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Abstract. As a generalization of almost Hermitian submersions, we introduce slant lightlike submersion from

an indefinite nearly Kähler manifold into a lightlike manifold. We establish the existence theorems for these

submersions and investigate the geometry of foliations which are arisen from the definition of lightlike submersion.

We also find necessary and sufficient condition for the leaves of the distributions to be totally geodesic foliations

in indefinite nearly Kähler manifold.
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1. Introduction

Let (M,gM) and (N,gN) be two Riemannian manifolds. The idea of Riemannian submersion

between two manifolds were introduced by O’Neill [5] and Gray [4]. Later, such submersions
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were considered between manifolds with differentiable structures. As an analogue of holomor-

phic submanifolds, Watson defined almost Hermitian submersions between almost Hermitian

manifolds [13]. O’ Neill introduced the semi-Riemannian submersions [6].

On the other hand, it is known that if M and N are Riemannian manifolds, then the fibres

are always Riemannian manifolds. However, if M and N are semi-Riemannian manifolds, then

the fibres may not be semi-Riemannian manifolds. Therefore, in [9], Sahin introduced a screen

lightlike submersion from a lightlike manifold into a semi-Riemannian manifold. Later, Sahin

and Gunduzulp in [10], introduced a lightlike submersion from a semi-Riemannian manifold

into a lightlike manifold.

As a generalization of almost Hermitian submersions, Sahin introduced slant submersions

from almost Hermitian manifolds into Riemannian manifolds. We have studied some research

papers related to it. Some of them are: Slant lightlike submanifolds of an indefinite Cosym-

plectic manifold [15], slant lightlike submanifold of indefinite Kenmotsu manifolds [16], screen

pseudo slant lightlike submanifolds of indefinite Sasakian manifold [17] , radical transversal

screen-semi-slant lightlike submanifolds of indefinite Sasakian manifolds [18] etc.

The geometry of lightlike submanifolds has extensive uses in mathematical physics and in

particular in the theory of general relativity [2]. It is also well known that semi-Riemannian

submersions are of interest in physics, owing to their application in the Yang-Mills theory,

Kaluza-Klein theory and supergravity and superstring theories [1,3,7,8]. Moreover, we ob-

tained the nonexistence of totally contact umbilical proper slant lightlike submanifolds of in-

definite Sasakian manifold [11]. Thus all these facts and results of above papers motivated us to

work on the theory of lightlike submersions with slant lightlike submersions. From these facts

we get the concept of slant lightlike submersion from an indefinite nearly Kähler manifold to

lightlike manifold.

In the present paper we introduce slant lightlike submersion from an indefinite nearly Kähler

manifold into lightlike manifold.

The paper is organized as follows: In section 2, we collect some basic information and no-

tions needed for this paper. In section 3, we give definition of slant Riemannian submersions
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and investigate the geometry of leaves of distributions. We obtain necessary and sufficient con-

ditions for such slant lightlike submersions to be totally geodesic.

2. Preliminaries

Let (M,g) be a real n-dimensional smooth manifold where g is a symmetric tensor field of

type (0,2). The radical space Rad TpM of TpM is defined by

Rad TpM = {ξ ∈ TpM : g(ξ ,X) = 0 , ∀X ∈ TpM}.

The dimension of Rad TpM is called the nullity degree of g. If the mapping

Rad T M : p ∈M→ Rad TpM,

defines a smooth distribution on M of rank r > 0, then Rad T M is known as the radical distri-

bution of M and the manifold M is known as r-lightlike manifold if 0 < r ≤ n, see [12].

Let (M1,g1) be a semi-Riemannian manifold and let (M2,g2) be an r-lightlike manifold.

Consider a smooth submersion f : M1→M2, then f−1 (p) is a submanifold of M1 of dim M1

−dim M2 for p ∈M2. The kernel of f∗ at the point p is given by

(ker f∗) = {X ∈ Tp(M1) : f∗(X) = 0},

and (ker f∗)⊥is given by

(ker f∗)⊥ = {Y ∈ Tp(M1) : g1(Y,X) = 0, f or all X ∈ (ker f∗)},

Since Tp(M1) is a semi-Riemannian vector space, (ker f∗)⊥ may be not complementary to

(ker f∗). Hence, we assume that

∆ = (ker f∗)∩ (ker f∗)⊥ 6= {0}.

Thus, we get the following four cases of submersions:

Case 1: 0 < dim∆ < min{dim(ker f∗),dim(ker f∗)⊥}. Then ∆ is called as radical subspace

of Tp(M1).
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Since ker f∗ is a real lightlike vector space and S(ker f∗) is the complementary non degenerate

subspace of ∆ in S(Ker f∗) and we obtain

(ker f∗) = ∆⊥ S(ker f∗).

Similarly, we have

(ker f∗)⊥ = ∆⊥ S(ker f∗)⊥,

where S(ker f∗)⊥ is a complementary non degenerate subspace of ∆ in (ker f∗)⊥.

Since S(ker f∗)⊥ is non-degenerate in Tp(M1), we get

Tp(M1) = S(ker f∗)⊥ (S(ker f∗))⊥,

where (S(ker f∗))⊥ is the complementary subspace of S(ker f∗) in Tp(M1). Since S(ker f∗) and

(S(ker f∗))⊥ are non-degenerate in Tp(M1), we get

(S(ker f∗))⊥ = S(ker f∗)⊥ ⊥ (S(ker f∗)⊥)⊥.

Thus, from [2] , a quasi-orthonormal basis of M1 along (ker f∗) can be constructed. Therefore,

we obtain

g(ξi,ξ j) = g(Ni,N j) = 0, g(ξi,N j) = δi j,(1)

g(Wα ,ξ j) = g(Wα ,N j) = 0, g(Wα ,Wβ ) = εαδαβ ,

{ξi} is a basis of ∆, {Ni} are smooth lightlike vector fields of (S(ker f∗)⊥)⊥ and {Wα} is a basis

of S(ker f∗)⊥. Let ltr(ker f∗) is the set of vector fields {Ni} and consider

tr(ker f∗) = ltr(ker f∗)⊥ S(ker f∗)⊥.

Using equation (2.1) , it is clear that ltr(ker f∗) and Ker f∗ are not orthogonal to each other.

Denote by V = ker f∗ the vertical space of Tp(M1) and H = tr(ker f∗) the horizontal space of

Tp(M1). Thus we have
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Tp(M1) = Vp⊕Hp.

Definition 1.1. Let (M1,g1) be a semi-Riemannian manifold and let (M2,g2) be an r-lightlike

manifold. Let f : M1→M2 be a submersion such that:

(a) dim∆ = dim{(ker f∗)∩ (ker f∗)⊥}= r,0 < r < mindim{dim(ker f∗),dim(ker f∗)⊥}

(b) f∗ preserves the length of horizontal vectors,i.e.

(2) g1(X ,Y ) = g2( f∗X , f∗Y ), for X ,Y ∈ Γ(H ).

. Then f is called an r-lightlike submersion.

Case 2: dim∆ = dim(ker f∗)< dim(ker f∗)⊥. Then V = ∆, H = S(ker f∗)⊥ ⊥ ltr(ker f∗), and

f is called an isotropic submersion.

Case 3: dim∆ = dim(ker f∗)⊥ < dim(ker f∗). Then V = S(ker f∗)⊥ ∆, H = ltr(ker f∗), and

f is called a co-isotropic submersion.

Case 4: dim∆ = dim(ker f∗) = dim(ker f∗)⊥. Then V = ∆, H = ltr(ker f∗) and f is called

a totally lightlike submersion.

Definition 1.2. Let (M,g,J) be an indefinite almost Hermitian manifold and 5 be the Levi-

Civitia connection on M with respect to g such that

(3) J2 =−I,g(JX ,JY ) = g(X ,Y ),

for X ,Y on M. Then M is called an indefinite nearly Kähler manifold if

(4) (5X J)Y +(5Y J)X = 0, for all X ,Y ∈ Γ(T M).

It is well known that every Kähler manifold is a nearly Kähler manifold but converse is not

true.

Note: Whatever it is need we have suppose the horizontal vector field to be basic. For any

arbitrary tangent vector fields V and W on M, we have

(5) (5V J)W = PVW +QVW,

where PVW and QVW denote the horizontal and vertical component of (5V J)W respectively.

For a Kähler manifold M we have
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P = Q = 0.

If M is a nearly Kähler manifold, then it can be easily seen that both P and Q are anti-

symmetric in V and W , hence

(6) PVW =−PWV and QVW =−QWV.

We need the statement of following theorem to define a slant lightlike submersion from an

indefinite nearly Kähler manifold into a lightlike manifold.

Theorem 2.1. Let f : M1 → M2 be an r-lightlike submersion from an indefinite almost Her-

mitian manifold (M1,g1,J) where g1is a semi-Riemannian metric of index 2r, to an r-lightlike

manifold (M2,g2). Let J∆ be a distribution on M such that ∆∩ J∆ = 0. Then any distribution

complementary to J∆⊕ Jltr(ker f∗) in S(ker f∗) is Riemannian.

3. SLANT LIGHTLIKE SUBMERSION

Let M be an r-lightlike submanifold of an indefinite Hermitian manifold M
′
of index 2r. Then

M is a slant lightlike submanifold of M
′
if the following conditions are satisfied:

(a) Rad(T M) is a distribution on M such that

JRadT M∩RadT M = {0}.

(b) For any non zero vector field tangent to D for p∈U ⊂M, the angle θ(X) between JX and

the vector space Dp is constant i.e., it is independent of the choice of p ∈U ⊂M and X ∈ Dp,

where D is the distribution complementary to JRadT M⊕ Jltr(T M) in the screen distribution

S(T M).

This constant angle θ(X) is called the slant angle of the distribution D. If D 6= {0} and

θ 6= 0, π

2 then a slant lightlike submanifold is said to be proper slant lightlike submanifold.

Definition 3.1. Let (M1,g1,J) be a real 2m-dimensional indefinite nearly Kähler manifold,

where g1 is a semi-Riemannian metric of index 2r,0 < r < m and any other manifold (M2,g2)
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which is an r-lightlike manifold. Let f be an r-lightlike submersion, f : M1→M2. Then f is said

to be slant lightlike submersion if following conditions are satisfied:

(c) J∆ is a distribution in ker f∗ such that ∆∩ J∆ = {0}.

(d) The angle θ(X) between JX and D is constant for each non zero vector field X tangent to

D , where D is the distribution complementary to J∆⊕ Jltr(ker f∗) in S(ker f∗).

Hence, we get

Tp(M1) = Vp⊕Hp,

Tp(M1) = {∆⊥ (J∆⊕ J ltr(ker f∗))⊥ D}⊕{ f (D)⊥ µ ⊥ ltr(ker f∗)},

where µ is the orthogonal subbundle complementary to f (D) in S(ker f∗). Let f be a slant

lightlike submersion from an indefinite nearly Kähler manifold (M1,g1,J) into an r−lightlike

manifold (M2,g2). Then any X ∈ vp can be written as

(7) JX = φX +ωX ,

where φX and ωX are the tangential and transverse components of JX, respectively. Similarly,

for any Z ∈Hp, we get

(8) JZ = BZ +C Z,

where BZ and C Z are the tangential and transversal component of JZ, respectively. Denote

P1,P2,Q1 and Q2 the projections onto the distributions ∆, J∆, J ltr(ker f∗) and D respectively.

Thus, we can express X as

(9) X = P1X +P2X +Q1X +Q2X ,

for any X ∈ Vp. Applying J to (9), we get

(10) JX = JP1X + JP2X +ωQ1X +φQ2X +ωQ2X ,
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for any X ∈ Vp. Then, clearly,

JP1X = φP1X ∈ Γ(J∆)

JP2X = φP2X ∈ Γ(∆)

ωP1X = 0

ωP2X = 0

φQ1X = 0

ωQ1X ∈ Γ(ltr(ker f∗))

φQ2X ∈ Γ(D)

ωQ2X ∈ Γ( f (D))

Therefore, we can write

(11) φX = φP1X +φP2X +φQ2X .

Since the geometry of Riemannian submersions is characterized by O’Neill’s tensors T and

A, Sahin [9] defined these tensors for lightlike submersions as follows:

(12) AEF = H ∇H EV F +V ∇H E H F,

(13) TEF = H ∇V EV F +V ∇V E H F,

for vector fields E and F on M1, where ∇ is the Levi-Civitia connection of g1. It should be

noted that T and A are skew-symmetric tensors in Riemannian submersions but not in lightlike

submersions because the horizontal and vertical subspaces are not orthogonal to each other.

The tensors T and A both reverse the horizontal and vertical subspaces and, moreover, T has

the symmetric property ie.
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(14) TUW = TWU, ∀U,W ∈ Γ(ker f∗).

Lemma 3.1. Let (M1,g1,J) be an indefinite nearly Kähler manifold, where g1 is a semi-

Riemannian metric of index 2r and let (M2,g2) be an r-lightlike manifold. If f be a slant lightlike

submersion such as f : M1→M2 , then

(15) ∇XY = V ∇XY +TXY ,

(16) ∇XV = H ∇XV +TXV,

(17) ∇V X = AV X +V ∇V X ,

(18) ∇VU = H ∇VU +AVU,

for any X ,Y ∈ Γ(ker f∗) and U,V ∈ Γ(ker f∗)⊥.

Lemma 3.2. Let (M1,g1,J) be an indefinite nearly Kähler manifold, where g1 is a semi-

Riemannian metric of index 2r and let (M2,g2) be an r-lightlike manifold. If f be a slant lightlike

submersion such as f : M1→M2 ,then

(19) (∇X ω)Y = C T XY −TX φY −PXY,

(20) (∇X φ)Y = BT XY −TX ωY −QXY,

where

(∇X ω)Y = H ∇X ωY −ωV ∇XY,

(∇X φ)Y = V ∇X φY −φV ∇XY,

for any X ,Y ∈ Γ(ker f∗).

Proof. For any X ,Y ∈ Γ(ker f∗), using equations (5),(7),(8),(15) and (16), we get

TX φY +V ∇X φY +H ∇X ωY +TX ωY +PXY +QXY =BT XY +C T XY +φV ∇XY +ωV ∇XY.

From above equation, we have
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(∇X φ)Y +(∇X ω)Y = BT XY +C T XY −TX φY −TX ωY −PXY −QXY,

Comparing vertical and horizontal parts, we obtain

(∇X ω)Y = H ∇X ωY −ωV ∇XY,

(∇X φ)Y = V ∇X φY −φV ∇XY.

Theorem 3.1. Let (M1,g1,J) be an indefinite nearly Kähler manifold, where g1 is a semi-

Riemannian metric of index 2r and let (M2,g2) be an r-lightlike manifold. Let f be a slant

lightlike submersion such as f : M1→M2 ,then f is a proper slant lightlike submersion if and

only if

(a) J (ltr(ker f∗)) is a distribution on M1;

(b) for any X ∈ Γ(ker f∗), there exists a constant λ ∈ [−1,0] such that

(21) φ
2Q2X = λQ2X ,

moreover, in this case λ =−cos2θ .

Proof. Let f be a slant lightlike submersion. Then J∆ is a distribution on S(TM). Hence by

virtue of Theorem (1), J (ltr(ker f∗)) is a distribution on M1. Further the slant angle between

JQ2X and Dp is constant and given by

cosθ(Q2X) =
g(JQ2X ,φQ2X)

|JQ2X | |φQ2X |
,

(22) cosθ(Q2X) =−g(Q2X ,φ 2Q2X)

|JQ2X | |φQ2X |
.

and also the cosθ(Q2X) is also given by

(23) cosθ(Q2X) =
|φQ2X |
|JQ2X |

.

Hence using (22) and (23), we obtain

cos2
θ(Q2X) =−g(Q2X ,φ 2Q2X)

|Q2X |2
.

Since the angle θ(Q2X) is constant on D, we have
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φ
2Q2X = λQ2X ,

where λ = −cos2θ . (a) implies that J∆ is a distribution on S(ker f∗). Hence, in view of

theorem (2.1), any distribution complementary to J∆⊕ Jltr(ker f∗) in S(ker f∗) is Riemannian.

Corollary 3.1. Let (M1,g1,J) be an indefinite nearly Kähler manifold, where g1 is a semi-

Riemannian metric of index 2r and let (M2,g2) be an r-lightlike manifold. Let f be a proper

slant lightlike submersion such as f : M1→M2 with slant angle θ , then for any X ,Y ∈ Γ(ker f∗)

(24) g1(φX ,φY ) = cos2
θg1(X ,Y ),

and

(25) g1(ωX ,ωY ) = sin2
θg1(X ,Y ).

Theorem 3.2. Let (M1,g1,J) be an indefinite nearly Kähler manifold, where g1 is a semi-

Riemannian metric of index 2r and let (M2,g2) be an r−lightlike manifold. Let f be a slant

lightlike submersion such as f : M1→M2 , then f is a proper slant lightlike submersion if and

only if

(a) J(ltr(ker f∗)) is a distribution on M1;

(b) for any vector field tangent to M1, there exists a constant v ∈ [−1,0] such that

(26) BωQ2X = vQ2X ,

where v =−sin2θ .

Proof. Let f be a slant lightlike submersion, then J (ltr(ker f∗)) is a distribution on M1. Using

equations (3),(7),(8) to (10), we obtain

−X =−P1X−P2X +φ
2Q2X +ωφQ2X +BωQ2X +C ωQ2X +BωQ1X +C ωQ1X .

Comparing the components of the distribution D on both sides of last equation, we get

(27) −Q2X = φ
2Q2X +BωQ2X .

Hence by using (21), we get

BωQ2X =−sin2
θQ2X .
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Conversely, by virtue of equations (3.20) and (3.21), we obtain

φ
2Q2X =−cos2

θQ2X .

Further, we prove that the orthogonal complement subbundle µ of f (D) in S(ker f∗)⊥ is

holomorphic with respect to J and determine the dimension.

Theorem 3.3. Let (M1,g1,J)be an indefinite nearly Kähler manifold, where g1 is a semi-

Riemannian metric of index 2r and let (M2,g2) be an r−lightlike manifold. Let f be a slant

lightlike submersion such as f : M1→M2 ,then µ is invariant under J.

Proof. In view of equation (7), for any U ∈ Γ(µ) and ωX ∈ Γ( f (D)), we get

g1(JU,ωX) = g1(JU,JX−φX).

g1(JU,ωX) = −g1(JU,φX).

By virtue of Theorem (3.1), we have

g1(JU,ωX) = g1(U,JφX) = g1(U,φ 2X)+g1(U,ωφX),

g1(JU,ωX) = −cos2
θg1(U,X)+g1(U,ωφX),

g1(U,ωφX) = 0.

Similarly,

g1(JU,Y ) =−g1(U,JY ) = 0,

for any Y ∈ Γ(ker f∗). Moreover, for any N∈ Γ(ltr(ker f∗)), we obtain

g1(JU,N) =−g1(U,JN) = 0.

Hence, the proof follows.

Theorem 3.4. Let (Mm
1 ,g1,J) be an indefinite nearly Kähler manifold, where g1 is a semi-

Riemannian metric of index 2r and let (Mn
2 ,g2) be an r−lightlike manifold. Let f be a proper

slant lightlike submersion such as f : Mm
1 →Mn

2 , then

dim(µ) = 2n−m+2r.

If µ = {0}, then n = m−2r
2 .
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Proof. Since dimS(ker f∗)⊥ = n− r, and dimS(ker f∗) = m−n−3r, and we know that

dim(µ) = dimS(ker f∗)⊥−dimS(ker f∗).

We conclude that dim(µ) = 2n−m+2r.

Moreover, M1 is an indefinite nearly Kähler manifold and its dimension m is even. Hence,

the dimension of µ is also even.

Lemma 3.3. Let (Mm
1 ,g1,J) be an indefinite nearly Kähler manifold, where g1 is a semi-

Riemannian metric of index 2r and let (Mn
2 ,g2) be an r-lightlike manifold. Let f be a proper

slant lightlike submersion such as f : Mm
1 →Mn

2 . If {e1, ...........,em−n−3r} be a local orthonor-

mal basis of D, then

{cosθωe1, ............,cosθωem−n−3r} is a local orthonormal basis of f (D).

Proof. Since {e1, ...........,em−n−3r} be a local orthonormal basis of D and D is Riemannian,

then in view of equation (25)

g1(cosθωei,cosθωe j) = cos2
θ sin2

θg1(ei,e j) = δi j,

for any i, j ∈ {1, ......, m−n
2 }.

This proves the lemma.

We note that the above Theorem (3.3) tells that the distributions µ and D⊕ f (D) are even

dimensional. It implies that the distribution D is even dimensional. More precisely, we have the

following result whose proof is similar to the above lemma.

Lemma 3.4. Let (Mm
1 ,g1,J) be an indefinite nearly Kähler manifold, where g1 is a semi-

Riemannian metric of index 2r and let (Mn
2 ,g2) be an r-lightlike manifold. Let f be a proper

slant lightlike submersion such as f : Mm
1 →Mn

2 . If {e1, ...........,e m−n−3r
2
} are unit vector fields

in D, then

{e1,secθφe1,e2,secθφe2, ........,e m−n−3r
2

,secθφe m−n−3r
2

,} is a local orthonormal basis of D.

Theorem 3.5. Let (M1,g1,J) be an indefinite nearly Kähler manifold, where g1 is a semi-

Riemannian metric of index 2r and let (M2,g2) be an r-lightlike manifold. Let f be a proper

slant lightlike submersion such as f : M1→M2. If ω is parallel with respect to ∇, then

TφX φX =−cos2
θTX X +2PX φX , TφX φX =−TX X +2PX φX , TφX φX = 2PX φX ,
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for any X ∈ Γ(D), X ∈ Γ(∆⊥ J∆), and X ∈ Γ(J(ltr(ker f∗))), respectively.

Proof. Let ω be parallel, i.e. (∇X ω)Y = 0. From equation (19), we get

(28) C T XY = TX φY +PXY.

Using above equation (28), we have

(29) C T Y X = TY φX +PY X .

From equations (6),(14),(28) and (29), we get

TφX φX =−cos2
θTX X +2PX φX ,

for any X ∈ Γ(D).

Therefore, by virtue of Theorem (2) and the fact that φ 2X =−X , for any X ∈ Γ(∆⊥ J∆) and

φX = 0 for any X ∈Γ(J(ltr(ker f∗))), we get TφX φX =−TX X+2PX φX and TφX φX = 2PX φX .

Theorem 3.6. Let (M1,g1,J) be an indefinite nearly Kähler manifold, where g1 is a semi-

Riemannian metric of index 2r and let (M2,g2) be an r−lightlike manifold. Let f be a proper

slant lightlike submersion such as f : M1 → M2. Then the distribution V defines a totally

geodesic foliation on M1 if and only if

ω(V ∇X φY +TX ωY +QXY )+C (TX φY +H ∇X ωY +PXY ) = 0,

for any X ,Y ∈ Γ(V ).

Proof. For X ,Y ∈ Γ(V ), using equations (3),(5),(7),(8),(15) and (16), we get

∇XY = −(BT X φY +C T X φY +φV ∇X φY +ωV ∇X φY +BH ∇X ωY +C H ∇X ωY

+φTX ωY +ωTX ωY )+φQXY +ωQXY +BPXY +C PXY,

Hence, ∇XY ∈ Γ(V ), if and only if

ω(V ∇X φY +TX ωY +QXY )+C (TX φY +H ∇X ωY +PXY ) = 0.

Theorem 3.7. Let (M1,g1,J) be an indefinite nearly Kähler manifold, where g1 is a semi-

Riemannian metric of index 2r and let (M2,g2) be an r-lightlike manifold. Let f be a proper
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slant lightlike submersion such as f : M1 → M2. Then the distribution H defines a totally

geodesic foliation on M1 if and only if

φ(V ∇V BW +AV CW +QVW )+B(AV BW +H ∇V CW +PVW ) = 0,

for any V,W ∈ Γ(H ).

Proof. For V,W∈ Γ(H ), using equations (3),(5),(7),(8),(17) and (18), we get

∇VW = −(BA V BW +C A V BW +φV ∇V BW +ωV ∇V BW +BH ∇V CW +C H ∇V CW

+φAV CW +ωAV CW )+φQVW +ωQVW

+BPVW +C PVW = 0.

Hence, ∇V,W ∈ Γ(H ), if and only if

φ(V ∇V BW +AV CW +QVW )+B(AV BW +H ∇V CW +PVW ) = 0.

Corollary 3.2. Let (M1,g1,J) be an indefinite nearly Kähler manifold, where g1 is a semi-

Riemannian metric of index 2r and let (M2,g2) be an r-lightlike manifold. Let f be a proper

slant lightlike submersion such as f : M1 → M2. Then M1 is a locally product Riemannian

manifold if and only if

ω(V ∇X φY +TX ωY +QXY )+C (TX φY +H ∇X ωY +PXY ) = 0,

φ(V ∇V BW +AV CW +QVW )+B(AV BW +H ∇V CW +PVW ) = 0,

for any X ,Y ∈ Γ(V ) and V,W ∈ Γ(H ).

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] J. P. Bourguignon and H. B. Lawson, Stability and isolation phenomena for Yang-Mills fields, Comm.s Mah.

Phys, 79(1981), 189-230.

[2] K. L. Duggal and A. Bejancu, Lightlike submanifolds of Semi-Riemannian Manifolds and Its Applications,

Kluwer AP, Dordrecht, The Netherlands (1996).

[3] J. P. Bourguignon and H. B. Lawson, A mathematicians visit to Kaluza-Klein theory, Conf. Partial Diferential

Equat. and Geom. (Torino, 1988): Rend. Semin. Mat. Univ. Politecn., Spec. Issue, 143-163(1990).



240 RAJENDRA PRASAD, PUNIT KUMAR SINGH, SUSHIL KUMAR

[4] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16(1967), 715-737.

[5] B. O’Neill, The fundamental equations of a submersion, Mich. Math. J., 13(1966), 459-469.

[6] B. O’Neill, Semi-Riemannian Geometry with applications to Relativity, Academic press, New York-London

(1983).

[7] M. Falcitelli, S. Ianus and A. M. Pastore, Riemannian Submersions and Related Topics, World Scientific,

Singapore (2004).

[8] M. Visinescu, Space-time compactification induced by non linear sigma modles, gauge fields and submer-

sions, Czech. J. Phys. B, 37 (1987), 525-528.

[9] B. Sahin, On a submersion between Reinhart lightlike manifolds and semi-Riemannian manifolds, Mediterr.

J. Math., 5(2008), 273-284.
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