ξ

m+1dξ

=
hm+2

(m+2)!
∑

n−1
i=0 f (m+1)(ỹi)

n
n

=
(b−a)hm+1

(m+2)!
f (m+1)(η4),
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where yi = a+ ih, yi < ỹi < yi +h and η4 ∈ [a,b]. Now the error estimate can be rewritten as

|I−RT1|=
1

2m+1−1
(b−a)hm+1

(m+2)!

∣∣∣ f (m+1)(η1)− f (m+1)(η2)
∣∣∣

=
1

2m+1−1
(b−a)hm+1

(m+2)!

∣∣∣ f (m+2)(η̄)(η1−η2)
∣∣∣

≤ 1
2m+1−1

(b−a)2hm+1

(m+2)!
‖ f (m+2)(x) ‖∞

where η̄ is between η3 and η4. The proof is completed.

Moreover, from (2.9) and (2.10), we define

2T m
n = h

n−1

∑
i=0

m

∑
j=0

(−h) j

( j+1)!
f ( j)(xi+1),

3T m
n =

m

∑
j=0

h j+1

( j+1)!

{
(1−ω) f ( j)(a)+ω(−1) j+2 f ( j)(b)

+
n−1

∑
i=1

[(1−ω)−ω(−1) j+1] f ( j)(xi)

}
.

Then the Romberg-like quadrature formulae RT2 and RT3 can be given as

RT2 =
2m+1

2T m
2n− 2T m

n

2m+1−1
, RT3 =

2m+1
3T m

2n− 3T m
n

2m+1−1
.

For the errors of RT2 and RT3, we have the following theorem.

Theorem 3 Let f : [a,b]→R be (m+2)-times continuously differentiable. The Romberg-type

quadrature formulae RT2 and RT3 have the following error estimate

|I−RT2| ≤
(b−a)2hm+1

(m+2)!(2m+1−1)
‖ f (m+2)(x) ‖∞,

|I−RT3| ≤
(b−a)2hm+1

(m+2)!(2m+1−1)
‖ f (m+2)(x) ‖∞,

with h = (b−a)/n.

Proof The error estimate of RT2 can be obtained similar to that of RT1 and the proof procedure

has been omitted here. In what follows, we focus on the error estimate of RT3. It is calculated

that

|I−RT3|=
∣∣∣∣2m+1(I− 3T m

2n)− (I− 3T m
n )

2m+1−1

∣∣∣∣ .
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Furthermore, under the consideration of R3 and h = (b−a)/n, it follows

I− 3T m
2n =

(1−ω)hm+2

2m+2(m+1)!

2n−1

∑
i=0

∫ 1

0
f (m+1)(xi +θiξ h/2)ξ m+1dξ

− ω(−h)m+2

2m+2(m+1)!

2n

∑
i=1

∫ 1

0
f (m+1)(xi− θ̄iξ h/2)ξ m+1dξ

=
(1−ω)hm+2

2m+2(m+1)!

2n−1

∑
i=0

f (m+1)(x̄i)
∫ 1

0
ξ

m+1dξ

− ω(−h)m+2

2m+2(m+1)!

2n

∑
i=1

f (m+1)(x̃i)
∫ 1

0
ξ

m+1dξ

=
2nhm+2

2m+2(m+2)!

[
(1−ω)∑

2n−1
i=0 f (m+1)(x̄i)

2n
− ω(−1)m+2

∑
2n
i=1 f (m+1)(x̃i)

2n

]

=
(b−a)hm+1

2m+1(m+2)!

[
(1−ω) f (m+1)(η5)−ω(−1)m+2 f (m+1)(η6)

]

where η5,6 ∈ [a,b]. On the other hand, we have

I− 3T m
n =

(1−ω)hm+2

(m+1)!

n−1

∑
i=0

∫ 1

0
f (m+1)(yi +ϑihξ )ξ m+1dξ

− ω(−h)m+2

(m+1)!

n

∑
i=1

∫ 1

0
f (m+1)(yi− ϑ̄ihξ )ξ m+1dξ

=
(1−ω)hm+2

(m+1)!

n−1

∑
i=0

f (m+1)(ȳi)
∫ 1

0
ξ

m+1dξ

− ω(−h)m+2

(m+1)!

n

∑
i=1

f (m+1)(ỹi)
∫ 1

0
ξ

m+1dξ

=
nhm+2

(m+2)!

[
(1−ω)∑

n−1
i=0 f (m+1)(ỹi)

n
− ω(−1)m+1

∑
n
i=1 f (m+1)(ỹi)

n

]

=
(b−a)hm+1

(m+2)!
[(1−ω) f (m+1)(η̄5)−ω(−1)m+2 f (m+1)(η̄6)]
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with η̄5,6 ∈ [a,b]. So one can rewrite the error estimate of RT3 as

|I−RT3|=
1

2m+1−1
(b−a)hm+1

(m+2)!

∣∣∣(1−ω)[ f (m+1)(η5)− f (m+1)(η̄5)]

+(−1)m+1
ω[ f (m+1)(η6)− f (m+1)(η̄6)]

∣∣∣
=

1
2m+1−1

(b−a)hm+1

(m+2)!

∣∣∣(1−ω) f (m+2)(ξ̄3)(η5− η̄5)

+(−1)m+1
ω f (m+2)(ξ̄4)(η6− η̄6)

∣∣∣
≤ 1

2m+1−1
(b−a)2hm+1

(m+2)!
‖ f (m+2)(x) ‖∞ .

(3.2)

This completes the proof. Comparison between Theorems 1 and 2 shows that when m≥ 1, the

Romberg-like quadrature formulae are suitable to accelerate the modified mechanical quadra-

ture formula.

4. Quadrature formulae for the R-L fractional integral

Recently, fractional integrals and their applications have attracted much attention [3–6]. Nu-

merical methods of evaluating fractional order integrals and solving fractional order differential

equations are popular [7,8]. In the section, the modified mechanical integration formulae will

be extended to compute the Riemann-Liouville fractional integral expressed as

aIα [ f ](t) =
1

Γ(α)

∫ t

a

f (x)
(t− x)1−α

dx, 0 < α < 1.

Now the equidistant quadrature points are chosen as

xi = a+ ih, i = 0,1, · · · ,n, h =
t−a

n
,

and one has

1
Γ(α)

∫ t

a

f (x)
(t− x)1−α

dx =
1

Γ(α)

n−1

∑
i=0

∫ xi+1

xi

f (x)
(t− x)1−α

dx

=
hα

Γ(α)

n−1

∑
i=0

∫ 1

0
[(n− i)−ξ ]α−1 f (xi +hξ )dξ .

(4.1)

Similar to the former section, application of the Taylor-series expansion (2.3) yields

1
Γ(α)

∫ t

a

f (x)
(t− x)1−α

dx≈
n−1

∑
i=0

m

∑
j=0

[(n− i)h]α+ j

Γ(α)Γ( j+1)
Bβi( j+1,α) f ( j)(xi), (4.2)
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where Bβi( j+1,α) is the incomplete Beta function defined as

Bx(p,q) =
∫ x

0
τ

p−1(1− τ)q−1dτ,

with

x = βi =
1

n− i
, p = j+1, q = α.

Under the assumption of f (x) ∈C(m+1)[a, t], the remainder can be computed as

R̃1 =
n−1

∑
i=0

hα+m+1

Γ(α)Γ(m+2)

∫ 1

0
[(n− i)−ξ ]α−1

ξ
m+1 f (m+1)(xi +θihξ )dξ

=
n−1

∑
i=0

hα+m+1 f (m+1)(xi +θihξi)

Γ(α)Γ(m+2)

∫ 1

0
[(n− i)−ξ ]α−1

ξ
m+1dξ

≤
n−1

∑
i=0

hα+m+1M̂
Γ(α)Γ(m+2)

∫ 1

0
[(n− i)−ξ ]α−1

ξ
m+1dξ

=
n−1

∑
i=0

[(n− i)h]α+m+1M̂
Γ(α)Γ(m+2)

Bβi(m+2,α),

(4.3)

hereafter M̂ = maxa≤x≤t | f (m+1)(x)|.

On the other hand, applying the variable change x = xi+1−hξ , one has

1
Γ(α)

∫ t

a

f (x)
(t− x)1−α

dx =
1

Γ(α)

n

∑
i=1

∫ xi

xi−1

f (x)
(t− x)1−α

dx

=
hα

Γ(α)

n

∑
i=1

∫ 1

0
[(n− i+1)−ξ ]α−1 f (xi−h+hξ )dξ .

(4.4)

Based on the Taylor-series expansion in (2.3), it follows

1
Γ(α)

∫ t

a

f (x)
(t− x)1−α

dx≈
n

∑
i=1

m

∑
j=0

[(n− i)h]α+ j

Γ(α)Γ( j+1)
B̃−βi( j+1,α) f ( j)(xi+1). (4.5)

where

B̃−x(p,q) =
∫ 0

−x
τ

p−1(1− τ)q−1dτ,

with

x = βi =
1

n− i
, p = j+1, q = α.
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The remainder is

R̃2 =
n

∑
i=1

[(n− i)h]α+m+1

Γ(α)Γ(m+2)
f (m+1)(xi + θ̄ihξi)B̃−βi(m+2,α)

≤
n

∑
i=1

[(n− i)h]α+m+1M̂
Γ(α)Γ(m+2)

B̃−βi(m+2,α)

(4.6)

In addition, the convex combination of (4.2) and (4.4) with the weight ω is

1
Γ(α)

∫ t

a

f (x)
(t− x)1−α

dx≈ (1−ω)
n−1

∑
i=0

m

∑
j=0

[(n− i)h]α+ j

Γ(α)Γ( j+1)
Bβ i( j+1,α) f ( j)(xi)

+ω

n

∑
i=1

m

∑
j=0

[(n− i)h]α+ j

Γ(α)Γ( j+1)
B̃−βi( j+1,α) f ( j)(xi)

=
m

∑
j=0

hα+ j

Γ(α)Γ( j+1)
{(1−ω)nα+ jBβ0( j+1,α) f ( j)(a)

+
n−1

∑
i=1

[(1−ω)Bβi( j+1,α)+ωB̃−βi( j+1,α)](n− i)α+ j

· f ( j)(xi)+ω(−1) jBβn−1(1,α + j) f ( j)(xi)},

(4.7)

and the remainder

R̃3 = (1−ω)R̃1 +ωR̃2. (4.8)

In the end, we have the following theorem.

Theorem 4 It is assumed that

‖ f (m+1)(x)‖∞ = max
a≤x≤b

| f (m+1)(x) |= M̂ <+∞.

Then when m→+∞ or h→ 0, the formulae (4.2), (4.4) and (4.6) are convergent with

R̃1→ 0, R̃2→ 0, R̃3→ 0.

Proof From (4.3), we have

R̃1 |≤
nhα+m+1

Γ(α)Γ(m+2)
M̂

n−1

∑
i=0

Bβi(m+2,α)≤ (t−a)2hα+m−1

Γ(α)Γ(m+3)
M̂. (4.9)

It is easy to see that when m→ +∞ or h→ 0, one arrives at R̃1→ 0. Similarly, we can obtain

R̃2→ 0 and R̃3→ 0. So the formulae (4.2), (4.4) and (4.6) are convergent for m→+∞ or h→ 0.
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Fig. 1. The variations of absolute errors versus ω for (m,n) = (1,2), (2,2), (3,2) and (4,2)

respectively.

5. Numerical examples

In order to illustrate the effectiveness of the proposed methods, several numerical examples

are carried out in the section. For convenience, the parameters m and n are written as a pair of

(m,n) in the following numerical computations.

Example 1 It is assumed that f (x) =
1

x2 +1
, and we calculate

I[ f ] =
∫ 1

0
f (x)dx,

with the exact result I =
π

4
. Based on the present method, we choose (m,n) = (2,2), (2,4),

(2,8), (4,2), (4,4) and (4,8) to compute. The weight ω is chosen as −1.0,−0.5,0,0.5 and

1.0, respectively. The absolute errors between the approximate solution I(m,n,ω) and the exact

solution I are given in Table 1. It is seen from Table 1 that with the increasing of m or n for a

fixed ω , the absolute errors are decreasing. In particular, it is found that the parameter of ω has

large influences on the accuracy of the approximate solutions. The variations of the absolute

errors versus ω are depicted in Figures 1 and 2 for some pairs of m and n. It is seen from Figures

1 and 2 that for each pair of m and n, there is a point of ω where the absolute error is tending to

zero. That is to say, we can obtain a good approximation by choosing small values of m and n,

then searching a suitable value of ω.
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respectively.

Table 1 The absolute errors of the approximate and exact solutions for Example 1.

|I− I(m,n,ω)|

(m,n) ω =−1 ω =−0.5 ω = 0 ω = 0.5 ω = 1

(2,2) 3.6981e-2 2.4690e-2 1.2398e-2 1.0650e-4 1.2185e-2

(2,4) 4.8263e-3 3.2178e-3 1.6093e-3 7.2557e-7 1.6078e-3

(2,8) 6.0863e-4 4.0576e-4 2.0288e-4 1.1352e-8 2.0286e-4

(4,2) 2.6678e-3 1.8438e-3 1.0198e-3 1.9588e-4 6.2808e-4

(4,4) 1.0606e-4 7.1309e-5 3.6562e-5 1.8151e-6 3.2932e-5

(4,8) 3.4208e-6 2.2900e-6 1.1592e-6 2.8381e-8 1.1024e-6

Moreover, it is significant to compare the present method with the composite trapezoid (CT)

formula and the composite Simpson (CS) formula. In Table 2, we choose m = 2 and ω = 0.5

to carry out Example 1 again by using the present method. The absolute errors in Table 2 show

that the proposed method is effective.

Table 2 The absolute errors of approximate and exact solutions for Example 1.

The absolute errors

n The present method: (2,n,0.5) The CT formula The CS formula

2 1.0650e-4 1.0398e-2 2.0648e-3

4 7.2557e-7 2.6040e-3 6.0065e-6

8 1.1352e-8 6.5104e-4 3.7783e-8
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On the other hand, it is noted that the analysis and applications of Abel integral equation have

been studied widely [9]. Abel integral equation is applied to model a fractional-order system

and it is written as [3]
1

Γ(α)

∫ t

0

ϕ(x)
(t− x)1−α

dx = f (t), t > 0, (5.1)

with 0 < α < 1. Its solution is expressed as the following well-known formula

ϕ(t) =
1

Γ(1−α)

d
dt

∫ t

0

f (x)
(t− x)α

dx, t > 0. (5.2)

Moreover, some numerical methods have been proposed to give the approximate solution of

Abel integral equation (5.1) such as the quadrature methods [9], the Chebyshev polynomials

method [10] and the Taylor expansion method [11]. Obviously, based on the present method,

the approximate solution can be obtained effectively by evaluating the integral in (5.1) and the

following example is given.

Example 2 Consider an Abel integral equation as follows [11]∫ t

0

ϕ(x)
(t− x)1/2 dx = et−1.

The exact solution is ϕ(t) = eter f (
√

t)/
√

π, where er f (
√

t) denotes the error function. Now

based on the proposed method, the approximate solution can be computed as

ϕ(m,n,ω)(t)≈
m

∑
j=0

hα+ j

Γ( j+1)π
{(1−ω)nα+ jBβ0( j+1,α)

+
n−1

∑
i=1

[(1−ω)Bβi( j+1,α)+ωB̃−βi( j+1,α)](n− i)α+ jexi

+ω(−1) jBβn−1(1,α + j)exi}.

The absolute errors are given in Table 3 for t = 0.2,0.4,0.6,0.8,1 and ω = 0.5 under (m,n) =

(2,4) and (m,n) = (2,8), respectively. For convenience, the corresponding absolute errors by

using the known method in [11] are computed and given in Table 3. It is found from Table 3

that the present method is effective and suitable to solve Abel integral equations.
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Table 3 The absolute errors of approximate and exact solutions for Example 2.

The absolute errors

The present method: ω = 0.5 The known method

t (m,n) = (2,4) (m,n) = (2,8) m=2 [11]

0.2 5.8811e-7 5.5128e-8 0.00290

0.4 7.5312e-6 7.2634e-7 0.00409

0.6 3.5292e-5 3.5034e-6 0.00528

0.8 1.0965e-4 1.1209e-5 0.00690

1.0 2.7211e-4 2.8658e-5 0.00940

6. Conclusions

The typical mechanical quadrature formula has been modified as a novel numerical integra-

tion formula by considering the derivatives of integrand. The Taylor-series expansion technique

has been applied to obtain the coefficients of the modified mechanical quadrature formula. In

order to accelerate the given quadrature formula, the Romberg-like quadrature formulae have

been analyzed. The corresponding convergence and error estimate have been given. The pro-

posed method is further extended to numerically solving Riemann-Liouville fractional integral.

Numerical results show the effectiveness of the proposed formulae. In the future, the given

methods will be used to numerically solve various linear and nonlinear integral equations aris-

ing from ordinary differential equations, physics, mechanical and engineering.
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