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Abstract: Fractional calculus is a rising subject in the current research field. The researchers of different disciplines 

are using fractional calculus models to investigate different practical problems.  In this paper, we found the exact 

solutions of space-time fractional generalized KdV equation, KdV Burger equation and Benjamin-Bona-Mahoney-

Burgers equation with dual power-law nonlinearity. The solutions are expressed in terms of hyperbolic, 

trigonometric and rational functions. 
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1. Introduction 

It is well known that to formulate the real world phenomenon most of the places non-linear 

integer order or fractional differential equations arise [1-3]. The authors are using the fractional 

differential models to formulate the systems which have memory [4].  To solve the non-linear 

classical or fractional differential equations which appear in the physical systems we have to 

consider linear approximation and therefore the solution loses some information.  To solve those 
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non-linear classical and fractional differential equations different research groups have 

developed many methods. The Adomian Decomposition Method [5-7], Homotopy Perturbation 

Method (HPM) [8-10], sub-equation method, Generalized Tanh method [11], Generalized exp 

method [12] etc. Some researchers extended the methods used to solve the integer order 

differential equations for solving the fractional order differential equations. The fractional sub-

equation method is one of them [13-14].  The Tanh method is an important method to find exact 

solution of the non-linear differential equations. It was introduced by Huiblin and Kelin [15] to 

find the travelling wave solutions of non-linear differential equations. Wazwaz [16] used this 

method to find soliton solutions of the Fisher equation. Fan [17] modified the Tanh method to 

solve KdV-Burgers and Boussinesq equation. The Fractional sub-equation method [13-14] and 

Generalized Tanh-method [11] are both based on the Homogeneous balance principal. He [19-20] 

developed the complex fractional transformation method to convert the fractional order 

differential equation to integer order differential equations.  

In this paper we used the complex fractional transformation and generalized Tanh method to 

solve three non-linear space-time fractional differential equations arises in fluid dynamics and 

plasma dynamics. The space-time fractional generalized KdV equation, KdV-Burger equation 

and Bona-Mahoney-Burgers equation with dual power-law nonlinearity first converted to integer 

order differential equation using the complex fractional transformation and then those equations 

are solved using generalized Tanh method. In this method the solutions are expressed in terms 

the hyperbolic, trigonometric and the rational functions.  

Organization of the paper is as follows: In section-2 we gave the review of fractional calculus, 

complex fractional transformation and generalized Tanh method. Section-3,4 and 5 is devoted to 

solve the space –time fractional generalized KdV equation, KdV-Burger equation and Bona-

Mahoney-Burgers equation respectively and numerical presentation of the solutions are given for 

all the solutions for different values of order of derivative. Finally a conclusion is drawn.    

 

2. Review of fractional calculus, Complex transforms method and Generalized 

Tanh method 

Here we discussed some basic definitions of the fractional derivatives complex fractional 

transformation and the generalized tanh method.  
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a) Fractional derivative  

There are different definitions of fractional derivative in which Riemann–Liouville (R-L) 

fractional derivative is one of the widely used definition of fractional derivative. For any 

continuous and integrable function ( )f x it is defined as, 
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In terms of this definition, derivative of the constant K is 
0
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     ; where 

as in the classical sense the fractional derivative of the constant should have been equal to zero. 

After that M. Caputo [1-2] generalized the fractional order derivative in the new way and 

overcome this difficulty.  He proposed the definition in the following form:  

Let  be a positive number and n be a positive integer satisfy 1n n    and ( )nf t exists (that 

is n  th order ordinary derivative exists). Then -th order fractional derivative is defined by, 
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where 
0

RL

t t
J 

is the R-L integral operator, defined as follows 
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The Caputo derivative fractional derivative a constant becomes zero and it is analogous to 

standard classical calculus. But it is applicable only when the function accepts differentiability.  

Then Jumarie [21] gave a new definition which is applicable for continuous (but not necessarily 

differentiable) functions.  

Let ( )f x  is defined in 0 x a  , (0)f is finite.  Jumarie [21] defines the fractional derivatives of 

a continuous function ( )f x , 
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Let the general form of fractional differential equation of two independent variables ,  x t and one 

dependent variable  ,u x t is, 

 2 2, , ,..., , 0x t x tF u D u D u D u D u     ,       0 1                               (2.4) 

where 
( , )u x t

x x
D u





 


 denotes the Jumarie fractional partial derivative of the form,  
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where the function ( , )u x t is continuous but not necessarily differentiable. A constant function’s 

fractional derivative is zero with Jumarie fractional derivative.   

b) The fractional Complex Transformation 

The complex fractional transformation [18-20] reduces the fractional order ordinary or partial 

differential can be reduce to the integer order ordinary or fractional order differential equation. 

Let a fractional order ordinary differential equation be of the form,  

                                            ( ),
d

D u f x D
dx


 


                                                    (2.6) 

where D as Jumarie fractional derivative operator.     We introduce the complex fractional 

transformation ( )

(1 )

px
X



 
  where p is constant.  Using fractional Taylor series of Jumarrie type 

we get  ( )! ( )dx x t dt
 . Thus, we can write, 

 
 !

d x
dx dt d x

dt


 




 
  
 
 

 

The relation  ! ( 1)d x dx dx      is the heart of complex transformation which makes the 

fractional differential d f to the standard differential df  . Using this Jumarie conversion we get 
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d u du
p

dx dX





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Now, we consider a fractional partial differential equation with two independent variables in the 

form, 

   
( , ) ( , ) ( , )t xD u x t D u x t f x t                                              (2.7) 
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t xt x

D u x t D u x t
 

 

  

 
   Then by using the complex fractional 
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(1 ) (1 )
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    we get the following transformed equation 

                                             

,
u u u u

p q
x X t T

 
 

 

   
 

   
 

Then (1.7) reduces to the integer order partial differential equation as  

( , )
u u

q p F X T
T X

  
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 
                                                      (2.8) 

 

(c) Generalized Tanh Method 

In this method the exact solutions of non-linear partial differential equations are expressed in 

terms of hyperbolic, trigonometric and rational functions. Let us consider a non-linear partial 

differential equation of the form, 

 L , , , , ,..... 0t x y tt xxu u u u u                                               (2.9)  

satisfied by ( , , )u x y t .  Now we use the travelling wave transformation lx my ct    , where 

( ; )l m are the wave vector and c  is the velocity of propagating waves. Then the equation (2.9) 

reduces to the ordinary differential equation, that is 

  L , , ........ 0u u u                                                    (2.10)  

Fan and Hon [11] introduced a generalized method called Tanh method which is based on the a 

priori assumption that the travelling wave solutions can be expressed as the power series 

expansion of solutions of the non-linear Riccati differential and the homogeneous balance 

principle.  

Let  be the solution of non-linear Riccati differential  

   2                                                               (2.11) 

Then Solution of the equation (2.11) can be written in the form 
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Let 

   2

0 1 2 ........ n

nu s a a a a                                          (2.13) 

be the solution of the equation (2.10) with , 0,1,2.....ia i n as constants. Then the highest power 

of  in  u  becomes 1n ; similarly that of u is 2n . Then we balance the highest power of 

 in the highest order derivative term and the non-linear term to determine n. Then put the 

reduce form of (2.13) in (2.10) and comparing the coefficients of  the constants can be 

determined. 

 

3. Solution of KdV Equation using Generalized Tanh Method and complex 

fractional transformation 

Let us consider the well known space-time fractional generalized KdV equation   

      2 3 0t x x xD u uD u u D u D u                                           (3.1) 

where ,   are the arbitrary constants. Now we consider a transformation that is  

   
1 1 1 1,
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 
 

   
     
       

         (3.2) 

 Then the equation (3.1) reduces to the ordinary differential form, 

 2 3 0mu l uu lu u l u                                                       (3.3) 

Integrating (3.3) once with respect to , we get the following  

2 3 31 1
0

2 3
mu l u lu l u                                                     (3.4) 

The integral constant is taken as zero because the soliton solutions are localized solutions and 

hence u and it’s derivatives will vanish when  . 
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The equation (3.4) can be written as  

 

2 3

3 2 2

2 3

1 1
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                                           (3.5)                                                                                                     

Where , ,A B C  are given by 3 2 22 3
, ,m

l l l
A B C

 
      .  Now change the independent variable 

   where  satisfies the equation (2.11). Hence the equation (3.5) reduces to the form, 
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Let us consider the solution of the equation (3.6) in the form,  
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Putting  u   from (3.7) the equation (3.6) can be expressed as,  
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Equating the order of the highest degree of   from the non-linear term and the highest order 

derivative term from (3.8) we get 2 3n n  , i.e. 1n  . Thus ( )u   in (3.7) take the 

form   0 1u a a   , and therefore
2

21, 0du d u
d d

a
 
  . Putting these values in the equation (3.6), 

we get 
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Comparing the coefficient of 0 1 2, ,   and 3  in the above equation (3.9), we get 

2 2 3
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Solving the above equations, we get, 
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as 
1 0a  and l and m are connected by the following relation  
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Hence the general solution of the equation (3.1) can be written as, 
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Hence we obtain the generalized solution of the space time fractional generalized KdV equation 

in terms of hyperbolic, trigonometric and the rational functions.    

 

4. Solution of KdV Burger Equation using Generalized Tanh Method and 

complex fractional transformation 

Let us consider the well known KdV Burger Equation  

 3 2

t x x xD u uD u D u D u                                                        (4.1) 

Now we consider the transformation defined in (3.2) .Then the equation transforms into 

 3 2l u l u luu l u                                                          (4.2) 

Integrating (4.2) once both side with respect to   we get,  

     3 2 21

2
l u mu lu l u                                                        (4.3) 

Here also the integral constant is taken as zero because the soliton solutions are localized 

solutions and hence u and its derivatives will vanish when   . Now again change the 

independent variable    where  satisfies the equation (2.11). 

Hence the equation (4.3) becomes, 
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Putting these values in the equation (4.4) we get 
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Comparing the coefficient of 
0 1 2 3 4, , , and     in the above equation, we get following set of 
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  

2
4 3 2

2

3 3 2

1 2 1 2

2 3 2 2

2 1 2 1 0 2

3 2

1 2 1 0 1

2
0 3 2 2 0

2 1 0

: 6
2

: 2 2

: 8 2
2

: 2 2

: 2
2

la
l a

l a a l la a

l
l a l a a a a a

l a a l ma la a

la
l a a l ma

 

  

    

   

   


  


  




    

  



  


                                  (4.7) 

Solving the above equations in (4.7) we get, 

 2 2

0 1 2

12
12 , , 12

5

m l
a l a a l

l


          
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And l and m are connected by the relation 

6 2 2576m l    

Thus the general solution of (4.1) can be written as 

 

     

     

     

     

   

2

0 1 2

2

0 1 2

2

0 1 2

2

0 1 2

0 1 2

( , )

tanh tanh
for 0

coth coth

tan tan
for 0

cot cot

1 1
for

u x t

a a kx t a kx t

a a kx t a kx t

a a kx t a kx t

a a kx t a kx t

a a a
kx t kx t

   

   

   

   

   

     


     

     


     

 



       



        



   



    



 
 

0

















  (4.8) 

Thus we obtained the exact solution of space time fractional generalized KdV Burger equation 

using the transformation of He [5,6 ] and the Generalized Tanh method.  

 

5. Solution of Benjamin-Bona-Mahoney-Burgers equation with dual power-

law nonlinearity using Generalized Tanh Method and complex fractional 

transformation 

Here we consider the Benjamin-Bona-Mahoney-Burgers equation with dual power-law 

nonlinearity 

 2 2 3

2 3( ) 0n

t x x xx xxtD u aD u b u b u D u cD u kD u                                   (5.1) 

Here a represents the strength of defection or drifting. Strengths of the two nonlinear terms are 

measured by 2, 3b b  while the exponent n stands for the power law of nonlinearity parameter. The 

parameters ,c k  are the dissipative diffraction coefficient. Putting 1n   Eq. (5.1) becomes  

      2 2 3

2 3( ) 0t x x xx xxtD u aD u b u b u D u cD u kD u                                    (5.2) 

 Now use the transformation (3.2) in equation (5.2) and then it reduces to the following form, 

 2 2 3

2 3( ) 0mu lau l b u b u u cl u kl mu                                   (5.3) 

Integrating equation (5.3) with respect to   and using the boundary condition of solitary type 

solution we get  
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     3 2 2 3

2 3

1 1
0

3 2
mu alu b u b u l cl u kl mu 

 
      

 
                               (5.4)                                               

The equation (5.4) can be written as 

2 33 2

3 2 2

2 3

0
2 3

0

b bm al c
u u u u u

kl m kl m kl m kml

u Du Au Bu Cu

 

 


    

                                             (5.5)
 

  

where , , ,A B C D  given below (Note that term D here should be distinguished from derivative 

operator-that we have used) 

3 2

3 2 2
, , ,

2 3

b bm al c
A B C D

kl m kl m kl m klm


     

Now again change the independent variable    where  satisfies the equation (2.11). Hence 

the equation (5.5) becomes 

      
2

2
2 2 2 2 3

2
2 0

d u du du
D Au Bu Cu

d d d
      

  
                          (5.6) 

Let the solution of the equation (5.5) be expressed as  
0

n i

ii
u S a 


   i.e. in (3.7).                   

Then the equation (5.2) can be expressed as  

   

 

 

2
2 2

2 3

2 1

1 2

2 1

1 2

0 1

2 3

0 1 0 1

2 3 ...... 1

2 2 ......

2 ......

......

...... ......

n

n

n

n

n

n

n

n

n n

n n

a a n n a u

a a na u

D a a na u

A a a a u

B a a a u a a a u

  

   

  



 







     

     

     

     

           

                   (5.7) 

Equating the order of the highest degree of   in both sides of the above we get 2 3n n   i.e. 

1n  . Then ( )u   becomes in the form   0 1u a a   and so we have

 
2

1 2
, 0

du d u
a

d d 
   

Putting these values in the equation (5.6) we get 

       
2 32

1 0 1 0 1 0 1(2 )D a A a a B a a C a a                                       (5.8) 

Comparing the coefficient of 
0 1 2 3, , and    from the equation (5.8) we get, 
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2 3

0 0 0 1

2

1 0 1 0 1 1

2 2

1 0 1 1

3

1 1

0

2 3 2 0

3 0

2 0

Aa Ba Ca D a

Aa Ba a Ca a a

Ba Ca a Da

a Ca





   


    


   


  

                                     (5.9)  

Solving the equations in (5.9) we get   

2 3
0 12

2 2

6 3
,

218

b b l klm
a a l

b bkml klm


     

And l and m are connected by the following relation 

2 3

2 23 3 32

2 2
2 2

2 3

2
2 2

6 62

2 2 3 218 18

6 3
2 0

218

b bb b bb

klm b klm bkml klm kml klm

b b c klm
l

b km bkml klm
 

    
     

   
   

 
     

 
 

 

Hence the general solution of the equation (5.2) can be written as, 

  

  

  

2 3

2
2 2

2 3

2
2 2

2 3

2
2 2

2 3

2
2

6 3
tanh for 0

218

6 3
coth for 0

218

6 3
( , ) tan for 0

218

6

218

b b klm
l lx mt

b bkl m klm

b b klm
l lx mt

b bkl m klm

b b klm
u x t l lx mt

b bkl m klm

b b

bkl m klm

 

 

 

  

  

  

 
       

 
 

 
       

 
 

 
      

 
 

 



 

  

 

2

2 3

2
2 2

(5.10)

3
cot for 0

6 3 1
for  0

218

klm
l lx mt

b

b b klm
l

b b lx mtkl m klm

 

 

  

















    

 
     
     

 

6. Numerical presentation of the solutions  

In this section, we gave the graphical presentation of the solution obtained in the previous 

sections for different values of the order of fractional derivative ( ). 

Figure-1 and figure-2 respectively represents the graphical presentation of the first (in terms 

Tanh) and third (in terms tan) solution of (3.10) respectively for 4, 1, 1, 1l m      . In 
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figure-1 the solution for 1  represents the shock solution. With the decrease of  the shock 

type solution disappears and range of the solution increases. Figure-2 represents the periodic 

solution for 1   and with the decrease of  the range of the solution increases and periodic 

pattern reduces to a new type of pattern.    

Figure-3 and 4 represents the graphical representation of the first and third solution (4.8). In 

figure-3 for 1  the pattern of the solution is soliton type and with the decrease of  a new type 

of graphical presentation arises.  Here also the range of solution increases with the decrease of 

order of derivative. In figure-4 multiple inverted soliton like solution arises for 1  .  
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Fig-1: Graphical presentation of the tanh Solution of mKdV equation for 1.0,0.9,0.8  . 
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Fig-2: Fig-1: Graphical presentation of the tan Solution of mKdV for 1.0,0.9,0.8  . 
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Fig-3: Graphical presentation of the tanh Solution of KdV-Burger equation for 1.0,0.9,0.8  . 
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Fig-4: Graphical presentation of the tan Solution of KdV-Burger equation for 1.0,0.9,0.8  . 

 

Figure-3 and figure-4 represents the graphical presentation of the first and third solution of (4.8) 

respectively for 1, 1, 1, 1l m      . 
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Fig-5: Graphical presentation of the tan Solution of BBMB equation for 1.0,0.9,0.8  . 

 

7. Conclusion 

In this paper we found the solutions of space-time fractional generalized KdV equation, KdV 

Burger equation, and Benjamin-Bona-Mahoney-Burgers equation with dual power-law 

nonlinearity using complex fractional transformation and the generalized Tanh hyperbolic 

method. Using this method the solutions are expressed in terms the hyperbolic, trigonometric and 

the rational functions. The obtained solutions are new type which is also predicted from the 

graphical presentation of the solution. Using these type formulations other non-linear fractional 

differential equations can be easily solved. From the numerical presentation of the solution it is 

clear that with the change of order of derivative solution pattern changes.  
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