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Abstract: The present paper deals with the existence of equilibrium points in the magnetic binary problem when the 

infinitesimal body is of variable mass. We have observed that there exists nine collinear and two non-collinear 

equilibrium points we have also observed that the mass reduction factor has a significant role on the existence of the 

equilibrium points. 
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1. Introduction 

In 1928 Jeans [7] has studied the two-body problem with variable mass. Omarov [13] has also 

discussed the restricted problem of perturbed motion of two bodies with variable mass. 

Shrivastava and Ishwar [14] have studied the circular restricted three body problem with variable 

mass with the assumption that the mass of the infinitesimal body varies with respect to time. Singh 
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and Ishwar [15] showed the effect of perturbation on the location and stability of the triangular 

equilibrium points in the restricted three-body problem. Lukyanov [8] discussed the stability of 

equilibrium points in the restricted three problem with variable mass. He found that for any set of 

parameters, all the equilibriums points in the problem (Collinear, Triangular and Coplanar) are 

stable with respect to the conditions considered in the Meshcherskii space-time transformation. 

Singh et al. [6] has discussed the non-linear stability of equilibrium points in the restricted three 

body with variable mass. They have also found that in non-linear sense, collinear points are 

unstable for all mass ratios and the triangular points are stable in the range of linear stability except 

for three mass ratios which depend upon, the constant due to the variation in mass governed by 

Jean’s law. Jagdish Singh [5] discussed the photogravitational restricted three body problem with 

variable mass. M. R. Hassan et al. [4] has studied the existence of equilibrium points in the 

restricted three body problem with variable mass when the smaller primary is an oblate spheroid.  

A. Mavragnais [9-12] and Mohd Arif [1-3] have studied the motion of a charge particle which is 

moving in the field of two rotating magnetic dipoles which are moving in the circular motion 

around their centre of mass in a uniform motion. In this article we have discussed the motion of a 

charged particle of variable mass which is moving in the field of two rotating magnetic dipoles. 

 

2. Equation of motion  

Two dipoles (the primaries), with magnetic fields move under the influence of gravitational 

forces and a charged particle P of charge q1 and variable  mass m  moves in the vicinity of 

these dipoles. The question of the magnetic-binaries problem is to describe the motion of this 

particle. The equation of motion in the rotating coordinate system including the effect of the 

gravitational forces of the primaries on the charged particle P written as: 

𝑥̈ +
𝑚̇

𝑚
 (𝑥̇ − 𝑦) − 2𝑦̇ 𝑓  = – 

1

𝑚
 𝑈𝑥                                          (1)                                                                                          

𝑦̈ +
𝑚̇

𝑚
 (𝑦̇ + 𝑥) + 2𝑥̇ 𝑓  = – 

1

𝑚
 𝑈𝑦                                          (2)                                                                                                                                                                                                                                     

Where  
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ƒ =  1 −
1

𝑚 
 ( 

1

ρ1
3 +  

𝜆

𝜌2
3 ) ,  𝑈𝑥 =

𝜕𝑈

𝜕𝑥
  and  𝑈𝑦 =

𝜕𝑈

𝜕𝑦
                             (3)                                              

𝑈 = −
𝑚 

2
 (𝑥2 + 𝑦2) −  (𝑥2 + 𝑦2) {

1

ρ1
3  +   

𝜆

𝜌2
3} − 𝑥 {

µ

ρ1
3 −  

𝜆(1−µ)

𝜌2
3 } −

𝑚 (1−µ)

ρ1
−

𝑚 µ

ρ2
  (4)                                                                   

Here we assumed  

1. Primaries participate in the circular motion around their centre of mass  

2. Position vector of P at any time t be 𝜌 = (𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘)  referred to a rotating frame      

of reference O(𝑥, 𝑦, 𝑧) which is rotating with the same angular velocity 𝜔 = (0, 0, 1 ) as those 

the primaries. 

3. Initially the primaries lie on the 𝑥-axis. 

4. The distance between the primaries as the unit of distance and the coordinate of one primary is 

(µ, 0, 0) then the other is (µ−1, 0, 0).  

5. The sum of their masses as the unit of mass. If mass of the one primaries µ then the mass of 

the other is (1− µ). 

6. The unit of time in such a way that the gravitational constant G has the value unity and 

  q1 = 𝑐  where 𝑐 is the velocity of light. 

    𝜌1
2= (𝑥 − µ)2+𝑦2, 𝜌2

2 = (𝑥 + 1 − µ)2+ 𝑦2, 𝜆 =
𝑀2

𝑀1
 , (𝑀1, 𝑀2 are the magnetic moments 

of the primaries which lies perpendicular to the plane of the motion).  

The variation of mass of the charged particle P is given by (Jeans law) 

𝑑𝑚

𝑑𝑡
= −𝛼 𝑚𝑛  𝑖. 𝑒  

𝑚̇

𝑚
 = −𝛼 𝑚𝑛−1                                         (5) 

Where 𝛼 is a constant coefficient and  𝑛 𝜖 [0.4, 4.4] 

Now introduce the space-time transformation as:  

𝑥 = 𝜉 𝛾−𝑞 , 𝑦 = 𝜂 𝛾−𝑞, 𝑑𝑡 = 𝛾−𝑘𝑑𝜏 

𝜌1 = 𝑟1𝛾−𝑞, 𝜌2 = 𝑟2𝛾−𝑞 , 𝛾 =
𝑚

𝑚0
< 1 

Where 𝑚0 is the mass of the charge particle at time 𝑡 = 0. 

Differentiating 𝑥 and 𝑦 with respect to 𝑡 twice, we get  

𝑥̇ = 𝜉′ 𝛾𝑘−𝑞 +  𝛽 𝑞 𝜉 𝛾𝑛−𝑞−1,    𝑦̇ = 𝜂′ 𝛾𝑘−𝑞 +  𝛽 𝑞 𝜂 𝛾𝑛−𝑞−1 

𝑥̈ = 𝜉′′ 𝛾2𝑘−𝑞 +  𝛽  𝜉′  (2𝑞 − 𝑘) 𝛾𝑛+𝑘−𝑞−1 − 𝛽2𝑞 𝜉 (𝑛 − 𝑞 − 1) 𝛾2𝑛−𝑞−2, 
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𝑦̈ = 𝜂′′ 𝛾2𝑘−𝑞 +  𝛽  𝜂′  (2𝑞 − 𝑘) 𝛾𝑛+𝑘−𝑞−1 − 𝛽2𝑞 𝜂 (𝑛 − 𝑞 − 1) 𝛾2𝑛−𝑞−2. 

Where 

𝛾̇ =  
𝑚̇

𝑚
= − 𝛽 𝛾𝑛−1,  𝛽 =  𝛼 𝑚0

𝑛−1 = constant, 

– 
1

𝑚
 𝑈𝑥 = – 

1

𝑚
 

𝜕𝑈

𝜕𝜉
 

𝜕𝜉

𝜕𝑥
= – 

𝛾𝑞−1

𝑚0
 

𝜕𝑈

𝜕𝜉
 ,  – 

1

𝑚
 𝑈𝑦 = – 

1

𝑚
 

𝜕𝑈

𝜕𝜂
 

𝜕𝜂

𝜕𝑦
= – 

𝛾𝑞−1

𝑚0
 

𝜕𝑈

𝜕𝜂
. 

Putting the values of  𝑥̇, 𝑦̇, 𝑥̈, 𝑦,̈  𝑈𝑥, 𝑈𝑦  and  
𝑚̇

𝑚
 in equations (1) and (2) and after some 

simplification we get,  

𝜉′′ + 𝛽  𝜉′  (2𝑞 − 𝑘 − 1) 𝛾𝑛−𝑘−1 − 𝛽2𝑞 𝜉 (𝑛 − 𝑞) 𝛾2(𝑛−𝑘−1)

− 2 𝜂′ 𝛾−𝑘 [1 −
 𝛾3𝑞

 𝛾 𝑚0
{

1

r1
3  +   

𝜆

𝑟2
3}] 

−𝛽 𝜂 𝛾
𝑛−𝑞−1

2𝑘−𝑞 [1 − 2 𝑞 {1 −
 𝛾3𝑞

 𝛾 𝑚0
(

1

r1
3  +   

𝜆

𝑟2
3)}] = – 

𝛾2𝑞−2𝑘−1

𝑚0
 

𝜕𝑈

𝜕𝜉
                    (6)                                          

𝜂′′ + 𝛽  𝜂′  (2𝑞 − 𝑘 − 1) 𝛾𝑛−𝑘−1 − 𝛽2𝑞 𝜂 (𝑛 − 𝑞) 𝛾2(𝑛−𝑘−1)  +2 𝜉′ 𝛾−𝑘 [1 −

 𝛾3𝑞

 𝛾 𝑚0
{

1

r1
3  +   

𝜆

𝑟2
3}] 

+𝛽 𝜉 𝛾
𝑛−𝑞−1

2𝑘−𝑞 [1 − 2 𝑞 {1 −
 𝛾3𝑞

 𝛾 𝑚0
(

1

r1
3  +  

𝜆

𝑟2
3)}] = – 

𝛾2𝑞−2𝑘−1

𝑚0
 

𝜕𝑈

𝜕𝜂
                    (7)                                                                  

To eliminate the non-variational factor from equations (6) and (7) we assume  

2𝑞 − 𝑘 − 1 = 0,  𝑛 − 𝑘 − 1 = 0,  𝑛 = 1, 𝑘 = 0,  𝑞 =  
1

2
,  𝛽 =  𝛼. 

Thus we have 

𝜉′′ − 2 𝜂′  [1 − √𝛾

 𝑚0
{

1

r1
3  +   

𝜆

𝑟2
3}] =  

𝛽2 𝜉 

4
−

  𝛽 𝜂 𝛾
3
2

 𝑚0
 (

1

r1
3  +   

𝜆

𝑟2
3) – 

1

𝑚0
 

𝜕𝑈

𝜕𝜉
          (8)        

 𝜂′′ + 2 𝜉′  [1 − √𝛾

 𝑚0
{

1

r1
3  +   

𝜆

𝑟2
3}] =  

𝛽2𝜂 

4
+ 

 𝛽 𝜉 𝛾
3
2

 𝑚0
 (

1

r1
3  +  

𝜆

𝑟2
3) – 

1

𝑚0
 

𝜕𝑈

𝜕𝜂
          (9)                  

Where  

 𝑈  = −
𝑚0 

2
 (𝜉2  + 𝜂2) − (𝜉2 + 𝜂2) {

1

r1
3  +   

𝜆

𝑟2
3} 𝛾

1

2 − 𝛾 𝜉 {
µ

r1
3 −   

𝜆(1−µ)

r2
3 } − 𝛾

3

2 (
𝑚0 (1−µ)

r1
+

𝑚0 µ

r2
)   

                                                                          (10)                                                                                       

3. Existence of Equilibrium Points  
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The Equilibrium Points are the solution of  

𝛽2 𝜉 

4
−

  𝛽 𝜂 𝛾
3
2

 𝑚0
 (

1

r1
3  +   

𝜆

𝑟2
3)  −  

1

𝑚0
 

𝜕𝑈

𝜕𝜉
= 0                                    (11)                                      

𝛽2𝜂 

4
+  

 𝛽 𝜉 𝛾
3
2

 𝑚0
 (

1

r1
3  +  

𝜆

𝑟2
3) −  

1

𝑚0
 

𝜕𝑈

𝜕𝜂
= 0                                     (12)                                 

The solution of equations (11) and (12) results the equilibrium points, this solution divided in 

two group  those with 𝑦 = 0, called the collinear equilibrium points  and other are on 

𝑥𝑦-plane (𝑦 ≠ 0) called the non-collinear equilibrium points (ncep). For 𝜆 > 0 we found that 

there exist three collinear equilibrium points within the interval {−∞, −(1 − µ)}, {−(1 −

µ), µ}, (µ, +∞)  which we denote by 𝐿𝑖 , (𝑖 = 1,2,3)  respectively and two non-collinear 

equilibrium points. 

 

Case I when 𝐿1  ∈ {−∞, −(1 − µ)}  

The substitution  𝑟1 =   µ − 𝜉 = 𝜏 + 1, 𝑟2 = −((1 − µ) +  𝜉) = 𝜏 in equations (11) and (12), 

we have 

(
𝛼2 𝜉 

4
− 𝑚0) (µ − 𝜏 − 1) (𝜏 + 1)5𝜏5 + 2 (µ − 𝜏 − 1)  

1

2{(𝜏 + 1)2𝜏5 + 𝜆 (𝜏 + 1)5𝜏2} − 

− 3 (µ − 𝜏 − 1)2 𝛾
1
2  [{(µ − 𝜏 − 1) −  µ  𝛾

1
2}  𝜏5

+ {(µ − 𝜏 − 1) + (1 −  µ ) 𝛾
1
2} (𝜏 + 1)5] − 

−3𝛾  [µ {(µ − 𝜏 − 1) −  µ  𝛾
1

2}  𝜏5 − 𝜆 (1 −  µ ) {(µ − 𝜏 − 1) + (1 −  µ ) 𝛾
1

2} (𝜏 +

1)5] (µ − 𝜏 − 1) −  𝑚0 𝛾
3

2  [(1 − µ) {(µ − 𝜏 − 1) −  µ  𝛾
1

2}  𝜏5(𝜏 + 1)2 + µ {(µ − 𝜏 −

1) + (1 −  µ ) 𝛾
1

2} (𝜏 + 1)5𝜏2] +  {µ (𝜏 + 1)2𝜏5 − 𝜆 (1 −  µ )(𝜏 + 1)5𝜏2} = 0      (13)        

And 

𝜏3 + 𝜆 (𝜏 + 1)3                                                             (14)                                             

 

Case II when 𝐿2  ∈ {−(1 − µ), µ}  

The substitution  𝑟1 =   µ − 𝜉 = 1 − 𝜏, 𝑟2 = −(1 − µ) +  𝜉 = 𝜏 in equations (11) and (12), 

we have 
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(
𝛼2 𝜉 

4
− 𝑚0) (µ + 𝜏 − 1) (1 − 𝜏)5𝜏5 + 2 (µ + 𝜏 − 1)  𝛾

1

2{(1 − 𝜏)2𝜏5 + 𝜆 (1 − 𝜏)5𝜏2} − 

− 3 (µ + 𝜏 − 1)2 𝛾
1
2  [{(µ + 𝜏 − 1) −  µ  𝛾

1
2}  𝜏5

+ {(µ + 𝜏 − 1) + (1 −  µ ) 𝛾
1
2} (1 − 𝜏)5] − 

−3𝛾   [µ {(µ + 𝜏 − 1) −  µ  𝛾
1

2}  𝜏5 − 𝜆 (1 −  µ ) {(µ + 𝜏 − 1) + (1 −  µ ) 𝛾
1

2} (1 −

𝜏)5] (µ + 𝜏 − 1) −  𝑚0 𝛾
3

2  [(1 − µ) {(µ + 𝜏 − 1) −  µ  𝛾
1

2}  𝜏5(1 − 𝜏)2 + µ {(µ + 𝜏 −

1) + (1 −  µ ) 𝛾
1

2} (1 − 𝜏)5𝜏2] +  {µ (1 − 𝜏)2𝜏5 − 𝜆 (1 −  µ )(1 − 𝜏)5𝜏2} = 0    (15)     

And 

𝜏3 + 𝜆 (1 − 𝜏)3                                                            (16)                                                                                    

 

Case III when 𝐿3  ∈ (µ, +∞)  

The substitution  𝑟1 =  𝜉 −  µ = 𝜏, 𝑟2 = (1 − µ) +  𝜉 = 𝜏 + 1 in equations (11) and (12), we 

have 

(
𝛼2 𝜉 

4
− 𝑚0) (µ + 𝜏)  (𝜏 + 1)5𝜏5 + 2  (µ + 𝜏)   𝛾

1

2{(𝜏 + 1)5𝜏2 + 𝜆 (𝜏 + 1)2𝜏5}− 3 (µ +

𝜏)2 𝛾
1

2 

 [{(µ + 𝜏) −  µ  𝛾
1

2}  (1 + 𝜏)5 + {(µ + 𝜏) + (1 −  µ ) 𝛾
1

2} 𝜏5] − 3𝛾 [µ {(µ + 𝜏) −

 µ  𝛾
1

2}  (1 + 𝜏)5 − 𝜆 (1 −  µ ) {(µ + 𝜏) +  (1 −  µ ) 𝛾
1

2} 𝜏5] (µ + 𝜏) −  𝑚0 𝛾
3

2  [(1 −

µ) {(µ + 𝜏) − − µ  𝛾
1

2}  𝜏2(𝜏 + 1)5 + µ {(µ + 𝜏) + (1 −  µ ) 𝛾
1

2} (𝜏 + 1)2𝜏5] +

 {µ (𝜏 + 1)5𝜏2 − 𝜆 (1 −  µ )(𝜏 + 1)2𝜏5} = 0                                   (17)                                           

And 

(1 + 𝜏)3 + 𝜆 𝜏3                                                            (18)                                                                                                                 

In figs 1, 2 and 3 we give the positions of the points 𝐿1 𝐿2 and 𝐿3 for 𝜆 = 1, respectively for 

various values of µ. These figure shows that the points 𝐿1 and 𝐿2 move towards the origin 

whereas the point 𝐿3 go away from the origin as  µ  increases. We have also observed that the 

these points  have the different positions for different values of mass reduction factor 𝛾 and small 
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values of µ and for 𝐿1 and 𝐿2 this variation tends to zero as µ  increases and 𝛾 decreases 

but for 𝐿3 this variation increases as µ  increases and 𝛾 decreases The combine position of 

𝐿1 𝐿2 and 𝐿3 shows in  fig (4). 

     

                                            

                 Fig (1)                              Fig(2) 

 

 

         

                 Fig (3)                                  Fig (4) 

Non-collinear equilibrium points (𝑦 ≠ 0) 

The non-collinear equilibrium points are the solution of the equations (11) and (12) 

when 𝑦 ≠ 0 and the solutions of these two equations are given in figure (5) for different value 

of µ and mass reduction factor 𝛾 . This figure (5) shows that there exist two non-collinear 

equilibrium points 𝐿4 and 𝐿5.We have observed that the mass reduction factor has a significant effect on 

the position of the non-collinear equilibrium points. 

L1, .60 L1, .45 L1, .045

L1, .0045

L2, .60 L2, .45 L2, .045
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0.2
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0.4

0.5

0.7 0.6 0.5 0.4
L2

0.1
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0.5
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0.5
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0.5
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Fig (5) 

In this fig (5) the green dot denotes the location of the ncep when 𝛾 = .6 and for various values 

of µ and red dot denotes the location of the ncep when 𝛾 = .45 and for various values of µ. 

We have found that these points move from the right to left as  µ increases and these points 

also moves away from the primaries as 𝛾 decreases.  

4. Conclusion 

In this paper, we have studied the magnetic binary problem when the infinitesimal body is of variable 

mass. We have obtained the desired equations of motion and have also found the location of the collinear and 

non-collinear equilibrium points. We have observed that there exist three collinear and two non-collinear 

equilibrium points. We have found that that the points 𝐿1 and 𝐿2 move towards the origin whereas 

the point 𝐿3 go away from the origin as  µ  increases. We have also observed that the these 

points  have the different positions for different values of mass reduction factor 𝛾 and small 

values of µ and for 𝐿1 and 𝐿2 this variation tends to zero as µ  increases and 𝛾 decreases 

but for 𝐿3 this variation increases as µ  increases and 𝛾 decreases. We have also observed 

that the mass reduction factor has a significant effect on the position of the non-collinear 

equilibrium points. 
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