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Abstract. In this paper, we obtain some new coincidence and common fixed point theorems for two nonlinear

contractive mappings in the N-cone metric space without the assumption of normal cone. Our main results improve

and generalize the corresponding results of Fan et al (J. Math. Comput. Sci. 5 (2015), No. 6, 811-821).
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1. Introduction and Preliminaries

In 2007, Huang and Zhang [6] have replaced the real numbers by ordering Banach space

and defining cone metric space. They have proved some fixed point theorems of contractive

mappings on cone metric spaces. The study of fixed point theorems in such spaces is followed

by some other mathematicians; see [2], [3], [7], [8], [10], [11], [12] . In 2010, Aage and Salunke

[1] introduced a generalized D-metric space which generalized cone metric space.
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Very recently, Malviya and Fisher [9] introduced the notion of N-cone metric space and

proved fixed point theorems for asymptotically regular maps. This new notion generalized the

notion of G-cone metric space and generalized D-metric space. In 2015, Fernandez, Modi and

Malviya [5] proved unique fixed point theorems for contractive maps in N-cone metric spaces.

In this paper, we obtain some new coincidence and common fixed point theorems for two

nonlinear contractive mappings in the N-cone metric space without the assumption of normal

cone. Our main results improve and generalize the corresponding results of Fan et al [4]. Also

we give examples as an application of the main result.

The following definitions and results will be needed in the sequel([6]).

Let E be a real Banach space. A subset P of E is called a cone if and only If

(1) P is closed, non-empty and P 6= {0};

(2) αP+βP⊆ P for all nonnegative real numbers α,β ;

(3) P∩ (−P) = {0}.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if and only

if y− x ∈ P. A cone P is said to be normal if there exists a constant K > 0 such that for

all x,y ∈ E, 0 ≤ x ≤ y implies ‖x‖ ≤ K‖y‖. The least positive number satisfying the above

inequality is called the normal constant of P. We shall write x < y to indicate that x ≤ y but

x 6= y, while x� y stand for y− x ∈ intP where intP denotes the interior of P. If intP 6= /0 then

P is called a solid cone.

Let P be a cone of a real Banach space E and u,v,w ∈ E. Then the following facts are often

used([10]).

(p1) If u≤ v, v� w, then u� w.

(p2) If 0≤ u� c for each c ∈ intP, then u = 0.

(p3) If u ∈ P and u≤ ku for some 0≤ k < 1, then u = 0.

(p4) If a≤ b+ c for each c ∈ intP, then a≤ b.

Definition 1.1 ([9]) Let X be a nonempty set. An N-cone metric on X is a function N : X3→ E

satisfies the following conditions: for all x,y,z,a ∈ X ,

(1) N(x,y,z)≥ 0 ;
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(2) N(x,y,z) = 0 if and only if x = y = z;

(3) N(x,y,z)≤ N(x,x,a)+N(y,y,a)+N(z,z,a).

Then N is called an N-cone metric and (X ,N) is called an N-cone metric space.

Remark 1.2 ([9]) It is easy to see that every generalized D∗-metric space is an N-cone metric

space but in general, the converse is not true, see the following example.

Example 1.3. Let E = R3, P = {(x,y,z) ∈ E : x,y,z≥ 0},X = R and N : X3→ E is defined by

N(x,y,z) = (α(y+ z−2x|+ |y− z|),β (|y+ z−2x|+ |y− z|),γ(|y+ z−2x|+ |y− z|))

where α,β ,γ are positive constants. Then (X ,N) is an N-cone metric space but not a general-

ized D∗-metric space, because N is not symmetric.

Lemma 1.4. ([9]) If (X ,N) be an N-cone metric space, then for all x,y ∈ X , we have

N(x,x,y) = N(y,y,x)

Proof. By the definition of N-cone metric, we get

N(x,x,y)≤ N(x,x,x)+N(x,x,x)+N(y,y,x) = N(y,y,x)

and similarly

N(y,y,x)≤ N(y,y,y)+N(y,y,y)+N(x,x,y) = N(x,x,y).

Hence we obtain N(x,x,y) = N(y,y,x). This completes the proof.

Definition 1.5. ([9]) Let (X ,N) be an N-cone metric space, {xn} be a sequence in X and x ∈ X .

(1) If for every c ∈ E with 0� c, there is an N ∈N such that for all n > N, N(xn,xn,x)� c,

then {xn} is said to be convergent, {xn} converges to x and x is the limit of {xn} . We

denote this by {xn}→ x as n→ ∞.

(2) If for any c ∈ E with 0� c, there is an N ∈N such that for all n,m > N, N(xn,xn,xm)�

c, then {xn} is called a Cauchy sequence in X .

(3) If every Cauchy sequence in X is convergent in X , then X is called a complete N-cone

metric space.
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The following Lemma is a generalization of Malviya’s result [9].

Lemma 1.6. Let (X ,N) be an N-cone metric space and P be a solid cone. If {xn} be a sequence

converging to x and y in X , then x = y.

Proof. Let c∈ E be any element with 0� c. By definition, there is an N such that for all n > N,

N(xn,xn,x)� c
3 and N(xn,xn,y)� c

3 . Thus for all n > N,

N(x,x,y)≤ 2N(x,x,xn)+N(y,y,xn) = 2N(xn,xn,x)+N(xn,xn,y)� c

and so N(x,x,y) = θ by (p2). Hence x = y. This completes the proof.

Lemma 1.7. ([9]) Let (X ,N) be an N-cone metric space and P be a solid cone. Let {xn} be a

sequence converging to x in X . Then

(1) {xn} is a Cauchy sequence.

(2) Every subsequence of {xn} converges to x in X .

Lemma 1.8. ([9]) Let (X ,N) be an N-cone metric space, P be a cone in a real Banach space E

and k1,k2,k3,k4,k > 0. If xn→ x,yn→ y,zn→ z and pn→ p in X and

ka≤ k1N(xn,xn,x)+ k2N(yn,yn,y)+ k3N(zn,zn,z)+ k4N(pn, pn, p),

then a = 0.

Definition 1.9. Let f and g be self maps on a set X.

(1) If w = f x = gx for some x in X , then x is called a coincidence point of f and g, and w is

called a point of coincidence of f and g.

(1) f and g are said to be weakly compatible if they commute at every coincidence point.

Proposition 1.10. ([1]) Let f and g be weakly compatible self maps of a set X . If f and g have

a unique point of coincidence w = f x = gx, then w is the unique common fixed point of f and

g.

2. Main results
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In this section, we prove some new coincidence and common fixed point theorems for two

nonlinear contractive mappings in the N-cone metric space without the assumption of normal

cone.

Lemma 2.1. If (X ,N) be an N-cone metric space, then for all x,y ∈ X , we have N(x,y,y) ≤

N(x,x,y) = N(y,y,x).

Proof.By the definition of N-cone metric, we get

N(x,y,y)≤ N(x,x,y)+N(y,y,y)+N(y,y,y) = N(x,x,y).

Hence we obtain N(x,y,y)≤ N(x,x,y) = N(y,y,x) by Lemma 1.4. This completes the proof.

The following theorem is a generalization of the above theorem of Fan et al [4].

Theorem 2.2. Let (X ,N) be an N-cone metric space, P be a solid cone and f ,g : X → X be two

mappings which satisfy the following conditions:

(1) f (X)⊂ g(X);

(2) f (X) or g(X) is complete;

(3) N( f x, f y, f z)≤ aN(gx,gy,gz)+bN(gx, f x, f x)+ cN(gy, f y, f y)+dN(gz, f z, f z)

for all x,y,z ∈ X where a,b,c,d ≥ 0 and a+ b+ c+ d < 1. Then f and g have a unique point

of coincidence in X . Moreover if f and g are weakly compatible, then f and g have a unique

common fixed point.

Proof.Let x0 be any element of X . Then by (1), we see that there exist x1 ∈ X such that f x0 =

gx1. In this way, we construct sequences {gxn} with f xn−1 = gxn. From Definition 1.1 and

Lemma 2.1, we have

N(gxn+1,gxn+1,gxn) = N( f xn, f xn, f xn−1)

≤ aN(gxn,gxn,gxn−1)+bN(gxn, f xn, f xn)

+ cN(gxn, f xn, f xn)+dN(gxn−1, f xn−1, f xn−1)

= aN(gxn,gxn,gxn−1)+bN(gxn,gxn+1,gxn+1)
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+ cN(gxn,gxn+1,gxn+1)+dN(gxn−1,gxn,gxn)

≤ aN(gxn,gxn,gxn−1)+bN(gxn+1,gxn+1,gxn)

+cN(gxn+1,gxn+1,gxn)+dN(gxn,gxn,gxn−1)

= (a+d)N(gxn,gxn,gxn−1)+(b+ c)N(gxn+1,gxn+1,gxn).

This implies N(gxn+1,gxn+1,gxn)≤ qN(gxn,gxn,gxn−1) where q = a+d
1−(b+c) and 0≤ q < 1. By

repeated application of above inequality, we have

N(gxn+1,gxn+1,gxn)≤ qnN(gx1,gx1,gx0).

For all n,m ∈ N with n < m, by Lemma 1.4 and Lemma 2.1, we see that

N(gxn,gxn,gxm) ≤ 2N(gxn,gxn,gxn+1)+N(gxm,gxm,gxn+1)

= 2N(gxn,gxn,gxn+1)+N(gxn+1,gxn+1,gxm)

≤ 2N(gxn,gxn,gxn+1)+2N(gxn+1,gxn+1,gxn+2)

+ N(gxm,gxm,gxn+2)

≤ 2N(gxn,gxn,gxn+1)+ · · ·+2N(gxm−2,gxm−2,gxm−1)

+ N(gxm,gxm,gxm−1)

≤ 2N(gxn,gxn,gxn+1)+ · · ·+2N(gxm−2,gxm−2,gxm−1)

+ 2N(gxm,gxm,gxm−1)

≤ 2qnN(gx1,gx1,gx0)+ · · ·+2qm−1N(gx1,gx1,gx0)

= 2qn(1+q+ · · ·+qm−n−1)N(gx1,gx1,gx0)

≤ 2qn

1−q
N(gx1,gx1,gx0).

Let 0� c be given. Choose a natural number K1 such that 2qn

1−qN(gx1,gx1,gx0)� c for all

n≥ K1. Thus N(gxn,gxn,gxm)� c for all m > n≥ K1. Thus {gxn} is a Cauchy sequence.

Case I: If g(X) is complete, then there exists u ∈ g(X) such that gxn→ u as n→ ∞. So exist

p ∈ X such that gp = u.
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Case II: If f (X) is complete, then there exists u ∈ f (X) such that gxn = f xn−1→ u. Since

f (X)⊂ g(X) we have u ∈ g(X), and so there exist p ∈ X such that gp = u.

We claim that f p = u. Let 0 � α be given. Since gxn → u as n → ∞ and {gxn} is a

Cauchy sequence, choose a natural number K1 such that N = N(gxn,gxn,u) = N(u,u,gxn)�
α

3(a+2) ,N(gxn,gn,gxn+1)� α

3d for all n≥ K2. Hence, for all n≥ K2, we have

N( f p, f p,u) = N(u,u, f p)≤ 2N(u,u, f xn)+N( f p, f p, f xn)

≤ [aN(gp,gp,gxn)+bN(gp, f p, f p)+ cN(gp, f p, f p)

+ dN(gxn, f xn, f xn)]+2N(u,u,gxn+1)

= aN(u,u,gxn)+(b+ c)N(u, f p, f p)

+ dN(gxn,gxn+1,gxn+1)+2N(u,u,gxn+1)

� a
α

3a
+(b+ c)N(u, f p, f p)+d

α

3d
+2

α

6

= (b+ c)N(u, f p, f p)+α

By (p4) and Lemma 2.1, it shows that

N( f p, f p,u)≤ (b+ c)N(u, f p, f p)≤ (b+ c)N( f p, f p,u).

Since b+ c < 1, by (p3), N( f p, f p,u) = 0 and so f p = u. Hence f p = gp = u and u is a point

of coincidence of f and g.

Now we show that f and g have a unique point of coincidence. To this end, let us assume

that there exists a point q in X such that f q = gq.

N( f p, f p, f q) ≤ aN(gp,gp,gq)+bN(gp, f p, f p)

+ cN(gp, f p, f p)+dN(gq, f q, f q)

= aN(gp,gp,gq) = aN( f p, f p, f q).

Since a < 1, by (p3), N( f p, f p, f q) = 0 and so f p = f q. Hence f and g have a unique point of

coincidence. By Proposition 1.10, f and g have a unique common fixed point. This completes

the proof.
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Corollary 2.3. ( [4]) Let (X ,N) be an N-cone metric space, P be a normal cone and f ,g : X→X

be two mappings which satisfy the following conditions:

(1) f (X)⊂ g(X);

(2) f (X) or g(X) is complete;

(3) N( f x, f y, f z)≤ aN(gx,gy,gz)+bN(gx, f x, f x)+ cN(gy, f y, f y)+dN(gz, f z, f z)

for all x,y,z ∈ X , where a,b,c,d ≥ 0 and a+ 4b+ 4c+ 2d < 1. Then f and g have a unique

point of coincidence in X . Moreover if f and g are weakly compatible, then f and g have a

unique common fixed point.

Corollary 2.4. Let (X ,N) be an N-cone metric space, P be a solid cone and f ,g : X → X be

two mappings which satisfy the following conditions:

(1) f (X)⊂ g(X);

(2) f (X) or g(X) is complete;

(3) N( f x, f y, f z)≤ kN(gx,gy,gz)

for all x,y,z ∈ X where 0 ≤ k < 1. Then f and g have a unique point of coincidence in X .

Moreover if f and g are weakly compatible, then f and g have a unique common fixed point.

Proof. The proof follows from Theorem 2.2 by taking a = k,b = c = d = 0.

Corollary 2.5. Let (X ,N) be an N-cone metric space, P be a solid cone and f ,g : X → X be

two mappings which satisfy the following conditions:

(1) f (X)⊂ g(X);

(2) f (X) or g(X) is complete;

(3) N( f x, f y, f z)≤ aN(gx, f x, f x)+bN(gy, f y, f y)+ cN(gz, f z, f z)

for all x,y,z ∈ X , where a,b,c ≥ 0 and a+ b+ c < 1. Then f and g have a unique point of

coincidence in X . Moreover if f and g are weakly compatible, then f and g have a unique

common fixed point.

Proof. The proof follows from Theorem 2.2 by taking a = o,b = a,c = b,d = c.

The following corollary is a generalization of Corollary 3.4 of Fan et al [4].

Corollary 2.6. Let (X ,N) be an N-cone metric space, P be a solid cone and f : X → X be a

mapping which satisfy the following conditions:

(1) f (X) is complete;
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(2) N( f x, f y, f z)≤ aN(x,y,z)+bN(x, f x, f x)+ cN(y, f y, f y)+dN(z, f z, f z)

for all x,y,z ∈ X where a,b,c,d ≥ 0 and a+b+ c+d < 1. Then f has a unique fixed point.

Proof. The proof follows from Theorem 2.2 by taking g = I, the identity mapping.

Corollary 2.7. Let (X ,N) be an N-cone metric space, P be a solid cone and f : X → X be a

mapping which satisfy the following conditions:

(1) f (X) is complete;

(2) N( f x, f y, f z)≤ kN(x,y,z)

for all x,y,z ∈ X where 0≤ k < 1. Then f has a unique fixed point.

Proof. The proof follows from Theorem 2.2 by taking a = k,b = c = d = 0 and g = I.

Corollary 2.8. Let (X ,N) be an N-cone metric space, P be a solid cone and f : X → X be a

mapping which satisfy the following conditions:

(1) f (X) is complete;

(2) N( f nx, f ny, f nz)≤ kN(x,y,z)

for all x,y,z ∈ X where 0≤ k < 1. Then f has a unique fixed point.

Proof. From Theorem 2.2, T n has a unique fixed point x∗. But T n(T x∗) = T (T nx∗) = T x∗. So

T x∗ is also a fixed point of T n. Hence T x∗ = x∗,x∗ is a fixed point of T . Since the fixed point

of T is also fixed point of T n, the fixed point of T is unique,

Corollary 2.9. Let (X ,N) be an N-cone metric space, P be a solid cone and f : X → X be a

mapping which satisfy the following conditions:

(1) f (X) is complete;

(2) N( f x, f y, f z)≤ k[N(x, f x, f x)+N(y, f y, f y)]

for all x,y ∈ X where k ∈ [0, 1
2). Then f has a unique fixed point.

Corollary 2.10 Let (X ,N) be an N-cone metric space, P be a solid cone and f : X → X be a

mapping which satisfy the following conditions:

(1) f (X) is complete;

(2) N( f x, f x, f y)≤ k[N(x,x,y)+N(y, f y, f y)]

for all x,y ∈ X where k ∈ [0, 1
2). Then f has a unique fixed point.
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Example 2.11. (1) Let E = R3, P = {(x,y,z) ∈ E : x,y,z ≥ 0},X = [0,1] and let N : X3→ E

be an N-cone metric space defined in Example 1.3. Then P is a normal cone. Let f ,g be self

maps of X defined by f (x) = x
4 ,g(x) =

x
2 . Then f (X) ⊆ g(X) and g(X) is complete. Taking

a = 1
2 ,b = c = d = 1

7 , the inequality (3) of Theorem 2.2 holds for all x,y,z ∈ X . By Theorem

2.2, f and g have a unique point x = 0 of coincidence in X . Also f and g are weakly compatible

and a unique common fixed point x = 0.

(2) Let E =C1
R[0,1] with ‖ f‖= ‖ f‖∞ +‖ f ′‖∞ and

P = { f ∈ E : f (t)≥ 0, t ∈ [0,1]}.

Then E is a Banach space and P is a nonnormal cone. Let X = R and N : X3 → E be a map

defined by

N(x,y,z)(t) = α(|y+ z−2x|+ |y− z|)et

for each t ∈ [0,1] where α is a positive constant. Then (X ,N) is a complete N-cone metric

space. Let f ,g be a self maps of X defined by f (x) = x
2 ,g(x) = x. Then for any x,y.z ∈ X and

t ∈ [0,1],

N( f x, f y, f z)(t) = N(
x
2
,

y
2
,

z
2
)(t) =

α

2
(|y+ z−2x|+ |y− z|)et

and so N( f x, f y, f z)(t)≤ 1
2N(x,y,z)(t). Take a1 =

1
2 ,a2 = a3 = a4 = a5 = 0. Then by Theorem

2.2 or Corollary 2.7, T has a unique fixed point x = 0.

The following theorem is a generalization of Theorem 3.5 of Fan et al [4].

Theorem 2.12 Let (X ,N) be an N-cone metric space, P be a solid cone and f ,g : X→ X be two

mappings which satisfy the following conditions:

(1) f (X)⊂ g(X);

(2) f (X) or g(X) is complete;

(3)

N( f x, f y, f z) ≤ a[N(gx, f y, f y)+N(gy, f x, f x)]

+ b[N(gy, f z, f z)+N(gz, f y, f y)]

+ c[N(gx, f z, f z)+N(gz, f x, f x)]
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for all x,y,z ∈ X , where a,b,c ≥ 0 and 2a+ 3b+ 3c < 1. Then f and g have a unique point

of coincidence in X . Moreover if f and g are weakly compatible, then f and g have a unique

common fixed point.

Proof. Let x0 be any element of X . Then, by (1), there exist x1 ∈ X such that f x0 = gx1, in this

way we construct sequences {gxn} with f xn−1 = gxn. By Definition 1.1 and Lemma 1.4, we

have

N(gxn+1,gxn+1,gxn) = N( f xn, f xn, f xn−1)

≤ a[N(gxn, f xn, f xn)+N(gxn, f xn, f xn)]

+ b[N(gxn, f xn−1, f xn−1)+N(gxn−1, f xn, f xn)]

+ c[N(gxn, f xn−1, f xn−1)+N(gxn−1, f xn, f xn)]

= a[N(gxn,gxn+1,gxn+1)+N(gxn,gxn+1,gxn+1)]

+ b[N(gxn,gxn,gxn)+N(gxn−1,gxn+1,gxn+1)]

+ c[N(gxn,gxn,gxn)+N(gxn−1,gxn+1,gxn+1)]

= 2aN(gxn,gxn+1,gxn+1)+(b+ c)N(gxn−1,gxn+1,gxn+1)

≤ 2aN(gxn+1,gxn+1,gxn)+(b+ c)N(gxn−1,gxn−1,gxn)

+ 2(b+ c)N(gxn+1,gxn+1,gxn).

So (1−2a−2b−2c)N(gxn+1,gxn+1,gxn)≤ (b+ c)N(gxn,gxn,gxn−1) which implies

N(gxn+1,gxn+1,gxn)≤ qN(gxn,gxn,gxn−1)

where q = b+c
1−(2a+2b+2c) and 0≤ q < 1. By repeated application of above inequality, we have

N(gxn+1,gxn+1,gxn)≤ qnN(gx1,gx1,gx0).
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For all n,m ∈ N with n < m, by Definition 1.1 and Lemma 1.4, we have

N(gxn,gxn,gxm) ≤ 2N(gxn,gxn,gxn+1)+N(gxm,gxm,gxn+1)

= 2N(gxn,gxn,gxn+1)+N(gxn+1,gxn+1,gxm)

≤ 2N(gxn,gxn,gxn+1)+2N(gxn+1,gxn+1,gxn+2)

+ N(gxm,gxm,gxn+2)

≤ 2N(gxn,gxn,gxn+1)+ · · ·+2N(gxm−2,gxm−2,gxm−1)

+ N(gxm,gxm,gxm−1)

≤ 2N(gxn,gxn,gxn+1)+ · · ·+2N(gxm−2,gxm−2,gxm−1)

+ 2N(gxm,gxm,gxm−1)

≤ 2qnN(gx1,gx1,gx0)+ · · ·+2qm−1N(gx1,gx1,gx0)

= 2qn(1+q+ · · ·+qm−n−1)N(gx1,gx1,gx0)

≤ 2qn

1−q
N(gx1,gx1,gx0).

Let 0� c be given. Choose a natural number K1 such that 2qn

1−qN(gx1,gx1,gx0)� c for all

n≥ K1. Thus N(gxn,gxn,gxm)� c for all m > n≥ K1. Thus {gxn} is a Cauchy sequence.

Case I: If g(X) is complete, then there exists u ∈ g(X) such that gxn→ u as n→ ∞, and so

exist p ∈ X such that gp = u.

Case II: If f (X) is complete, then there exists u ∈ f (X) such that gxn = f xn−1→ u. Since

f (X)⊂ g(X) we have u∈ g(X), and so there exist p∈ Xsuch that gp = u. We claim that f p = u.

Let 0� α be given. Since gxn → u as n→ ∞ and {gxn} is a Cauchy sequence, choose a

natural number K1 such that N(gxn,gxn,u)� α

2(b+c+2) for all n≥ K2. Hence, for all n≥ K2, we

have

N( f p, f p,u) = N(u,u, f p)≤ N( f p, f p, f xn)+2N(u,u, f xn)

≤ a[N(gp, f p, f p)+N(gp, f p, f p)]

+ b[N(gp, f xn, f xn)+N(gxn, f p, f p)]
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+ c[N(gp, f xn, f xn)+N(gxn, f p, f p)]+2N(u,u,gxn+1)

= 2aN(gp, f p, f p)+(b+ c)N(gp,gxn+1,gxn+1)

+ (b+ c)N(gxn, f p, f p)+2N(u,u,gxn+1)

≤ (2a+2b+2c)N( f p, f p,u)+(b+ c+2)N(gxn+1,gxn+1,u)

+ (b+ c)N(gxn,gxn,u)

≤ (2a+2b+2c)N( f p, f p,u)+
α

2
+

α

2
.

By (p4), it shows that

N( f p, f p,u)≤ (2a+2b+2c)N( f p, f p,u).

Since 2a+2b+2c < 1, we have N( f p, f p,u) = 0 by (p3) and so f p = u. Hence f p = gp = u

and u is a point of coincidence of f and g.

Now we show that f and g have a unique point of coincidence. To this end, assume that there

exists a point q in X such that f q = gq.

N( f p, f p, f q) ≤ a[N(gp, f p, f p)+N(gp, f p, f p)]

+ b[N(gp, f q, f q)+N(gq, f p, f p)]

+ c[N(gp, f q, f q)+N(gq, f p, f p)]

= (b+ c)[N( f p, f q, f q)+N( f q, f p, f p)]

≤ (b+ c)[N( f p, f p, f q)+N( f p, f p, f q)]

= 2(b+ c)N( f p, f p, f q).

Since 2(b+ c)< 1, one has N( f p, f p, f q) = 0 by (p3) and so f p = f q. Hence f and g have

a unique point of coincidence. By Proposition 1.10, f and g have a unique common fixed point.

This completes the proof.

Corollary 2.13. ([4]) Let (X ,N) be an N-cone metric space, P be a normal cone with normal

constant K and f ,g : X → X be two mappings which satisfy the following conditions:

(1) f (X)⊂ g(X);

(2) f (X) or g(X) is complete;
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(3)

N( f x, f y, f z) ≤ a[N(gx, f y, f y)+N(gy, f x, f x)]

+ b[N(gy, f z, f z)+N(gz, f y, f y)]

+ c[N(gx, f z, f z)+N(gz, f x, f x)]

for all x,y,z ∈ X , where a,b,c ≥ 0 and 8a+ 4b+ 4c < 1. Then f and g have a unique point

of coincidence in X . Moreover if f and g are weakly compatible, then f and g have a unique

common fixed point.

Corollary 2.14. Let (X ,N) be an N-cone metric space, P be a solid cone and f : X → X be a

mapping which satisfy the following conditions:

(1) f (X) is complete;

(2)

N( f x, f y, f z) ≤ a[N(x, f y, f y)+N(y, f x, f x)]+b[N(y, f z, f z)

+ N(z, f y, f y)]+ c[N(x, f z, f z)+N(z, f x, f x)]

for all x,y,z ∈ X , where a,b,c≥ 0 and 2a+3b+3c < 1. Then f has a unique fixed point.

Proof. The proof follows from Theorem 2.12 by taking g = I, the identity mapping.

Corollary 2.15. Let (X ,N) be an N-cone metric space, P be a solid cone and f : X → X be a

mapping which satisfy the following conditions:

(1) f (X) is complete;

(2) N( f x, f y, f z)≤ k[N(x, f y, f y)+N(y, f x, f x)]

for all x,y,z ∈ X , where k ∈ [0, 1
2). Then f has a unique fixed point.

Proof. The proof follows from Theorem 2.12 by taking a = k,b = c = 0 and g = I.

Corollary 2.16. Let (X ,N) be an N-cone metric space, P be a solid cone and f : X → X be a

mapping which satisfy the following conditions:

(1) f (X) is complete;

(2) N( f x, f y, f z)≤ k[N(y, f z, f z)+N(z, f y, f y)]

for all x,y,z ∈ X , where k ∈ [0, 1
3). Then f has a unique fixed point.
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Proof. The proof follows from Theorem 2.12 by taking b = k,a = c = 0 and g = I.

Corollary 2.17. Let (X ,N) be an N-cone metric space, P be a solid cone and f : X → X be a

mapping which satisfy the following conditions:

(1) f (X) is complete;

(2) N( f x, f y, f z)≤ k[N(x, f z, f z)+N(z, f x, f x)]

for all x,y,z ∈ X , where k ∈ [0, 1
3). Then f has a unique fixed point.

Proof. The proof follows from Theorem 2.12 by taking b = k,a = c = 0 and g = I.
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