Available online at http://scik.org
J. Math. Comput. Sci. 2 (2012), No. 1, 91-100
ISSN: 1927-5307

NORMAL AND RECTIFYING CURVES IN PSEUDO-GALILEAN SPACE G;
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Abstract: We defined normal and rectifying curves in Pseudo-Galilean Space G3l. Also we obtained

. . . . 1
some characterizations of this curves in G3.
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1. Introduction
In the Euclidean space E’ , the notion of rectifying curves was introduced by B.Y. Chen
in [4]. By definition, a regular unit speed space curve «(S) is called a rectifying curve, if its

position vector always lies its rectifying plane {t,b}, spanned by the tangent and the binormal

vector field. This subject have been studied by many researcher. The curves are studied from
different way in [4,5,6,7].
A Galilean space may be considered as the limit case of a pseudo-Euclidean space in

which the isotropic cone degenerates to a plane. This limit transition corresponds to the limit

transition from the special theory of relativity to classical mechanics [10].
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The Pseudo-Galilean geometry is one of the real Cayley-Klein geometries (of projective

signature (0,0,+,—). The absolute of the Pseudo-Galilean geometry is an ordered triple
{w, f,1} where W is the ideal (absolute) plane, f 1is line in W and | is the fixed
hyperbolic involution of points of f [2]. Differential geometry of the Pseudo - Galilean space
G31 has been largely developed in [1,2,3,8,9].

In the Pseudo-Galilean Space G31, to each regular unit speed curve I :| —)G31 ,

| R, itis possible to associate three mutually ortogonal unit vector fields. The vectors t,n
and ph are called the tangent, the principal normal and the binormal vector field, respectively.
The planes spanned by the vector fields {t,n},{t,b} and {n,b} are defined as the osculating
plane, the rectifying plane and the normal plane, respectively.

In this paper, we study the normal and rectifying curves in the Pseudo-Galilean Space G3l. By

using similar method as in [4] we show that there is some characterizations of normal and

rectifying curves.

2. Preliminaries

Let I be a spatial curve given first by

r(t) = (x(®), y(), z()),

where X(t), Y(t), z(t) € C* (the set of three-times continuously differentiable functions) and t

run through a real interval [2].

Definition 2.1. A curve r given by (2.1) is called admissible if
X(t) # 0.
Then the curve I can be given by
r(x) = (X, y(x), 2(X))
and we assume in addition that, in [2]
) )
y “(X)—z “(xX)=0.

Definition 2.2. For an admissible curve given by (2.1) the parameter of arc length is
defined by

2.1)

(2.2)

(2.3)

(2.4)
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ds=|x(t)dt| =|dX
For simplicity we assume OX=dS and X=S as the arc length of the curve I . From

now on, we will denote the derivation by S by upper prime [2].

The vector t(S)=r (S) is called the tangential unit vector of an admissible curve

in a point P(S). Further, we define the so called osculating plane of I spanned by the vectors

I (S) and r (S) in the same point. The absolute point of the osculating plane is
HO:0:y (s):z (9)).

We have assumed in (2.4) that H is not lightlike. H is a point at infinity of a line

which direction vectoris ' (S). Then the unit vector

r(s)
ﬂf%a—iﬁﬂ

n(s) =

is called the principal normal vector of the curve I' in the point P.
Now the vector

b(s) = (0.2 (9.2 (9)
\/ ‘ y (-2 2(s)‘

is orthogonal in pseudo-Galilean sense to the osculating plane and we call it the binormal vector of

the given curve in the point P . Here &£€=+41 or —1 is chosen by the criterion

det(t,n,b) =1. That means
V-2 =e(y (929,
By the above construction the following can be summarized [2].

Definition 2.3. In each point of an admissible curve in G31 the associated orthonormal

(in pseudo-Galilean sense) trihedron {t(s),n(s),b(s)} can be defined. This trihedron is called

pseudo-Galilean Frenet trihedron [2].

If a curve is parametrized by the arc length, i.e. given by (2.3), then the tangent vector is
non-isotropic and has the form of

(2.5)

(2.6)

2.7)

(2.8)

(2.9)
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t(s)=r (9=(1,y (9.2 (9). (2.10)

Now we have

t(9)=r (9=(0.y (52 (9)). @.11)

According to the clasical analogy we write (2.7) in the form

r (S) = x(S)N(S), 2.12)

and so the curvature of an admissible curve I' can be defined as follows

K(S) = \/‘ vy (s)-2 2(3)‘. (2.13)

Remark 2.1. In [2] for the pseudo-Galilean Frenet trihedron of an admissible curve I
given by (2.3) the following derivative Frenet formulas are true.

t (s)=x(S)N(S)
n (s) = 2(9h(9) .14)
b (s) = z(S)N(S)

where t(S) is a spacelike, N(S) is a spacelike and D(S) is a timelike vector, x(S) is the

pseudo-Galilean curvature given by (2.13) and 7(S) is the pseudo-Galilean torsion of

defined by

NI ACRNCLAC)
K (S)

(2.15)

The formula (2.15) can be written as

_det(r (ST (8),1 (9)
K*(9) .

7(S)

(2.16)

3. Normal and Rectifying Curvesin Pseudo-Galilean Space G..

Definition 3.1. Let r be an admissible curve in 3-dimensional

Pseudo-Galilean Space G,. If the position vector of r always lies in its normal
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plane, then it is called normal curve in G,.

By this definition, for a curve in G;, the position vector of r satisfies

r(s)=2(sn(s)+n(s)b(s),

where £(s) and 7(sS) are differentiable functions.

Theorem 3.1. Let r be an admissible curve in GSI, with x, 7€R. Then

r is a normal curve if and only if the principal normal and binormal components of
the position vector are respectively given by

_ K
<r,n>=(c +c,8)e ® +(C, +C,8)e” +—
.
and
<r,b>=(c +c,5e®—-(c, +C,5)€e”
where C,C,,C;,C, €R.

Proof. Let us assume that r is a normal curve in G;, then from Definition

2.1 we have

r(s)=2(sn(s)+n(s)b(s).

Differentiating this with respect to S, we have

[ (S)=¢ (9N(S)+7 (SD(S)+ &SN (5)+7(S)b (9).

By using the Frenet equation (2.14), we write
t =§'n+77'b+§zb+77m.

Again differentiating this with respect to S and by using the Frenet equation (2.14),
we get

M =[(& +77) +7(Er+7)IN+[2(& +n7)+(Ex+7 ) b

3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)
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From equation (3.7), we obtain the differential equation system

93" +2z'17' +rif=x (3.8)
n +2t& +1'n=0.

By solving this system, we obtain

£(5) = (¢, +C,9€ ™ +(C, +C,9)e® +§2, GGy, G, €R (3.9)
and
n(s)=(c + Czs)e_zs —(c + C4S)e1$a C.C,,C;,C eR (3.10)

which completes the proof.

Definition 3.2. Let r be an admissible curve in 3-dimensional

Pseudo-Galilean Space G,. If the position vector of r always lies in its rectifying

plane, then it is called rectifying curve in G,.
By this definition, for a curve in Gj, the position vector of r satisfies

r(s) = A(s)t(s)+ u(s)b(s), (3.11)

where A(S) and u(S) are some differentiable functions.

Theorem 3.2. Let r be a rectifying curve in G;, with curvature x>0,

<t,t>=1, <n,n>=1, <b,b>=¢, &=7F1.Then the following statements hold:

(1)The distance function p = ||r|| satisfies
pl=|<rr>| z‘sz +2mMs+ny +en’

forsome m eR, n eR-{0}.
(i) The tangential component of the position vector of r is given by
<r,t>=s+m, where meR.

(iii) The normal component r" of the position vector of the curve has a
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constant length and the distance function p is non-constant.
(iv) The torsion 7(S)# 0 and binormal component of the position vector of
the curveis constant, i.e. <r,b > 1is constant.

Proof. Let us assume that r is a rectifying curve in Gj. Then from

Definition 2.3, we can write the position vector of r by

r(s) = A()t(s) + u(s)b(s),

where A(S) and u(S) are some differentiable functions of the ivariant parameters.

(1) Differentiating the equation (3.12) with respect to S and considering the
Frenet equations (2.14), we get

A(s)=1
ASK(9)+ 1(97(9) =0
L (s)=0.

Thus, we obtain

A(S)=s+m, meR
u(s)=n_ neR
H(8)7(S) = —A(8)x(8) # 0,

and hence u(s)=n=0, 7(S)=#0.From the equation (3.12), we easily find that

pl=l<r,r >|=‘sz+2mls+mf+gnf, e=7l

(i1) If we consider equation (3.12), we get

<r,t>=A(s)

which means that the tangential component of the position vector of r is given by
<r,t>=s+m, meR

(iii) From the equation (3.12), it follows that the normal component r" of
the position vector r is given by

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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Therefore,
Hr NH =|u|=|n|#0.

Thus we proved statement (iii).
(iv) If we consider equation (3.12), we easily get

<r,b>=cgu=const., =71

and since 7(S) # 0, the statement (iv) is proved.
Conversely, suppose that statement (i) or statement (ii) holds. Then we have
<r,t>=s+m, meR.
Differentiating equation (3.21) with respect to S, we obtain

k<r,n>=0.
Since x>0, it follows that

<r,n>=0

which means that r is a rectifying curve.
Next, suppose that statement (iii) holds. Let us can write

r;s)=l)+r", I(s)er.
Then we easily obtain that
<rV,r¥N>=C=const.=<r,r>—<r,t>>.
If we differentiate equation (3.25) with respect to S, we get

<r,t>=<r,t>[l+x<r,n>].
Since p #const., we have

<r,t>=z0.
Moreover, since x>0 and from (3.26) we obtain
<r,n>=0,

thatis r is rectifying curve.
Finally, if the statement (iv) holds, then from the Frenet equations (2.14), we
get

<r,n>=0,

which means that r is rectifying curve.

Theorem 3.3. Let r be a curve in G). Then the curve r is a rectifying

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)
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curve if and only if there holds

G (3.30)
Kk(S)

where aeR-{0}, beR.

Proof. Let us first suppose that the curve r(s) is rectifying. From the

equations (3.13) and (3.14) we easily find that

S _ as+b (3.31)
x(S)
where aecR-{0}, beR.
Conversely, let us suppose that % =as+hb, acR-{0}, beR. Then we
K(S
may choose
1
a = —
M (3.32)
b = ﬂ
nl
where N, eR—-{0}, meR.
Thus we have
(s _s+m (3.33)
k() n

If we consider the Frenet equations (2.14), we easily find that

d
E[Y(S)—(S+ m)t(s)-nb(s)]=0 (3.34)
which means that r is a rectifying curve.

REFERENCES

[1] Divjak, B., Geometrija pseudogalilejevih prostora, Ph.D. thesis, University of Zagreb, 1997.

[2] Divjak, B., Curves in Pseudo-Galilean Geometry, Annales Univ. Sci. Budapest, 41 (1998), 117-128,

[3] Divjak, B. and Sipus, Z.M., Special curves on ruled surfaces in Galilean and pseudo-Galilean
spaces, Acta Math. Hungar.,98(3) (2003), 203-215.

[4] Chen, B.Y., When does the position vector of a space curve always lie in its rectifying plane?, Amer.
Math. Monthly 110 (2003), 147-152.

[5] Chen, B.Y., Dillen, F., Rectifying curves as centrodes and extremal curves, Bull. Inst. Math.
Academia Sinica, 33(2) (2005), 77-90.



HANDAN OZTEKIN' and ALPER OSMAN OGRENMIS** 100

[6] Ilarslan, K., Nesovic' , E., Petrovic’ -TorgaSev, M., Some characterizations of rectifying curves in
Minkowski 3-space, Novi Sad J. Math. 33(2) (2003), 23-32.

[7] Mlarslan, K., Nesovi ¢’ , E., On Rectifying Curves as Centrodes and Extremal Curves in the
Minkowski 3-Space, Novi Sad J. Math. 37(1) (2007), 53-64.

[8] Ogrenmi s, A.O., Ruled Surfaces in the Pseudo - Galilean Space, Ph.D. Thesis, University of Firat,
2007.

[9] Ogrenmis, A.O. and Ergiit, M., On the Explicit Characterization of Admissible Curve in
3-Dimensional Pseudo - Galilean Space, J. Adv. Math. Studies, Vol.2, No.1 (2009), 63-72.

[10] Yaglom, I. M., A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New
York Inc. 1979



