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1. Introduction 

The Conjugate Gradient (CG) methods are useful in finding the minimum value of a 

function with large number of variables for unconstrained minimization problems. Generally,  for 

(n) number of variables  the method has the following from: 

nRxxf ;)(min                                   (1) 
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where RRf n :  is continuously differentiable. The CG-method is an iterative method of the 

form: 

,...2,1,0;1  kdxx kkkk                  (2) 

where kx  is the current iterate point, 0k  is a step-length and kd  is the search direction. The 

search direction kd  is defined by: 
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In (3) k  is known as the CG parameter, the line search in the CG-method often is based on the 

Wolfe conditions: 
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where kd  is a descent direction and 10   .  Equations (4) and (5) are called the standard 

and strong Wolfe conditions respectively. Different CG-methods correspond to different choices for 

the parameter k . The parameter k  in (3) is selected so that when applied to minimize a strongly 

quadratic convex function, the direction kd  is conjugate subject to the Hessian of the quadratic 

function. Some well-known formulas are given as follows: 
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where 11   kkk ggy  and 1111   kkkkk dxxs  , with a parameter ),0[ t . Here, 

kg and 1kg  are the gradients of )(xf at the point kx  and 1kx  respectively. For the above 

corresponding methods, FR is known as Fletcher and Reeves [7], BA is known as Al-Bayati and Al-

Assady [1], PR is known as Polak and Ribiere [14], HS is known as Hestenes and Stiefel [11], LS is 

known as Liu and Storey [12], DY is known as Dai and Yuan [5], CD is known as Conjugate 

Descent by Fletcher [8] and lastly DL is known as Dai and Liao [4]. Dai and Yuan [6] and Yuan and 

Sun [19] have shown that, all these methods are equivalent for )(xf  that is strictly convex 

quadratic function, but behaves differently for general non quadratic functions. An important feature 

of the HS method is that it satisfies conjugacy condition: 

,01 k
T
k yd                         (14) 

which is independent of the objective function and line search. However, Dai and Liao [4] pointed 

out that in the case ,01  k
T
k dg  the conjugacy condition (14) may have some disadvantages. In 

order to construct a better formula for ,k  Dai and Liao proposed a CG-method with a new 

conjugacy condition called DL-method, given by : 
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Based on the idea of the DL-method, Hager and Zhang (HZ) [10] proposed a descent CG-method. 

Besides CG-method, the following gradient type methods :  
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Here k  and k  are two parameters. Clearly, if ,1k  the methods (13) become standard CG-

methods (3). Also, when: 
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Zhang, Zhou and Li [18] proposed a modified FR method where the parameters in (15) are given 

by: 
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This method satisfies 
2

111   kk
T
k gdg and moreover, this method converges globally for 

non-convex functions with Armijo or Wolfe line search. 

 

In this paper, we are concerned with the CG-method defined as in (16). However, in the 

next section, we present an acceleration step-length for scaling the search directions. In section 3, we 

have analyzed the global convergence properties of the new proposed algorithm. In section 4, we 

have reported some numerical comparisons against Zhang's CG-method defined in [19] using (35) 

different test problems from the CUTE [3]. 

 

2. Materials and Methods. 

          In this section we have described the following two-terms PRCG type method for any 

spectral parameter k  defined by:  
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2.1. Zhang's PRCG-Method [19]. 

We have used the following search direction to calculate Zhang's CG-method by: 
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2.2. The Acceleration Step-length. 

In CG-method (see Nocedal [13]) the search directions tend to poorly scaled and as a 

consequence the line search must perform more function evaluation in order to obtain a suitable 

step-length k .  

As in Andrei's [2] an accelerated scheme for the standard Wolfe line search procedure was 

used by proceeding as follows : 
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              kkk dxz                                          (24) 

         If ,0kb  compute kkkkk dxx 1 ; else, compute 

            ,1 kkkk dxx                                          (25) 

 

2.3. New  Acceleration Search Directions for the New Proposed Algorithm. 

We design our new search directions in our new proposed algorithm as follows: 
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where kd  follows (3) and 
PR
kk    in (3), 0k  is a bounded scalar, and )( k

T
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sign function defined by 
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If  ,0k
T
k gd  we design  k
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k gd   as the restart condition. 
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2.4. Outline of the New  Scaled CG-Algorithm. 

Step(0):   Given  [0,1]   ; 0k , choose an initial point nRx 0 , 0 . 

Step(1):   Set  kk gd  . 

Step(2):   Compute k  by using  (4)-(5)-(22)-(23)-(24) and (25). 

Step(3):   Compute kf and kg ; .11   kkk xxs  

Step(4):   If kg  stop . 

Step(5):   If  
2

1 2.0 kk
T
k ggg  , go to Step(1) else continue. 

Step(6):   Compute Zhang's search  direction: 
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Step(7):   Compute the new scaled search directions by setting  [16]:  
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                (iv)   Let   
scaled
kk dd  ,  put 1 kk   and  go to Step(2)  

 

3. Convergence properties. 

In this section, we only analyze the convergence properties of the new proposed 

algorithm. In the global convergence analysis of many iterative methods, the following 

assumption is often needed. The following theorem is often used to prove global convergence of 
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CG-methods. It was originally given by Zoutendijk [20] and Wolfe [15]. 

 

Assumption 3.1. 

(i) The level set  )()(: 0xfxfRx n  is bounded . 

(ii) In some neighborhood fN ,of  is continuously differentiable and its gradient is Lipschitz 

continuous, namely, there exists a constant 0L  such that : 

NyxyxLygxg  ,,)()(      (30) 

Clearly, Assumption (i) implies that there exists a constant   such that: 

)(xg for all Nx          (31) 

 

Theorem 3.2. Let  kx and  kd be generated by the new proposed algorithm, and let k be 

obtained by the modified Wolfe line search procedure defined by (4)-(5)-(22)-(23)-(24) and (25). 
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Theorem 3.3. 

Let Assumption-3.1 hold. Consider any iteration method of the form (2)-(3), where 

kd satisfy 0k
T
k dg , If k satisfies the Wolfe condition (4) or the Strong Wolfe condition (5) , 

then we have: 
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Since the new algorithm has the sufficient descent property and since it uses the strong Wolfe 

condition (5) then the new proposed algorithm satisfies the global convergence property, we can 

back to a basic theorem proved in the [9]. 

 

4. Numerical Results. 

The main work of this section is to report the performance of the new proposed algorithm 

on a set of test problems. The codes are newly written in Fortran and in double precision 

arithmetic. All the tests are performed on a PC. Our experiments are performed on a set of (35) 

nonlinear unconstrained problems that have second derivatives available. These test problems are 

contributed in CUTE [3] and their details are given in the Appendix. For each test function we 
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have considered 10 numerical experiments with number of variables n = 100, 200, . . . ,1000. In 

order to assess the reliability of our new proposed method, we have tested them against Zhang's 

[19] method using the same test problems. All these methods terminate when the following 

stopping criterion is met: 

.10 6kg                  (36) 

We also force these routines stopped if the iterations exceed 1000 or the number of function 

evaluation reach 2000 without achieving the minimum. We use 
410 , 1.0  , in some part 

of  the modified line search routine used in this new method.  

 

Table (4.1) compares some numerical result for new method respectively against Zhang's 

method; these table use 1.01   and 5.0  and they indicate for (n) as a dimension of the 

problem; (NOI), number of iterations; (NOFG), number of function and gradient evaluations; 

(TIME), the total time required to complete the evaluation process for each test problem. 

 

In Table (4.2) we have compared the percentage performance of the new and Zhang's 

methods taking over all the tools as 100% . In order to summarize our numerical results, we have 

concerned only on the total of different dimensions n=100, 200. . . 1000  for all Tools used in these 

comparisons. 

Table (4.1) 

Comparisons between the New and Zhang's (2007)  CG-method  

for  n=100, 200. . . 1000 

 

Prob. 

 

Zhang (2007). 

NOI /NOFG/TIME 

 

New Method. 

NOI/NOFG/TIME 

1 2366/2744/1.63 825/1120/0.47 

2 301/739/0.09 215/423/0.02 

3 126/385/0.12 75/96/0.03 
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4 909/1676/0.92 696/844/0.28 

5 376/721/0.12 506/595/0.07 

6 316/588/0.41 319/346/0.20 

7 582/1193/0.12 1279/1307/0.11 

8 92/343/0.28 161/196/0.14 

9 246/593/0.07 234/365/0.01 

11 211/508/0.23 197/241/0.08 

11 442/872/0.22 603/724/0.12 

12 207/531/0.06 195/313/0.04 

13 70/344/0.06 32/64/0.00 

14 797/1487/0.23 645/728/0.06 

15 1176/2117/0.38 1024/1095/0.13 

16 156/422/0.12 93/116/0.01 

17 160/408/0.14 90/118/0.02 

18 153/413/0.14 109/133/0.00 

19 393/808/0.16 614/703/0.08 

21 125/383/0.11 75/96/0.01 

21 416/873/0.13 608/701/0.06 

22 390/693/0.26 504/579/0.14 

23 830/1593/0.66 739/806/0.23 

24 166/452/0.05 124/207/0.02 

25 253/608/0.09 236/267/0.03 

26 2730/3403/2.13 955/1039/0.25 

27 148/408/0.05 137/189/0.01 

28 131/403/0.15 80/160/0.03 

29 122/376/0.22 85/105/0.05 

31 128/471/0.19 44/76/0.01 

31 211/508/0.24 198/241/0.06 

32 730/1393/0.18 554/677/0.07 
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33 10/30/0.01 29/84/0.00 

34 90/110/0.05 80/110/0.02 

35 233/536/0.05 90/310/0.01 

Total 15792/29132/10.07 12450/15174/2.87 

 

TABLE (4.2) 

Percentage performance of the New Method against Zhang's (23007) CG-method 

 

 

 

 

 

 

5. Discussion. 

It is clear from Table (4.2) that taking, over all, the Tools as a 100% for the Zhang's 

method, the New method has an improvement, in about (21.1)% NOI; (47.9)% NOFG and 

(71.4)% TIME, these results indicate that New method is in general is the best . 

 

APPENDIX. 

The details of the test functions, used in this paper, can be found in CUTE [3]. The numbers (1-35) 

in our tables indicate to: 

1- Extended Trigonometric Function. 

2- Extended Penalty Function. 

3- Raydan 2 Function. 

4- Extended Hager Function. 

5- Generalized Tridiagonal-1 Function. 

6- Extended 3-Exponential Terms  Function. 

7- Diagonal4 Function. 

8- Diagonal5 Function. 

TOOLS Zhang (2007) New Method 

NOI 100% 78.9% 

NOFG 100% 52.1% 

TIME 100% 28.6% 
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9- Extended Himmelblau Function. 

10- Extended PSC1 function. 

11- Extended Block Diagonal BD1 function. 

12- Extended Quadratic Penalty QP1. 

13- Extended EP1 Function. 

14- Extended Tri-diagonal 2 Function. 

15- ARWHEAD (CUTE)-Function. 

16- DIXMAANA (CUTE)-Function. 

17- DIXMAANB (CUTE)-Function. 

18- DIXMAANC (CUTE)-Function. 

19- EDENSCH (CUTE)-Function. 

20- DIAGONAL 6 Function. 

21- ENGVALI CUTE-Function. 

22- DENSCHNA CUTE-Function. 

23- DENSCHNC (CUTE)-Function. 

24- DENSCHNB (CUTE)-Function. 

25- DENSCHNF (CUTE)-Function. 

26- Extended Block-Diagonal BD2 Function. 

27- Generalized quadratic GQ1 Function. 

28- DIAGONAL 7 Function. 

29- DIAGONAL 8 Function. 

30- Full Hessian Function. 

31- SINCOS Function. 

32- Generalized quadratic GQ2 Function. 

33- ARGLINB (CUTE)-Function. 

34- HIMMELBG CUTE-Function. 

35- HIMMELBH CUTE-Function. 
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