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Abstract: In this paper we introduce, numerical computation of some iterative techniques for solving system of linear 

simultaneous equations of 4 or more variables. Many iterative techniques is presented by the different formulae. Using 

Jacobi method, Seidel method and SOR method and their results are compared. The software, Matlab 2009a was used 

to find the solution of the linear simultaneous equations having diagonally dominant in coefficient matrix. Numerical 

rate of convergence of solution has been found in each calculation. It was observed that the Seidel method converges 

at the 12iteration while Jacobi and SOR methods converge to the exact value of X(x, y, z, t) with error level of accuracy  

10−15 at the 22th iteration respectively. However, when we compare performance, we must compare both cost, speed 

of convergence. Some numerical examples are given to illustrate the efficiency and robustness of the techniques. It 

was then concluded that Seidel is the most effective technique.  

Keywords: iterative techniques; algorithm; linear simultaneous equations on large scale; rate of convergence; 

numerical experiments, executing time. 

 

1. Introduction 

Solving system of linear simultaneous equations is one of the most important and challenging 

problems in science and engineering applications. It arises in a wide variety of practical 

applications in Physics, Chemistry, Biosciences, Engineering, etc. System of linear equations 

arises in various theoretical research fields as well as applications in science and engineering. After 

the availability of computers, we go to numerical methods which are suited for computer 
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operations. Well known techniques of linear algebra such as Gaussian elimination and Gauss 

Jordon’s methods are utilized to determine a common solution. Specifically, the problem of 

existence, uniqueness and cardinality of solution of a system of linear equations is well solved in 

linear algebra. In linear algebra, Iterative solver is an algorithm [1] that can be used to determine 

the solutions of a system of linear equations to find the rank of a matrix [3-5], and to calculate the 

inverse of an invertible square matrix. Another point of view, which turns out to be very useful to 

analyze the algorithm. The first part of the algorithm computes an LU decomposition (it is a matrix 

decomposition which writes a matrix as the product of a lower triangular matrix and an upper 

triangular matrix. A linear equation system is a set of linear equations to be solved simultaneously. 

This system consists of  linear equations, each with  coefficients, and has  unknowns which have 

to fulfill the set of equations simultaneously. To  simplify    notation, it is possible to rewrite the 

equations in matrix notation which are diagonally dominant in coefficients matrix.[6-8] .Consider 

a system of n linear algebraic equations in n unknowns where (m=n)      

                                   𝑎11𝑥1 + 𝑎12𝑥2 + ⋯…… . . 𝑎1𝑛𝑥𝑛 = 𝑏1              

                                   𝑎21𝑥1 + 𝑎22𝑥2 + ⋯…… . . 𝑎2𝑛𝑥𝑛 = 𝑏2  

                                     …………………………………….  

                                  𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯…… . . 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚                          (i)                                              

Where  𝑎𝑖𝑗, (𝑖, 𝑗 = 1(1)𝑛  are the known coefficient , 𝑏𝑖,(i = 1(1)n)  are the known values  and 

𝑥𝑖 ,(  i= 1(1)n)    are the unknowns to be determined . In matrix notation the system can be written 

as                                                                                             

                                                                                       A x = b                                                        (ii)   

       where                                    A  =   

[
 
 
   

𝑎11 𝑎12 𝑎13 
𝑎21 𝑎22 𝑎23

…… …… ……
 

 
 𝑎𝑚1    𝑎𝑚2       𝑎𝑚𝑛  ]

 
 
 
           

The matrix [ 𝐴 ∶ 𝑏] is called the augmented matrix. It is formed by appending the column b to the 

𝑚×𝑛  matrix. The methods of solution of the linear algebraic equations (ii) may broadly be 

classified into two types. (i) Direct methods: These methods produce the exact solution after a 

finite number of steps. (ii) Iterative methods: These methods give a sequence of approximate 

solutions, which converges when the number of steps tends to infinity. Here we are interested in 

the case when m = n; particularly when the number of equations are large. A took-kit to solve 

equations of this type is at the heart of the numerical analysis. Before we present the numerical 
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methods to solve equation (ii), we have to know the conditions under which the solutions exist. 

We then proceed to develop direct and iterative methods for solving large scale problems. We later 

discuss numerical conditioning of a matrix and its relation to errors that can arise in computing 

numerical solutions.[6] 

 

2. Iterative Techniques 

By this approach, we start with some initial guess solution, say  𝑥(0) , for solution x and generate 

an improved solution estimate 𝑥(𝑘+1)from the previous approximation x(k) .This method is a very 

effective for solving differential equations, integral equations and related problems [4]. Let the 

residue vector r be defined as 

                                  𝑟𝑖
(𝑘) = 𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗

(𝑘)𝑛
𝑗=1        for i=1,2,…..n                   (3) 

 ie.  r(k) = b − Ax(k) The iteration sequence {x(k): k = 0,1, …… }  is terminated when some norm    

of the residue              ‖r(k)‖ = ‖Ax(k) − b‖       becomes sufficiently small, ie. 

                                                        ‖
𝑟(𝑘)

𝑏
‖ < 𝜖                                                    (4) 

Where𝜖 is an arbitrarily small number as 𝜀 = 10−15 another possible termination criterion can be 

                                                                ‖
𝑥(𝑘)−𝑥(𝑘+1)

𝑥(𝑘+1) ‖ < 𝜖                                                        (5) 

 It may be noted that the later condition is practically equivalent to the previous termination 

condition. A simple way to form an iterative scheme is Richardson iterations [4] 

                                                            x(k+1) = (I − A)x(k) + b                                                (6) 

[4] Richardson iterations preconditioned with approximate inversion        

                                               x(k+1) = (I − MA)x(k) + Mb                                  (7) 

 Where matrix M is called approximate inverse of A if  ‖I − MA‖ < 1 . A question that naturally 

arises is will the iterations converge to the solution of Ax = b. In this section, to begin with, some 

well-known iterative schemes are presented. Their convergence analysis is presented next. In the 

derivations that follow, it is implicitly assumed that the diagonal elements of matrix A are non-

zero, i.e.𝑎𝑖𝑖, ≠ 0, if this is not the case, simple row exchange is often sufficient to satisfy this 

condition. 

Theorem2.1. A matrix A is called strictly diagonally dominant if:   

                                                  ∑ |𝑎𝑖𝑗| < |𝑎𝑖𝑖|
𝑛
𝑗=1(𝑗≠𝑖)        for   i=1,2,…..n 
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Theorem2.2. A sufficient condition for the convergence of Jacobi and Gauss-Seidel methods is 

that the matrix A of linear system Ax=b is strictly diagonally dominant [6]                                                                                                                                                                   

Theorem.2.3.  For any arbitrary matrix A, the necessary condition for the convergence of 

relaxation method is 0 < w < 2. [9] 

 

3. Materials and Methods 

3.1. Jacobi-Method: Suppose we have a guess solution, say x(k) 

                                    x(k) = [𝑥1
(𝑘)     𝑥2

(𝑘)       𝑥3
(𝑘) …………𝑥𝑛

(𝑘)]
T
           

for, Ax = b: To generate an improved estimate starting from x(k);consider the first equation in the 

set of equations Ax = b, i.e., 

                                    𝑎11𝑥1 + 𝑎12𝑥2 + ⋯…… . . 𝑎1𝑛𝑥𝑛 = 𝑏1                                      (8) 

Rearranging this equation, we can arrive at a iterative formula for computing, x1
(k+1), as 

                             𝑥1
(𝑘+1) =

1

𝑎11
[𝑏1 − 𝑎12𝑥2

(𝑘) …… .− 𝑎1𝑛𝑥𝑛
(𝑘)]                               (9) 

Similarly, using second equation from Ax = b, we can derive 

                          𝑥2
(𝑘+1) =

1

𝑎22
[𝑏2 − 𝑎21𝑥1

(𝑘) − 𝑎23𝑥3
(𝑘) …… .− 𝑎2𝑛𝑥𝑛

(𝑘)]               (10) 

In general, using ith row of Ax = b; we can generate improved guess for the ith element x of as 

follows   

 𝑥𝑖
(𝑘+1) =

1

𝑎𝑖𝑖
[𝑏2 − 𝑎𝑖1𝑥1

(𝑘) …− 𝑎𝑖,𝑖−1𝑥𝑖−1
(𝑘) − 𝑎𝑖,𝑖+1𝑥𝑖+1

(𝑘) …− 𝑎𝑖,𝑛𝑥𝑛
(𝑘)]             (11)                                                                          

The above equation can also be rearranged as follows 

                                                  𝑥𝑖
(𝑘+1) = 𝑥𝑖

(𝑘) + (
𝑟𝑖

(𝑘)

𝑎𝑖𝑖
)              

Where ri
(k)   is defined by equation (4). In matrix form, the method can be written as 

                                             x(k+1) = −D−1(L + U)x(k) + D−1b      

   The algorithm for implementing the Jacobi iteration scheme is summarized in Chart 1. 

                                       Chart 1: Algorithm for Jacobi Iterations 

                                       INITIALIZE: b, A, x(0) , kmax, 𝜖  

                                        k =0 

                                       𝛿 = 100 ∗ 𝜖 

                                      WHILE [(𝛿 > 𝜖)  𝐴𝑁𝐷  (𝑘 < 𝑘𝑚𝑎𝑥)] 

                                       FOR   i =1 : n 
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                                       𝑟𝑖 = 𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1  

                                          𝑥𝑁𝑖 = 𝑥𝑖 + (
𝑟𝑖

𝑎𝑖𝑖
) 

                                        END FOR 

                                       𝛿 = ‖𝑟‖/‖𝑏‖  

                                         𝑥 = 𝑥𝑁 

                                         k =k+1 

                                         END WHILE 

3.2. Gauss-Seidel Method: When matrix A is large, there is a practical difficulty with the Jacobi 

method. It is required to store all components of x(k) in the computer memory (as a separate 

variables) until calculations of x(k+1) is over. The Gauss-Seidel method overcomes this difficulty 

by using xi
(k+1)  immediately in the next equation while computing xi+1

(k+1) :This modification 

leads to the following set of equations     

                     𝑥1
(𝑘+1) =

1

𝑎11
[𝑏1 − 𝑎12𝑥2

(𝑘) − 𝑎13𝑥3
(𝑘) …… . 𝑎1𝑛𝑥𝑛

(𝑘)]                             (12) 

               𝑥2
(𝑘+1) =

1

𝑎22
[𝑏2 − {𝑎21𝑥1

(𝑘+1)) } − {𝑎23𝑥3
(𝑘) + ⋯… .+ 𝑎2𝑛𝑥𝑛

(𝑘)}]              (13)    

𝑥3
(𝑘+1) =

1

𝑎33
[𝑏3 − {𝑎31𝑥1

(𝑘+1)) + 𝑎32𝑥2
(𝑘+1)) } − {𝑎34𝑥4

(𝑘) + ⋯… .+ 𝑎3𝑛𝑥𝑛
(𝑘)}]      (14) 

In general, for i’th element of x, we have   

                              𝑥𝑖
(𝑘+1) =

1

𝑎𝑖𝑖
[𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗

(𝑘+1) − ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘)𝑛

𝑗=𝑖+1
𝑖−1
𝑗=1 ]    

To simplify programming, the above equation can be rearranged as follows  

                         𝑥𝑖
(𝑘+1)   =      𝑥𝑖

(𝑘) + (
𝑟𝑖

(𝑘)

𝑎𝑖𝑖
)                                 (15)   

    where                       𝑟𝑖
(𝑘) = [𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗

(𝑘+1) − ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘)𝑛

𝑗=𝑖+1
𝑖−1
𝑗=1 ] 

 In matrix form, the method can be written as 

                                 x(k+1) = −(L + D)−1Ux(k) + (L + D)−1b                       (16) 

The algorithm for implementing Gauss-Siedel iteration scheme is summarized in Chart2. 

                     Chart 2: Algorithm for Gauss Seidel Iterations 

                                       INITIALIZE: b, A, x(0) , kmax, 𝜖  

                                        k =0 

                                       𝛿 = 100 ∗ 𝜖 

                                      WHILE [(𝛿 > 𝜖)  𝐴𝑁𝐷  (𝑘 < 𝑘𝑚𝑎𝑥)] 



378                         A. HASAN 

                                       FOR   i =1 : n 

                                       𝑟𝑖 = 𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1  

                                          𝑥𝑖 = 𝑥𝑖 + (
𝑟𝑖

𝑎𝑖𝑖
) 

                                        END FOR 

                                       𝛿 = ‖𝑟‖/‖𝑏‖ 

                                         k =k+1 

                                         END WHILE                                                    

3.3. SUCESSASIVE OVER RELAXTION METHOD: Suppose we have a starting value say y, 

of a quantity and we wish to approach a target value, say   y* by some method. Let application of 

the method change the value from y to y^. If y^ is between y and y^ which is even closer to y than 

y*. Then we can approach y* faster by magnifying the change (y^ - y) [3]. In order to achieve this, 

we need to apply a magnifying factor w > 1 and get 

                                             𝑦∗ = 𝑦 + 𝑤(y^ −  y)                                                     (17) 

 This amplification process is an extrapolation and is an example of over-relaxation. If the 

intermediate value y^ tends to overshoot target y*, then we may have to use w < 1; this is called 

under-relaxation. Application of over-relaxation to Gauss-Seidel method leads to the following set 

of equations  

                               𝑥𝑖
(𝑘+1)   =      𝑥𝑖

(𝑘) + 𝑤[𝑧𝑖
(𝑘+1) − 𝑥𝑖

(𝑘)]      for  i =1,2,…n            (18) 

 Where zi
(k+1)  are generated using the Gauss-Seidel method,  

                𝑧𝑖
(𝑘+1) =

1

𝑎𝑖𝑖
[𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗

(𝑘+1) − ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘)𝑛

𝑗=𝑖+1
𝑖−1
𝑗=1 ]     for i =1,2…n         (19) 

In matrix form, the method can be written as 

                         x(k+1) = (wL + D)−1[(1 − w)D − wU]x(k) + wb                              (20)                            

Thus, in general, an iterative method can be developed by splitting matrix A. The steps in the 

implementation of the over-relaxation iteration scheme are summarized in Chart 3. It may be 

noted that w is a tuning parameter, which is chosen such that 1 < w < 2 [9]   

                      Chart 3: Algorithm for Gauss Seidel Iterations 

                                       INITIALIZE: b, A, x(0) , kmax, 𝜖  

                                        k =0 

                                       𝛿 = 100 ∗ 𝜖 

                                      WHILE [(𝛿 > 𝜖)  𝐴𝑁𝐷  (𝑘 < 𝑘𝑚𝑎𝑥)] 
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                                       FOR   i =1 : n 

                                       𝑟𝑖 = 𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1  

                                       𝑧𝑖 = 𝑥𝑖 + (𝑟𝑖/𝑎𝑖𝑖) 

                                      𝑥𝑖 = 𝑥𝑖 + 𝜔(𝑧𝑖 − 𝑥𝑖) 

                                       END FOR 

                                       r = b - Ax          

                                       𝛿 = ‖𝑟‖/‖𝑏‖ 

                                       k =k+1 

                                       END WHILE     

 

3.4. Matlab Programs: Jacobi method, Gauss Seidel and SOR Methods are below as [10] 

clc; 

clear all; 

%   3.112x + 0.5756y - 0.1565z - 0.0067t   =  1.571 

%   0.5756x + 2.938y + 0.1103z - 0.0015t  = -0.9275 

%  -0.1565x + 0.1103y + 4.127z + 0.2015t = -0.06502 

%  -0.0067x - 0.0015y+ 0.2051z + 4.133t  =  -0.0177 

A = [3.112 0.5756 -0.1565 -0.0067; 0.5756 2.938 0.1103 -0.0015; -0.1565 0.1103 4.127 0.2015 ; 

-0.0067 -0.0015 0.2051 4.133]; 

b = [1.571;  -0.9275;  -0.06502; -0.0177]; 

% error tolerance 

tol = 0.000000000000005; 

%initial guess: 

x0 = zeros(n,1);                        here n=4 

%  Jacobi method 

%--------------- 

xnew=x0; 

error=1; 

while error>tol 

    xold=xnew; 

        for i=1:length(xnew) 



380                         A. HASAN 

        off_diag = [1:i-1 i+1:length(xnew)]; 

        xnew(i) = 1/A(i,i)*( b(i)-sum(A(i,off_diag)*xold(off_diag)) ); 

    end 

    error=norm(xnew-xold)/norm(xnew); 

end 

x_jacobian=xnew 

%Gauss Seidel Method: 

%--------------- 

maxiter=1000; 

lambda=1; 

n=length(x0); 

x=x0; 

error=1; 

iter = 0; 

while (error>tol & iter<maxiter) 

    xold=x; 

    for i=1:n 

        I = [1:i-1 i+1:n]; 

        x(i) = (1-lambda)*x(i)+lambda/A(i,i)*( b(i)-A(i,I)*x(I) ); 

    end 

    error = norm(x-xold)/norm(x); 

    iter = iter+1; 

end 

x_siedal=x 

%SOR 

%--------------- 

maxiter=1000; 

lambda=1.2; 

n=length(x0); 

x=x0; 

error=1; 
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iter =0; 

while (error>tol & iter<maxiter) 

    xold=x; 

    for i=1:n 

        I = [1:i-1 i+1:n]; 

        x(i) = (1-lambda)*x(i)+lambda/A(i,i)*( b(i)-A(i,I)*x(I) ); 

    end 

    error = norm(x-xold)/norm(x); 

    iter = iter+1; 

end 

 

4. Convergence Analysis of Iterative Methods 

The convergence analysis can be carried out if the above set of iterative equations are expressed 

in the vector-matrix notation To discuss the convergence of the iterative methods (ii) .we study 

the behavior of the difference between the exact solution x and an approximate 𝑥(𝑘). The exact 

solution x will satisfy 

                                                              𝑥 = 𝐻𝑥 + 𝑐                                                        (21) 

Where H = ‖I − MA‖ < 1  , Subtracting (21) from (6) and substituting 𝜖(𝑘) = 𝑥(𝑘) − 𝑥  , we get 

                                                                𝜖(𝑘+1) =  𝐻𝜖(𝑘)            , k = 0,1, 2 ,……… 

From which we obtain                        𝜖(𝑘) = 𝐻(𝑘)𝜖(0)                  k = 0, 1, 2,……….       

Where we have assumed that the iteration matrix H remains constant for each iteration.We given 

few results above which we require for providing the convergence of the iterative methods.[1 ] 

 

5. Numerical Experiments and Comparative discussion 

In this section, we employ the various techniques obtained in this paper to solve system of linear 

simultaneous equations and compare them. We use the stopping criteria |𝑥𝑘+1 − 𝑥𝑘| < 𝜀  and 

|𝑓(𝑥𝑘+1)| < 𝜀,  where  𝜀 =  10−15 , for computer programs. All programs are written in 

Matlab2009a .The results are presented in Table1to3. Example1. Let us consider the system of 

linear simultaneous equations of n= 4 variables. 
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       3.112x +0.5756y -0.1565z -0.0067t =1.5710                                                                           

0.5756x + 2.938y + 0.1103z - 0.0015t =-0.9275                                                                                       

-0.1565x + 0.1103y + 4.127z + 0.2015 t=   -0.06502                                                                            

-0.0067x  -  0.0015y + 0.2051z  +  4.133 t    = - 0.0177 

  Table1. Numerical Solutions of Iteration data for Jacobi method, with     𝜀 =  10−15     

Number of iterations Numerical solutions of X(x, y, z, t) Errors  at each iteration 

                             1   X(1) = error = 

     0.50482005141388  

   -0.31569094622192      1 

   -0.01575478555852  

   -0.00428260343576  

                             2 X(2) = error = 

     0.56240918742365  

   -0.41400377557926    0.16792158814306 

    0.01203489072131  

   -0.00279698416569  

                             3 X(3) = error = 

     0.58199398901909  

   -0.42632892178484    0.03278271009799 

    0.01677374523566  

   -0.00411836927040  

                             4 X(4) = error = 

     0.58450913413709  

   -0.43034447302001    0.00671700306133 

    0.01791034426032  

   -0.00432625908640  

                              5 X(5) = error = 

     0.58530856735578  

   -0.43088000611636    0.00135749643692 

    0.01812319265143  
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   -0.00438004285473  

                              6 X(6) = error = 

     0.58541820851009  

   -0.43104464587601 2.799561402866404e-004 

    0.01817044683815  

   -0.00438950385209  

                              7 X(7) = error = 

     0.58545101652333  

   -0.43106790516012 5.675417343725499e-005 

    0.01817946670660  

   -0.00439173085369  

                               8 X(8)=  error = 

    0.58545576740136  

   -0.43107467252718 1.170187868812868e-005 

    0.01818144119023  

   -0.00439213372092  

                              9 X(9) = error = 

    0.58545711753116  

   -0.43107567763107 2.376226925696227e-006 

    0.01818182188583  

   -0.00439222645907  

                            10 X(10) = error = 

    0.58545732238184  

   -0.43107595648218 4.896841447296750e-007 

    0.01818190447488  

   -0.00439224352716  

                            11 X(11)= error = 

     0.58545737807514  

   -0.43107599972494 9.957377583570863e-008 

    0.01818192052907  
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   -0.00439224739476  

                           12 X(12) = error = 

    0.58545738687241  

   -0.43107601124081 2.050878105103282e-008 

    0.01818192398557  

   -0.00439224811686  

                           13 X(13) = error = 

    0.58545738917467  

   -0.43107601309447 4.175149479277625e-009 

    0.01818192466221  

   -0.00439224827831  

                            14 X(14) =  error = 

     0.58545738955120  

   -0.43107601357100 8.594936849327012e-010 

    0.01818192480694  

   -0.00439224830883  

                            15 X(15) = error = 

    0.58545738964656  

   -0.43107601365022 1.751459502654988e-010 

    0.01818192483544  

   -0.00439224831557  

                           16 X(16) =  error = 

    0.58545738966263  

   -0.43107601366997 3.603792102737823e-011 

    0.01818192484151  

   -0.00439224831686  

                           17 X(17) = error = 

    0.58545738966658  

   -0.43107601367335 7.349898927456906e-012 

    0.01818192484271  
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   -0.00439224831714  

                           18 X(18)= error = 

     0.58545738966727  

   -0.43107601367417 1.511588971059816e-012 

    0.01818192484296  

   -0.00439224831720  

                           19 X(19) = error = 

    0.58545738966743  

   -0.43107601367431 3.084681282223669e-013 

    0.01818192484301  

   -0.00439224831721  

                            20 X(20) = error = 

     0.58545738966746  

   -0.43107601367435 6.340530233702467e-014 

    0.01818192484302  

   -0.00439224831721  

                            21 X(21) = error = 

     0.58545738966747  

   -0.43107601367435 1.294122602041948e-014 

    0.01818192484302  

   -0.00439224831721  

                            22 X(22) =  error = 

     0.58545738966747  

   -0.43107601367436 2.673634683604702e-015 

    0.01818192484302  

   -0.00439224831721  

Table 1 shows that the iteration data obtained for Jacobi method .it is observed that the numerical 

Solution of the linear simultaneous equation converges at 22 iteration with error level of 

0.000000000000005 
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Table 2. Numerical Solutions of Iteration data for Gauss Seidel method, with     𝜀 =  10−15 

Number of iterations Numerical solutions of X(x, y, z, t) Errors  at each iteration 

                         1 X(1) = error = 

    0.50482005141388  

    -0.41459306385086      1 

    0.01446909449698  

   -0.00433273809161  

                        2 X(2) = error = 

    0.58222209238307    0.10916741771859 

    -0.43030274901493  

     0.01803566692507  

   -0.00438995436508  

                        3 X(3)=   error =   

   0.58530701526752 0.00436658198424 

    -0.43104106091946  

    0.01817517632986  

   -0.00439214450867      

                       4 X(4)= error = 

     0.58545058560175 2.028635364439777e-004 

    -0.43107442724245  

     0.01818161935789  

    -0.00439224361182      

                       5 X(5) =  error = 

      0.58545708088627  

      0.43107594170821 9.179243844217245e-006 

      0.01818191098059  

    -0.00439224810374  

                       6  X(6)=  

     0.58545737565984   error =  

    -0.43107601040950 4.165695515671734e-007   

     0.01818192421416  

    -0.00439224830753  

                       7  X(7) =  

    0.58545738903199      
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   -0.43107601352624 error = 

    0.01818192481449 1.889737992891211e-008 

   -0.00439224831677  

                       8 X(8) =      

    0.58545738963864 error = 

   -0.43107601366764 8.573066107410987e-010 

    0.01818192484173  

   -0.00439224831719  

                       9 X(9)=  

    0.58545738966616  

   -0.43107601367405 error = 

    0.01818192484297 3.889267014450050e-011 

   -0.00439224831721      

                      10 X(10) =  

    0.58545738966747  

   -0.43107601367434 error = 

    0.01818192484302     1.764439799124610e-012 

   -0.00439224831721  

                      11 X(11)=  

    0.58545738966747  

   -0.43107601367436 error = 

    0.01818192484302 8.002107613160653e-014 

   -0.00439224831721  

                     12 X(12)=  

    0.58545738966747  

   -0.43107601367436 error = 

    0.01818192484302 3.613063005810915e-015 

   -0.00439224831721  

 

Table 2 shows that the iteration data obtained for Gauss Seidel method .it was observed that the 

numerical Solution of the linear simultaneous equation converges at the 12 iteration with error 

level of 0.00000000000005 
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Table3. Numerical Solutions of Iteration data for SOR method,   with  𝜀 =  10−15 

No. of iterations Numerical Solutions of X(x,y,z,t)   Errors in each iterations 

                     1 X(1) =  

    0.60578406169666 error = 

   -0.52124818485198      1 

    0.02537791532194  

   -0.00569894880129  

                    2 X(2) =  

    0.60183698560092  error =   

   -0.41721738878662 0.14258422119967 

    0.01712017300438  

   -0.00402978171698  

                       3 X (3)=     

    0.57904235989393 error = 

   -0.43229151833930 0.03783623815512 

    0.01812010442860  

   -0.00447406888318  

                       4 X(4) =  

    0.58700623934679  

   -0.43119431035112 error = 

    0.01827335748195 0.01103642226787 

   -0.00437836752937     

                      5 X (5)=  

    0.58517942967110 error = 

   -0.43099111693600 0.00253429231144 

    0.01814745363045      

   -0.00439347546181  

                       6 X(6) =  

    0.58549205511306 error = 

   -0.43109959061077   4.589345601954924e-004   
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    0.01819122459500  

   -0.00439249952107  

                        7 X(7) =  

    0.58545625013082   error =   

   -0.43107144950102 6.453339771903484e-005 

    0.01817988137485  

   -0.00439207661696  

                       8 X(8) =     

    0.58545648166585 error = 

   -0.43107144950102 7.863608435704243e-006 

    0.01817988137485  

   -0.00439207661696  

                       9 X(9) =  

    0.58545772862405 error = 

   -0.43107662087342  

    0.01818230163190 2.015299667709794e-006 

   -0.00439230712583      

                     10 X(10) =  

    0.58545731296901 error = 

   -0.43107598893356 5.789747813536638e-007 

    0.01818186756164  

   -0.00439223247423  

                    11 X(11) =  

    0.58545740191311 error = 

   -0.43107599800051  1.264805602506763e-007 

    0.01818193137820  

   -0.00439225201736  

                   12 X(12) =  

    0.58545738860102      error= 

   -0.43107601998474     2.128302335990060e-008 
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    0.01818192451241  

   -0.00439224753642  

                   13 x(13)=      

    0.58545738953652 error = 

   -0.43107601214618 2.803660810121424e-009 

    0.01818192476586  

   -0.00439224847019  

                    14 X(14) =  

    0.58545738975562 error = 

   -0.43107601394582 5.189434870315965e-010 

    0.01818192487017  

   -0.00439224828861      

                     15 X(15) =  

    0.58545738964239 error = 

   -0.43107601364199 1.624058027681464e-010 

    0.01818192483889  

   -0.00439224832250  

                     16 X(16) =  

    0.58545738967258 error = 

   -0.43107601367475  4.154743530371315e-011    

    0.01818192484303  

   -0.00439224831621  

                    17 X(17) =  

    0.58545738966671   error =   

   -0.43107601367548 8.346869132251461e-012 

    0.01818192484323  

   -0.00439224831742  

                   18 X(18) =      

    0.58545738966753 error = 

   -0.43107601367396     1.317623655745480e-012 
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    0.01818192484295  

   -0.00439224831717  

                   19 X(19) =  

    0.58545738966748 error = 

   -0.43107601367445 1.633847938958885e-013 

    0.01818192484304  

   -0.00439224831722  

                  20 X(20) =  

    0.58545738966746  

   -0.43107601367434 error = 

    0.01818192484302 3.043187461809806e-014 

   -0.00439224831721  

                   21 X(21) =  

    0.58545738966747 error = 

   -0.43107601367436  

    0.01818192484302 9.427901987222536e-015 

   -0.00439224831721  

                     22 X(22)=  

    0.58545738966747 error = 

   -0.43107601367436  

    0.01818192484302 2.297594335026736e-015 

   -0.00439224831721  

 

Table 3 shows that the iteration data obtained for SOR method .it was observed that the 

numerical Solution of the linear simultaneous equation converges at the 22 iteration with error 

level of 0.000000000000005 when optimal factor w=1.2    
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Example-2   Let us consider another the system of linear simultaneous equations of n=5 variables          

                         10 v  +  w+  x – 2y + z =-1 ,  v- 20 w - 2x + y + z    =  20 ,  v + w + 10 x –y – z = 1                                                                                                                                                                                                                                                                                                                                                                                                                  

-v + 2w + x + 50 y + z = 2 ,  v + w + x + y +100 z =- 1                                                                                                                                                      

The solution of above equations are converges 16, 11, 24 iterations respectively by the above 

techniques up to error level of 𝜀 = 10−15 which are given below. 

v =   -0.00364280090102                                                                                                                                                

w =  -1.01743940692132                                                                                                                                                               

x =   0.20949210878712                                                                                                                                                   

y=    0.07648785763481                                                                                                                                                      

z =  -0.00264897758600                                                                                                

Thus we can solve the system of linear simultaneous equations of more variable which are 

diagonally dominant in coefficient matrix by the above techniques. 

 5.1. Executing time: The execution time of a given task is defined as the time spent by the system 

executing that task, including the time spent executing run time or system services on its behalf. 

Table 4:  Execution time comparison for iterations data of various techniques 

 

S/No. 

    Techniques  

              

    Number of iterations          (Elapsed time) 

Example1 Example2 Example1 Example2 

1.          Jacobi        22       16 0.015000  0.02000 

2.          Seidel        12       11 0.000140 0.01500 

3.          SOR        22       24 0.016000 0.02500 

   

Thus from the above discussions we see that the Jacobi and SOR method is taking more time in 

comparison to that of Seidel method to run the program. [11]. SOR method has more error than 

other Since the Seidel method requires less number of  iterations and Jacobi and SOR method 

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10111213141516171819202122

E

r

r

o

r

s

Number of iterations

Graph between number of iterations and Errors

Jacobi error

Seidel error

SOR error



NUMERICAL COMPUTATION OF SOME ITERATIVE TECHNIQUES                      393 

required more iterations with error level 0.000000000000005 with optimal factor w = 1.2 Thus we 

see that the overall performance of the iterative techniques are in this manner.  

                                       SOR method ≤ Jacobi method < Gauss Seidel method    

 

CONCLUSION 

The above plot is shows the result obtained from different algorithm. Consequently, we can see 

that Gauss Seidel Technique is more accurate at large scale with different parameters such as 

running time factor and number of iterations and error level. Based on our results and discussions, 

we now conclude that the Seidel method is formally the most effective of the Jacobi and SOR 

method, we have considered here in the study. Analysis of efficiency from the numerical 

computation shows that Jacobi and SOR method converges slowly. Thus these methods have great 

practical utilities. One can easily adopt these MATLAB codes as needed for a different type of 

problem linear simultaneous equations of more order like 6×6 and so on. And also can use linear 

simultaneous differential equation for equilibrium problem in applied mathematics. 
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