
                

*Corresponding author 

Received April 17, 2012 

1588 

     

     Available online at http://scik.org 

    J. Math. Comput. Sci. 2 (2012), No. 6, 1588-1597 

    ISSN: 1927-5307 

                             

PROPERTIES OF A SQUARE ROOT GAMMA DISTRIBUTION 

OHAKWE J.*, OKOLI C. N., OBI J. C., AND UGWU D. N. 

Department of Statistics, Faculty of Science, Anambra State University, P.M.B. 02, 

Uli, Anambra State, Nigeria 

Abstract: In this paper, the probability density function properties of a square root Gamma distribution 

(SRGD) were established. Firstly, a generalized expression for the kth moment (k =1, 2, 3, . . .) was 

found. Secondly, not only that the moments and characteristic functions were established, it was also 

found that the moments can also be recovered from these two basic functions by using the laid down 

statistical rules governing these functions. Finally the measures of skewness, kurtosis and coefficient of 

variation were also established. 
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1. Introduction 

Multiplicative error models (MEMs) are particularly suitable for modeling 

non-negative time series (Brownlees et al., (2011), which is often the kind of data we 

encounter in everyday practice. Let ,tX t N  be a discrete time process defined on 

[0, ),t N   and let  1tf X 
, the information available for forecasting .tX  For a 

real-valued time series data, ,tX t N  follows a MEM if it can be expressed as 

  1t t tX f X e                     (1) 
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where  1tf X 
, is a quantity that evolves deterministically according to the 

parameters tM , the trend-cycle component and tS , the seasonal component. Model 

(1) is a multiplicative time series model, where 

  1t t tf X M S                     (2) 

 te  in (1) is a random variable with probability density function (pdf) defined 

over a [0, ]  support, with unit mean and unknown constant variance. 

  2~ 1,te V                      (3) 

In principle, the conditional distribution of the error term te  can be specified by 

means of any pdf having the characteristics in (3). Examples are Gamma, Log- 

Normal, Weibull, Inverted- Gamma and mixtures of them (Brownlees et al., (2011)). 

Engle and Gallo (2006) favor a Gamma  ,  (which implies 2 1  ); Bauwens 

and Giot (2000), in ACD framework considered a Weilbull   11 ,    (in this 

case,     2 21 2 1 1       ). De Luca and Gallo (2010) investigated 

(possibly time – varying mixtures, while Lanne (2006) adopts mixtures and a 

conditional expectation specification with time varying parameters. 

Many time series Analyst assume normality and it is well known that variance 

stabilization implies normalization of the series. The popular and common are the 

power transformation such as 2,1 ,1 , ,e t t t tLog X X X X and 21 tX . For further 

details on transformation see [Bartlett (1947); Box and Cox, (1964); Akpanta and 

Iwueze (2009)] . 

Studies on the effects of transformation on the error component of the 

multiplicative time  

Series model are not new in the statistical literature. The overall aim of such studies is 

to establish the conditions for successful transformation. A successful transformation 

is achieved when the desirable properties of a data set remains unchanged after 

transformation. These basic properties or assumptions of interest are; (i) Normality (ii) 
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Unit mean and (iii) constant variance. 

 Suppose 
te in (1) is Gamma  21, , Ohakwe et al.,(2012) had studied the 

implication on te  of applying a square root transformation on model (1) and 

discovered that the square root transformed error component was found to be normal 

with unit mean and variance, approximately 4 times that of the original error before 

transformation except when the shape parameter is equal to one. Furthermore, it was 

also found that applying a square root transformation on Gamma  21, distribution 

yields a different kind of distribution given by 

  
 

22 12
, 0yf y y e y


 



  


 .             (4) 

that belongs to the Generalized Gamma Distribution (GGD) given in Walck (2000) as 

  
   

 

1

; , ,

c
a xbcac a x e

f x a b c
b






               (5) 

Equation (4) can be expressed as (5) with ;a b    and 2c  .  The 

expression given in (4) was found to be a pdf and its first and second moments were 

obtained in Ohakwe et al., (2012). However attempts were not made to establish the 

other important statistical measures such as the moment generating function (mgf), 

Characteristics function (cf), skewness, kurtosis and coefficient of variation and these 

form the basis of this paper. 

Thus, the aim of this paper is not only to establish the existence of the above 

mentioned statistical measures but to obtain a generalized expression for the 

uncorrected moments and also demonstrate that the moments can be obtained from 

the mgf and cf as contained in the statistical literature. This paper is organized into six 

Sections. The introduction, the expression for k
th

 moment (k =1, 2, 3, ….) and the 

moment generating function are contained in Sections one and two respectively. The 

characteristic function is established in Section three while the measures of skewness 

and kurtosis are contained in Section four. Summary of results and conclusion are 

contained in Section five while the references are contained in Section six. 
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2. General Expression for the K
th

 Moment (E (Y
k
)) and the Moment Generating 

Function of the Square root Gamma Probability Function 

This Section would be split into two parts. The first part, Section 2.1 would 

contain the derivation for the k
th

 moment (E (Y
k
)), k = 1, 2, 3, . . .)  of the 

distribution under study while the second part, Section 2.2 would contain the 

derivation of its moment generating function (mgf = MX(t)) 

2.1:  General Expression for the K
th

 Moment (E (Y
k
)) 

 

In this Section we would obtain an expression for the K
th

 moment (E (Y
k
)), k = 1, 2, 

3, . . .) of  

the Square root Gamma probability density function. 

By definition  

   
0

k kE Y y f y dy



                   (6) 

Substituting (4) into (6), we have that 

  
   

2 22 1 (2 ) 1

0 0

2 2k k y k yE Y y y e d y y e d y
 

    

 

 

     
         (7) 

If we let 2p y   in (7), the following results are true 

 

1 1
1 1 2 2
2 2

2

p
y p and d y d p




 


                (8) 

hence 

  
 

1 1
2 1

1 1 2 2
2 2

0

2

2

k

k p p
E Y p e d p


 




   


 
  
  

  

 
 

 

2 1
2

0 2

2

k
k

p

k

k

p e d p






 

  
  

 

 
  
  




  

thus 
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 
 2

2k

k

k

E Y



 

 
  
 



                      (9) 

 

Substituting k = 1 and 2, we have the same results obtained in Ohakwe et al., (2012) 

for the first and second moments. That is  

  
 

1

2
E Y



 

 
  
 


    .                        (10) 

and 

  
 

 

 

 
2

1
1E Y

  

   

  
  

 
                 (11) 

2.2: Moment Generating Function  xM t
 

 

The mgf denoted by   yM t is defined as 

 

       
2 2 3 3 4 4

0 0

1 ...
2! 3! 4!

t y t y

y

t y t y t y
M t E e e f y d y f y t y d y

 
 

        
 

   

 

         
2 3 4

2 3 4

0 0 0 0 0

...
2! 3! 4!

t t t
f y dy t y f y d y y f y dy y f y d y y f y d y

    

           

          
2 3 4

2 3 4

0

1 ...
2! 3! 4! !

k
k

k

t t t t
t E Y E Y E Y E Y E Y

k





          (12) 

or 

  
 0 2!

k

y k
k

k
t

M t

k




 





 
  
 



                      (13) 

 There is no question that the mgf is a continuous function of t, therefore having 

obtained the moment generating function of (4), the next task is to show that 

evaluating the r
th

 derivative (r = 1, 2, 3, . . .) of the mgf at t = 0 gives E (X 
r 
), that is 
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  
 

 
0

0

r

yr r

y rt

t

d M t
M t E X

d t



 
     

  

            (14) 

We proceed as follows; 

When r = 1, we obtain from (12) that 

      
1

1

2 !

k
k

y

k

k t
M t E Y E Y

k





                  (15) 

When r = 2, we have 

    
 

 
2

2 2

3

1

!

k

k

y

k

k k t
M t E Y E Y

k






              (16) 

When r = 3, we have 

    
  

 
3

3 3

4

1 2

!

k

k

y

k

k k k t
M t E Y E Y

k





 
             (17) 

Generally the r
th

 order derivative of  yM t  denoted by  r

yM t  is given by 

    
    

 
1 2 ... .1

!

k r

r r k

y

k r

k k k k r t
M t E Y E Y

k





  
      

 

 

    

 2 2

1 2 ... .12 2

!

k r

r k
k r

r k

k k k k r t

k

 

   





   
            

 

         (18) 

Evaluating  r

yM t  at t = 0, gives  rE X  since all other terms are zero, thus 

  
 2

2
0 , 1,2,3,...r

y r

r

M t r



 

 
  
   



                     (19) 

 

3.0 Characteristic function 
  y t

 

Like the mgf, the characteristics function (cf) denoted by     i t y

y t E e    

is the expectation of another type of function of the random variable Y and is 

differentiable and continuous in t. It generates moments in a manner almost similar to 

the mgf. It is the moment of a complex function of the random variable Y and exists 

for all real values of t unlike the mgf which exists only if the moment of the 
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distribution exists. A simple relationship between  yM t and   y t as given in 

Uche (2003) is 

    y yt M i t                       (20) 

 The cf is also a generator of integral moments. The procedure for obtaining these 

moments is similar to that of the mgf. 

 Now, for the distribution under study 

  
 

 1

0

y it y

y

d t
t i y e f y d y

d t






    

hence 

  
 

   1

0

0
0

y

y

d t
t i y f y d y i E y

d t





     

In the same way 

  
 

 
0

r

yr r r it y

y r

d t
t i y e f y d y

d t






    

thus the r
th

 derivative of the cf is given by 

  
 

   
0

0
0

r

yr r r r

y r

d t
t i y f y d y i E y

d t





             (21) 

therefore  

  
 01

r

yr

r r

d t
E X

i d t

 
                  (22) 

Like the mgf given in (12), the cf is given as 

    
 0 0 2

!
!

k k

k k
k

y k
k k

k
i t

i t
t E Y

k
k






 

 

 

 
  
  



                (23) 

While the r
th

 derivative of the cf is given by 

    
    

 
1 2 ... .1.

!

k k r

r r r k

y

k r

k k k k r i t
t i E Y E Y

k






  
      
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 

    

 2 2

1 2 ... .1.2 2

!

k k r

r

r k
k r

r k

k k k k r i t
i

k

 

   





   
            

 

         (24) 

Evaluating (24) at t = 0, yields 

    
 2

2
, 1,2,3,...r r r r

y r

r

t i E Y i r





 

 
  
   



               (25) 

hence 

    
 2

1 2
0 , 1,2,3,...r r

y rr

r

t E X r
i





 

 
  
    



             (26) 

 

4.0 Measures of Skewness, Kurtosis and Coefficient of Variation 

In this Section, we would obtain the expressions for three important statistical 

measures namely, Skewness, Kurtosis and Coefficient of Variation denoted by 
1 2,   

and cv respectively. By definition 

           
33 3 2

1 3 2E Y E Y E Y E Y E Y E Y                      (27) 

        

     

4 4 3

1

2 42

4

6 3

E Y E Y E Y E Y E Y

E Y E Y E Y

    

       

               (28)  

and 

 
   

 

2 2( )E Y E Y
cv

E Y


                            (29) 

Obviously from (27), (28) and (29), the following results are true 

     

3

1 3 1 1

2 2 2

3 1 1

2 2 2
3 2

  



     

      
           
        

 
  

  

                         (30) 

     

2 4

2 2 1 12
2 2

1 3 1 1

1 2 2 2 2
4 6 3

   



      

          
                               

       
      

      (31)       
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and 

 

 
2

2 1

1

2

cv

  




  
         

  


 
  
 

                      (32)

      

5.0 Concluding Remarks 

The fundamental finding of this study is that the square root Gamma distribution 

(SRGD) is found to be a proper probability density function in that the existence of 

the basic properties required of a probability density function were ascertained. Firstly, 

a generalized expression for the k
th

 moment (k =1, 2, 3, . . .) was found. Secondly, not 

only that the moments and characteristic functions were established, it was also found 

that the moments can also be recovered from these two basic functions by using the 

laid down statistical rules governing these functions. Finally the measures of 

skewness, kurtosis and coefficient of variation were also established. Finally, the 

results of this study will broaden the field of distribution theory that the square root of 

a Gamma distribution yields a different kind of distribution that belongs to the 

generalized gamma family herein called the square root gamma distribution (SRGD). 
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