NORMAL AND RECTIFYING CURVES IN PSEUDO-GALILEAN SPACE G_{3}^{1} AND THEIR CHARACTERIZATIONS

HANDAN ÖZTEKİN, ALPER OSMAN ÖĞRENMIŞ̧*
Department of Mathematics, Frrat University, Elazığ 23119, Turkey

Abstract

We defined normal and rectifying curves in Pseudo-Galilean Space G_{3}^{1}. Also we obtained some characterizations of this curves in G_{3}^{1}.

Keywords: Pseudo-Galilean Space, Rectifying Curve, Frenet Equations
2000 AMS Subject Classification: 53C50,53C40

1. Introduction

In the Euclidean space E^{3}, the notion of rectifying curves was introduced by B.Y. Chen in [4]. By definition, a regular unit speed space curve $\alpha(s)$ is called a rectifying curve, if its position vector always lies its rectifying plane $\{\mathbf{t}, \mathbf{b}\}$, spanned by the tangent and the binormal vector field. This subject have been studied by many researcher. The curves are studied from different way in $[4,5,6,7]$.

A Galilean space may be considered as the limit case of a pseudo-Euclidean space in which the isotropic cone degenerates to a plane. This limit transition corresponds to the limit transition from the special theory of relativity to classical mechanics [10].

[^0]The Pseudo-Galilean geometry is one of the real Cayley-Klein geometries (of projective signature $(0,0,+,-)$. The absolute of the Pseudo-Galilean geometry is an ordered triple $\{w, f, I\}$ where w is the ideal (absolute) plane, f is line in w and I is the fixed hyperbolic involution of points of f [2]. Differential geometry of the Pseudo - Galilean space G_{3}^{1} has been largely developed in $[1,2,3,8,9]$.

In the Pseudo-Galilean Space G_{3}^{1}, to each regular unit speed curve $r: I \rightarrow G_{3}^{1}$, $I \subset \mathrm{R}$, it is possible to associate three mutually ortogonal unit vector fields. The vectors \mathbf{t}, \mathbf{n} and \mathbf{b} are called the tangent, the principal normal and the binormal vector field, respectively. The planes spanned by the vector fields $\{\mathbf{t}, \mathbf{n}\},\{\mathbf{t}, \mathbf{b}\}$ and $\{\mathbf{n}, \mathbf{b}\}$ are defined as the osculating plane, the rectifying plane and the normal plane, respectively.

In this paper, we study the normal and rectifying curves in the Pseudo-Galilean Space G_{3}^{1}. By using similar method as in [4] we show that there is some characterizations of normal and rectifying curves.

2. Preliminaries

Let r be a spatial curve given first by

$$
\begin{equation*}
r(t)=(x(t), y(t), z(t)) \tag{2.1}
\end{equation*}
$$

where $x(t), y(t), z(t) \in C^{3}$ (the set of three-times continuously differentiable functions) and t run through a real interval [2].

Definition 2.1. A curve r given by (2.1) is called admissible if

$$
\begin{equation*}
\dot{x}(t) \neq 0 \tag{2.2}
\end{equation*}
$$

Then the curve r can be given by

$$
\begin{equation*}
r(x)=(x, y(x), z(x)) \tag{2.3}
\end{equation*}
$$

and we assume in addition that, in [2]

$$
\begin{equation*}
y^{\prime 2}(x)-z^{\prime 2}(x) \neq 0 \tag{2.4}
\end{equation*}
$$

Definition 2.2. For an admissible curve given by (2.1) the parameter of arc length is defined by

$$
\begin{equation*}
d s=|\dot{x}(t) d t|=|d x| \tag{2.5}
\end{equation*}
$$

For simplicity we assume $d x=d s$ and $x=s$ as the arc length of the curve r. From now on, we will denote the derivation by S by upper prime [2].

The vector $\mathbf{t}(s)=r(s)$ is called the tangential unit vector of an admissible curve r in a point $\mathbf{P}(s)$. Further, we define the so called osculating plane of r spanned by the vectors $r(s)$ and $r(s)$ in the same point. The absolute point of the osculating plane is

$$
\begin{equation*}
H\left(0: 0: y^{\prime \prime}(s): z^{\prime \prime}(s)\right) \tag{2.6}
\end{equation*}
$$

We have assumed in (2.4) that H is not lightlike. H is a point at infinity of a line which direction vector is $r(s)$. Then the unit vector

$$
\begin{equation*}
\mathbf{n}(s)=\frac{r^{\prime \prime}(s)}{\sqrt{\left|y^{\prime 2}(s)-z^{\prime 2}(s)\right|}} \tag{2.7}
\end{equation*}
$$

is called the principal normal vector of the curve r in the point \mathbf{P}.
Now the vector

$$
\begin{equation*}
\mathbf{b}(s)=\frac{\left(0, \varepsilon z^{\prime \prime}(s), \varepsilon y^{\prime \prime}(s)\right)}{\sqrt{\left|y^{\prime 2}(s)-z^{\prime 2}(s)\right|}} \tag{2.8}
\end{equation*}
$$

is orthogonal in pseudo-Galilean sense to the osculating plane and we call it the binormal vector of the given curve in the point \mathbf{P}. Here $\varepsilon=+1$ or -1 is chosen by the criterion $\operatorname{det}(\mathbf{t}, \mathbf{n}, \mathbf{b})=1$. That means

$$
\begin{equation*}
\left|y^{\prime 2}(s)-z^{" 2}(s)\right|=\varepsilon\left(y^{\prime 2}(s)-z^{" 2}(s)\right) \tag{2.9}
\end{equation*}
$$

By the above construction the following can be summarized [2].

Definition 2.3. In each point of an admissible curve in G_{3}^{1} the associated orthonormal (in pseudo-Galilean sense) trihedron $\{\mathbf{t}(s), \mathbf{n}(s), \mathbf{b}(s)\}$ can be defined. This trihedron is called pseudo-Galilean Frenet trihedron [2].

If a curve is parametrized by the arc length, i.e. given by (2.3), then the tangent vector is non-isotropic and has the form of

$$
\begin{equation*}
\mathbf{t}(s)=r^{\prime}(s)=\left(1, y^{\prime}(s), z^{\prime}(s)\right) \tag{2.10}
\end{equation*}
$$

Now we have

$$
\begin{equation*}
\mathbf{t}^{\prime}(s)=r^{\prime \prime}(s)=\left(0, y^{\prime \prime}(s), z^{\prime \prime}(s)\right) \tag{2.11}
\end{equation*}
$$

According to the clasical analogy we write (2.7) in the form

$$
\begin{equation*}
r^{\prime \prime}(s)=\kappa(s) \mathbf{n}(s) \tag{2.12}
\end{equation*}
$$

and so the curvature of an admissible curve r can be defined as follows

$$
\begin{equation*}
\kappa(s)=\sqrt{\left|y^{\prime 2}(s)-z^{\prime 2}(s)\right|} . \tag{2.13}
\end{equation*}
$$

Remark 2.1. In [2] for the pseudo-Galilean Frenet trihedron of an admissible curve r given by (2.3) the following derivative Frenet formulas are true.

$$
\begin{align*}
& \mathbf{t}^{\prime}(s)=\kappa(s) \mathbf{n}(s) \\
& \mathbf{n}^{\prime}(s)=\tau(s) \mathbf{b}(s) \tag{2.14}\\
& \mathbf{b}^{\prime}(s)=\tau(s) \mathbf{n}(s)
\end{align*}
$$

where $\mathbf{t}(s)$ is a spacelike, $\mathbf{n}(s)$ is a spacelike and $\mathbf{b}(s)$ is a timelike vector, $\kappa(s)$ is the pseudo-Galilean curvature given by (2.13) and $\tau(s)$ is the pseudo-Galilean torsion of r defined by

$$
\begin{equation*}
\tau(s)=\frac{y^{\prime \prime}(s) z "(s)-y^{\prime " \prime}(s) z^{\prime \prime}(s)}{\kappa^{2}(s)} \tag{2.15}
\end{equation*}
$$

The formula (2.15) can be written as

$$
\begin{equation*}
\tau(s)=\frac{\operatorname{det}\left(r^{\prime}(s), r^{\prime \prime}(s), r^{\prime \prime \prime}(s)\right)}{\kappa^{2}(s)} \tag{2.16}
\end{equation*}
$$

3. Normal and Rectifying Curves in Pseudo-Galilean Space G_{3}^{1}.

Definition 3.1. Let r be an admissible curve in 3-dimensional Pseudo-Galilean Space G_{3}^{1}. If the position vector of r always lies in its normal
plane, then it is called normal curve in G_{3}^{1}.

By this definition, for a curve in G_{3}^{1}, the position vector of r satisfies

$$
\begin{equation*}
r(s)=\xi(s) \mathbf{n}(s)+\eta(s) \mathbf{b}(s) \tag{3.1}
\end{equation*}
$$

where $\xi(s)$ and $\eta(s)$ are differentiable functions.

Theorem 3.1. Let r be an admissible curve in G_{3}^{1}, with $\kappa, \tau \in \mathrm{R}$. Then r is a normal curve if and only if the principal normal and binormal components of the position vector are respectively given by

$$
\begin{equation*}
\langle r, \mathbf{n}\rangle=\left(c_{1}+c_{2} s\right) e^{-\tau s}+\left(c_{3}+c_{4} s\right) e^{\tau s}+\frac{\kappa}{\tau^{2}} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle r, \mathbf{b}\rangle=\left(c_{1}+c_{2} s\right) e^{-\sqrt{s}}-\left(c_{3}+c_{4} s\right) e^{\pi}, \tag{3.3}
\end{equation*}
$$

where $c_{1}, c_{2}, c_{3}, c_{4} \in \mathrm{R}$.
Proof. Let us assume that r is a normal curve in G_{3}^{1}, then from Definition
2.1 we have

$$
\begin{equation*}
r(s)=\xi(s) \mathbf{n}(s)+\eta(s) \mathbf{b}(s) . \tag{3.4}
\end{equation*}
$$

Differentiating this with respect to s, we have

$$
\begin{equation*}
r(s)=\xi(s) \mathbf{n}(s)+\eta(s) \mathbf{b}(s)+\xi(s) \mathbf{n}^{\prime}(s)+\eta(s) \mathbf{b}(s) . \tag{3.5}
\end{equation*}
$$

By using the Frenet equation (2.14), we write

$$
\begin{equation*}
\mathbf{t}=\xi \mathbf{n}+\eta \mathbf{b}+\xi \mathbf{d}+\eta \mathbf{n} . \tag{3.6}
\end{equation*}
$$

Again differentiating this with respect to s and by using the Frenet equation (2.14), we get

$$
\begin{equation*}
\boldsymbol{\kappa} \mathbf{n}=[(\xi+\eta \tau)+\tau(\xi \tau+\eta)] \mathbf{n}+[\tau(\xi+\eta \tau)+(\xi \tau+\eta)] \mathbf{b} \tag{3.7}
\end{equation*}
$$

From equation (3.7), we obtain the differential equation system

$$
\begin{align*}
& \xi^{\prime \prime}+2 \tau \eta^{\prime}+\tau^{2} \xi=\kappa \tag{3.8}\\
& \eta^{\prime \prime}+2 \tau \xi^{\prime}+\tau^{2} \eta=0 .
\end{align*}
$$

By solving this system, we obtain

$$
\begin{equation*}
\xi(s)=\left(c_{1}+c_{2} s\right) e^{-\pi s}+\left(c_{3}+c_{4} s\right) e^{\pi s}+\frac{\kappa}{\tau^{2}}, \quad c_{1}, c_{2}, c_{3}, c_{4} \in \mathrm{R} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta(s)=\left(c_{1}+c_{2} s\right) e^{-\pi s}-\left(c_{3}+c_{4} s\right) e^{\tau 5}, \quad c_{1}, c_{2}, c_{3}, c_{4} \in \mathrm{R} \tag{3.10}
\end{equation*}
$$

which completes the proof.

Definition 3.2. Let r be an admissible curve in 3-dimensional Pseudo-Galilean Space G_{3}^{1}. If the position vector of r always lies in its rectifying plane, then it is called rectifying curve in G_{3}^{1}.

By this definition, for a curve in G_{3}^{1}, the position vector of r satisfies

$$
\begin{equation*}
r(s)=\lambda(s) \mathbf{t}(s)+\mu(s) \mathbf{b}(s) \tag{3.11}
\end{equation*}
$$

where $\lambda(s)$ and $\mu(s)$ are some differentiable functions.

Theorem 3.2. Let r be a rectifying curve in G_{3}^{1}, with curvature $\kappa>0$, $\langle\mathbf{t}, \mathbf{t}\rangle=1,\langle\mathbf{n}, \mathbf{n}\rangle=1,\langle\mathbf{b}, \mathbf{b}\rangle=\varepsilon, \varepsilon=\mp 1$. Then the following statements hold:
(i)The distance function $\rho=\|r\|$ satisfies

$$
\rho^{2}=\mid\langle r, r>|=\left|s^{2}+2 m_{1} s+m_{1}^{2}+\varepsilon n_{1}^{2}\right|
$$

for some $m_{1} \in R, \quad n_{1} \in R-\{0\}$.
(ii) The tangential component of the position vector of r is given by $\langle r, \mathbf{t}\rangle=s+m_{1}$, where $m_{1} \in \mathrm{R}$.
(iii) The normal component r^{N} of the position vector of the curve has a
constant length and the distance function ρ is non-constant.
(iv) The torsion $\tau(s) \neq 0$ and binormal component of the position vector of the curveis constant, i.e. $\langle r, \mathbf{b}\rangle$ is constant.

Proof. Let us assume that r is a rectifying curve in G_{3}^{1}. Then from Definition 2.3, we can write the position vector of r by

$$
\begin{equation*}
r(s)=\lambda(s) \mathbf{t}(s)+\mu(s) \mathbf{b}(s), \tag{3.12}
\end{equation*}
$$

where $\lambda(s)$ and $\mu(s)$ are some differentiable functions of the ivariant parameters.
(i) Differentiating the equation (3.12) with respect to s and considering the Frenet equations (2.14), we get

$$
\begin{gather*}
\lambda^{\prime}(s)=1 \\
\lambda(s) \kappa(s)+\mu(s) \tau(s)=0 \tag{3.13}\\
\mu^{\prime}(s)=0 .
\end{gather*}
$$

Thus, we obtain

$$
\begin{gather*}
\lambda(s)=s+m_{1}, \quad m_{1} \in \mathrm{R} \\
\mu(s)=n_{1}, \quad n_{1} \in \mathrm{R} \tag{3.14}\\
\mu(s) \tau(s)=-\lambda(s) \kappa(s) \neq 0,
\end{gather*}
$$

and hence $\mu(s)=n \neq 0, \quad \tau(s) \neq 0$. From the equation (3.12), we easily find that

$$
\begin{equation*}
\rho^{2}=\mid\langle r, r>|=\left|s^{2}+2 m_{1} s+m_{1}^{2}+\varepsilon n_{1}^{2}\right|, \quad \varepsilon=\mp 1 \tag{3.15}
\end{equation*}
$$

(ii) If we consider equation (3.12), we get

$$
\begin{equation*}
<r, \mathbf{t}>=\lambda(s) \tag{3.16}
\end{equation*}
$$

which means that the tangential component of the position vector of r is given by

$$
\begin{equation*}
<r, \mathbf{t}>=s+m_{1}, \quad m_{1} \in \mathrm{R} . \tag{3.17}
\end{equation*}
$$

(iii) From the equation (3.12), it follows that the normal component r^{N} of the position vector r is given by

$$
\begin{equation*}
r^{N}=\mu \mathbf{b} . \tag{3.18}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\left\|r^{N}\right\|=|\mu|=\left|n_{1}\right| \neq 0 . \tag{3.19}
\end{equation*}
$$

Thus we proved statement (iii).
(iv) If we consider equation (3.12), we easily get

$$
\begin{equation*}
\langle r, \mathbf{b}\rangle=\varepsilon \mu=\text { const. }, \quad \varepsilon=\mp 1 \tag{3.20}
\end{equation*}
$$

and since $\tau(s) \neq 0$, the statement (iv) is proved.
Conversely, suppose that statement (i) or statement (ii) holds. Then we have

$$
\begin{equation*}
<r, \mathbf{t}\rangle=s+m_{1}, \quad m_{1} \in \mathrm{R} . \tag{3.21}
\end{equation*}
$$

Differentiating equation (3.21) with respect to s, we obtain

$$
\begin{equation*}
\kappa<r, \mathbf{n}>=0 . \tag{3.22}
\end{equation*}
$$

Since $\kappa>0$, it follows that

$$
\begin{equation*}
<r, \mathbf{n}>=0 \tag{3.23}
\end{equation*}
$$

which means that r is a rectifying curve.
Next, suppose that statement (iii) holds. Let us can write

$$
\begin{equation*}
r(s)=l(s) \mathbf{t}(s)+r^{N}, \quad l(s) \in \mathbf{R} . \tag{3.24}
\end{equation*}
$$

Then we easily obtain that

$$
\begin{equation*}
\left.\left\langle r^{N}, r^{N}\right\rangle=C=\text { const. }=<r, r\right\rangle-\langle r, \mathbf{t}\rangle^{2} . \tag{3.25}
\end{equation*}
$$

If we differentiate equation (3.25) with respect to s, we get

$$
\begin{equation*}
\langle r, \mathbf{t}>=<r, \mathbf{t}>[1+\kappa<r, \mathbf{n}>] . \tag{3.26}
\end{equation*}
$$

Since $\rho \neq$ const., we have

$$
\begin{equation*}
<r, \mathbf{t}>\neq 0 . \tag{3.27}
\end{equation*}
$$

Moreover, since $\kappa>0$ and from (3.26) we obtain

$$
\begin{equation*}
<r, \mathbf{n}>=0, \tag{3.28}
\end{equation*}
$$

that is r is rectifying curve.
Finally, if the statement (iv) holds, then from the Frenet equations (2.14), we get

$$
\begin{equation*}
<r, \mathbf{n}>=0, \tag{3.29}
\end{equation*}
$$

which means that r is rectifying curve.

Theorem 3.3. Let r be a curve in G_{3}^{1}. Then the curve r is a rectifying
curve if and only if there holds

$$
\begin{equation*}
\frac{\tau(s)}{\kappa(s)}=a s+b \tag{3.30}
\end{equation*}
$$

where $a \in \mathrm{R}-\{0\}, \quad b \in \mathrm{R}$.
Proof. Let us first suppose that the curve $r(s)$ is rectifying. From the equations (3.13) and (3.14) we easily find that

$$
\begin{equation*}
\frac{\tau(s)}{\kappa(s)}=a s+b \tag{3.31}
\end{equation*}
$$

where $a \in \mathrm{R}-\{0\}, \quad b \in \mathrm{R}$.
Conversely, let us suppose that $\frac{\tau(s)}{\kappa(s)}=a s+b, \quad a \in \mathrm{R}-\{0\}, \quad b \in \mathrm{R}$. Then we may choose

$$
\begin{align*}
& a=\frac{1}{n_{1}} \tag{3.32}\\
& b=\frac{m_{1}}{n_{1}}
\end{align*}
$$

where $n_{1} \in R-\{0\}, \quad m_{1} \in R$.
Thus we have

$$
\begin{equation*}
\frac{\tau(s)}{\kappa(s)}=\frac{s+m_{1}}{n_{1}} . \tag{3.33}
\end{equation*}
$$

If we consider the Frenet equations (2.14), we easily find that

$$
\begin{equation*}
\frac{d}{d s}\left[r(s)-\left(s+m_{1}\right) \mathbf{t}(s)-n_{1} \mathbf{b}(s)\right]=0 \tag{3.34}
\end{equation*}
$$

which means that r is a rectifying curve.

REFERENCES

[1] Divjak, B., Geometrija pseudogalilejevih prostora, Ph.D. thesis, University of Zagreb, 1997.
[2] Divjak, B., Curves in Pseudo-Galilean Geometry, Annales Univ. Sci. Budapest, 41 (1998), 117-128,
[3] Divjak, B. and Sipus, Z.M., Special curves on ruled surfaces in Galilean and pseudo-Galilean spaces, Acta Math. Hungar.,98(3) (2003), 203-215.
[4] Chen, B.Y., When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly 110 (2003), 147-152.
[5] Chen, B.Y., Dillen, F., Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Academia Sinica, 33(2) (2005), 77-90.
[6] İlarslan, K., Nešovi c' , E., Petrovi c' -Torgašev, M., Some characterizations of rectifying curves in Minkowski 3-space, Novi Sad J. Math. 33(2) (2003), 23-32.
[7] İlarslan, K., Nešovi c', E., On Rectifying Curves as Centrodes and Extremal Curves in the Minkowski 3-Space, Novi Sad J. Math. 37(1) (2007), 53-64.
[8] Öğrenmi S , A.O., Ruled Surfaces in the Pseudo - Galilean Space, Ph.D. Thesis, University of Firat, 2007.
[9] Öğrenmi S , A.O. and Ergüt, M., On the Explicit Characterization of Admissible Curve in 3-Dimensional Pseudo - Galilean Space, J. Adv. Math. Studies, Vol.2, No. 1 (2009), 63-72.
[10] Yaglom, I. M., A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York Inc. 1979

[^0]: *Corresponding author
 E-mail addresses: hbalgetir@firat.edu.tr (H. Oztekin), ogrenmisalper@gmail.com (A. Ogrenmis)
 Received December 05, 2011

