
Available online at http://scik.org

J. Math. Comput. Sci. 8 (2018), No. 2, 181-195

https://doi.org/10.28919/jmcs/3617

ISSN: 1927-5307

THE GERBER-SHIU FUNCTION IN THE PERTURBED COMPOUND POISSON
GAMMA OMEGA MODEL WITH A DIVIDEND BARRIER

ZHONG-QIN GAO

School of Science, Tianjin University of Technology, Tianjin 300384, P.R. China

Copyright c© 2018 Z. Gao. This is an open access article distributed under the Creative Commons Attribution License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, the perturbed compound Poisson Gamma Omega model with a barrier dividend strat-

egy is studied. Using the strong Markov property and Taylor formula, the integro-differential equations for the

Gerber-Shiu expected discounted penalty function are derived. The explicit solutions of the Gerber-Shiu expected

discounted penalty function are also obtained when the claim size is exponentially distributed. Furthermore, a

numerical example is presented to illustrate some properties of the function.
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1. Introduction

Risk theory plays an important role in financial mathematics and insurance actuarial studies,

and through the study of stochastic risk model in the insurance industry to deal with several

actuarial variables, such as the time of ruin, the surplus immediately before ruin, the deficit at

ruin, the ruin probability, the Gerber-Shiu expected discounted penalty function, the expected

discounted dividend payments function, etc.

E-mail address: zhongqingaox@126.com

Received December 16, 2017

181



182 ZHONG-QIN GAO

Since the Gerber-Shiu expected discounted penalty function(simply called Gerber-Shiu func-

tion) was initially proposed by Gerber and Shiu[9], the function has been studied by many au-

thors under more general models, such as compound Poisson risk model, renewal risk model,

the perturbed risk model, Lévy risk model, etc. Import reference involved in Sabine[15], Chin

and Yin[2], Claudio and Giovanni[3], Gao and Yin[8], Gao and Wu[7], etc.

The compound Poisson risk model perturbed by diffusion was initially proposed by Ger-

ber[10], and has been further studied by many authors during the last few years. Dufresne and

Gerber[5] studied the probability of ruin and derived the convolution of the probability of ruin.

Li[13] investigated the expected discounted dividend payments function prior to ruin and ob-

tained the explicit solutions of the function. Yuen and Wang[17] considered the Gerber-Shiu ex-

pected discounted penalty function with interest and a constant dividend barrier, then derived an

integro-differential equation of the function and obtained the solution to the integro-differential

equation which is in the form of an infinite series. Gao and Liu[6] studied the model with con-

stant interest and a threshold dividend strategy, then derived the integro-differential equations

with certain boundary conditions for the moment-generation function and the n-th moment of

the present value of all dividends until ruin. In this model, the surplus of an insurance company

at time t is given by

U(t) = u+ ct−S(t)+σW (t) = u+ ct−
N(t)

∑
i=1

Xi +σW (t),(1)

where U(0) = u is the initial surplus, c is the premium rate, the total number of claims {N(t), t ≥

0} is a homogeneous Poisson process with intensity λ , the claim sizes {X1,X2, ...} form a se-

quence of positive independent identically distributed random variables with common distribu-

tion P(x), density function p(x) and mean value µ , {Xi, i ≥ 1} and {N(t), t ≥ 0} are mutually

independent, the aggregate claims {S(t), t ≥ 0} is a compound Poisson process with intensity

λ , {W (t), t ≥ 0} is a standard Wiener process with W (t) ∼ N(0, t), σ > 0 is a constant, which

represents the diffusion volatility parameter. In order to guarantee a positive survival probabil-

ity, it is assumed that c = (1+ θ)λ µ ≥ 0, which θ > 0 is the relative security loading factor

ensures that the ruin probability is less than 1.
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In risk theory, a company goes out of business as soon as ruin occurs, that is, when the surplus

is negative for the first time. However, in practical, companies can continue doing business even

though they are technically ruined. The Omega model was introduced for a Wiener process in

Albrecher, Gerber and Shiu[1], there was a distinction between ruin (negative surplus) and

bankruptcy (going out of business). It was assumed that even with a negative surplus, the

company can do business as usual until bankruptcy occurs and the probability of bankruptcy

is concerned at a point of time. In addition, the dividend problems are received widespread

attention, it was first introduced in De Finetti[4] for a binomial model to reflect more realistically

the surplus cash flows in an insurance portfolio, and he found that the optimal strategy must be

a barrier strategy. From then on, a great deal of papers have been devoted to study the barrier

dividend strategy, such as Gerber[11], Taksar[16], Gerber and Shiu[12], Landriault[14], etc.

In this paper, the perturbed compound Poisson Omega model with a barrier dividend strategy

is studied, at the same time, it is assumed that dividends can only be paid at certain random

times and thus constitute a discrete sequence of random variables, the interval times between

successive dates when dividends can be paid are independent random variables with a common

exponential distribution with parameter γ , that is, at any time the probability that a dividend

can be paid within dt time units is γdt. The symbol for the dividend payments time interval

as a exponential distribution with parameter γ leads to the name Gamma model in Albrecher,

Gerber and Shiu[1], that is, the perturbed compound Poisson Gamma Omega model with a

barrier dividend strategy is studied in this paper.

In this paper, the probability of bankruptcy is quantified by a bankruptcy rate function ω(u),

where u ≤ 0 is the value of the surplus at that time, it is a non-increasing function, that is,

whenever the surplus is u ≤ 0, ω(u)dt is the probability of bankruptcy within dt time units.

However, it is unrealistic to assume that the surplus of a company can decrease without bounds,

in this paper, it is assumed that ω(u) is infinite for u ≤ u0 < 0 and ω(u) > 0 for u0 < u ≤ 0,

bankruptcy occurs at the latest when the surplus drops to u0. In other words, u0 is the level of

”certain bankruptcy”.

If no dividends were paid, the surplus U(t) can be described in (1). The company will pay

dividends to its shareholders, for t ≥ 0, let D(t) denote the aggregate dividends paid by time t,
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then the modified surplus at time t is

U∗(t) =U(t)−D(t).

For a barrier dividend strategy, it is assumed that the company pays dividends according to

the following strategy governed by parameter b ≥ 0: whenever the modified surplus is below

the level b, no dividends are paid, however, when the modified surplus is above the level b,

dividends are paid out with U(t)−b at a potential dividend payment time (until the next claim

occurs). Let δ > 0 be the force of interest for valuation, and let D denote the present value of

all dividends until bankruptcy

D =
∫ T

0
e−δ tdD(t),

where T is the bankruptcy time for the modified process. Let φ(u,b) denote the Gerber-Shiu

function

φ(u,b) = E[e−δT w(U(T ))I(T <+∞) |U∗(0) = u],

where w = w(x) as a penalty function, be a nonnegative bounded measurable function, that

x = U(T ) ≤ 0 is the value of the surplus at bankruptcy time, I(E) is the indicator function of

event E.

The remainder of the paper is organized as follows. In section 2, using the strong Markov

property and Taylor formula, the integro-differential equations for the Gerber-Shiu function

φ(u,b) are derived. In section 3, the explicit solutions of the Gerber-Shiu function φ(u,b) are

obtained when the claim size is exponentially distributed. Furthermore, a numerical example

is presented to illustrate some properties of the function in section 4. This result unifies and

extends recent literature Albrecher, Gerber and Shiu[1] incorporating some of their results as

special cases.

2. The integro-differential equations for φ(u,b)

In this section, the perturbed compound Poisson Gamma Omega model with a barrier div-

idend strategy is studied. Using the strong Markov property and Taylor formula, the integro-

differential equations for the Gerber-Shiu function φ(u,b) are derived.
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Theorem 2.1. The Gerber-Shiu function φ(u,b) satisfy the integro-differential equations

σ2

2 φ ′′(u,b)+ cφ ′(u,b)− (λ +δ +ω(u))φ(u,b)+ω(u)w(u)

+λ
∫ u−u0

0 φ(u− x,b)p(x)dx+λ
∫+∞

u−u0
w(u− x)p(x)dx = 0, (u0 < u≤ 0)

σ2

2 φ ′′(u,b)+ cφ ′(u,b)− (λ +δ )φ(u,b)

+λ
∫ u−u0

0 φ(u− x,b)p(x)dx+λ
∫+∞

u−u0
w(u− x)p(x)dx = 0, (0 < u≤ b)

σ2

2 φ ′′(u,b)+ cφ ′(u,b)− (λ +δ + γ)φ(u,b)+ γφ(b,b)

+λ
∫ u−u0

0 φ(u− x,b)p(x)dx+λ
∫+∞

u−u0
w(u− x)p(x)dx = 0. (u > b)

(2)

.

Proof. For h > 0, the infinitesimal time interval (0,h) is considered. By distinguishing whether

or not the first claim occurs in the infinitesimal time interval, one can get

φ(u,b) = E[e−δT w(U(T ))I(T <+∞) |U∗(0) = u]

= E[I(T1 > h)e−δT w(U(T ))I(T <+∞) |U∗(0) = u]

+E[I(T1 ≤ h)e−δT w(U(T ))I(T <+∞) |U∗(0) = u]

= I + II.(3)

For u0 < u ≤ 0, in the infinitesimal time interval (0,h), which enables the surplus at time h

does not exceed 0, that is, no dividends are paid in (0,h), but potential bankruptcy and the first

claim may occur. Note that the probability that the first claim occurs up to time h is e−λh, the

probability that the first claim occurs between (0,h) is (1− e−λh) and condition on the time

T1 ⊂ (0,h) and the amount X1 = x of the first claim. Note that the probability of bankruptcy up

to time h is (1−ω(u)h), the probability of bankruptcy between (0,h) is ω(u)h. It follows from

W (t)∼ N(0, t) that

E[W (t)] = 0, E[W 2(t)] = t.

Using the strong Markov property, one have

I = E[I(T1 > h)e−δT w(U(T ))I(T <+∞) |U∗(0) = u]

= P(T1 > h)e−δhE[φ(U∗(h),b)]

= e−(λ+δ )hE[φ(U∗(h),b)].
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By distinguishing whether or not bankruptcy in the infinitesimal time interval (0,h) and

φ(U∗(h),b) = eδhw(u) when the bankruptcy occurs, correspondingly, one have

E[φ(U∗(h),b)] = E[I(T > h)φ(U∗(h),b)]+E[I(T ≤ h)φ(U∗(h),b)]

= (1−ω(u)h)E[φ(U∗(h),b) | T > h]+ω(u)heδhw(u).

It follows from U∗(h) = u+ ch+σW (h),(T1 > h) and the Taylor formula that

e−(λ+δ )h = 1− (λ +δ )h+o(h),

E[φ(U∗(h),b) | T > h] = φ(u,b)+ chφ
′(u,b)+

σ2

2!
hφ
′′(u,b),

then

I = φ(u,b)− (λ +δ +ω(u))hφ(u,b)+ chφ
′(u,b)+

σ2

2!
hφ
′′(u,b)+ω(u)w(u)h.(4)

Using the similarly argument with I, one arrives that

II = λh[
∫ u−u0

0
φ(u− x,b)p(x)dx+

∫
∞

u−u0

w(u− x)p(x)dx].(5)

Thus, following (4), (5), subtracting φ(u,b) from both sides of (3) and then divide by h and let

h→ 0, simplifying yields (2).

For 0 < u ≤ b, in the infinitesimal time interval (0,h), which enables the surplus at time h

does not exceed b, that is, in (0,h) no dividends are paid, potential bankruptcy and the first

claim may occur. According the above analysis, the I can be rewritten as

I = φ(u,b)− (λ +δ )hφ(u,b)+ chφ
′(u,b)+

σ2

2!
hφ
′′(u,b).(6)

Thus, following (5), (6), subtracting φ(u,b) from both sides of (3) and then divide by h and let

h→ 0, simplifying yields (2).

For u > b, in the infinitesimal time interval (0,h), which enables the surplus at time h does

not drop to b, that is, in (0,h) potential bankruptcy, dividends may paid, and the first claim

may occur. Note that the probability of dividends payment up to time h is e−γh, the probability

of dividends payment between (0,h) is (1− e−γh) and condition on the time T ∗1 ⊂ (0,h) and
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the dividends can be paid with D(h) at the time h, by distinguishing whether or not dividends

payment in the infinitesimal time interval (0,h), the I can be rewritten as

I = P(T1 > h)[E[I(T ∗1 > h)e−δT w(U(T ))I(T <+∞) |U∗(0) = u]

+E[I(T ∗1 ≤ h)e−δT w(U(T ))I(T <+∞) |U∗(0) = u]]

= e−λh(III + IV ),

using the strong Markov property and the Taylor formula, one have

III = e−(γ+δ )hE[φ(U∗(h),b) | T ∗1 > h]

= φ(u,b)− (γ +δ )hφ(u,b)+ chφ
′(u,b)+

σ2

2!
hφ
′′(u,b),

IV = (1− e−γh)e−δhE[φ(U∗(h),b) | T ∗1 ≤ h] = γhφ(b,b),

then

I = φ(u,b)− (λ +δ + γ)hφ(u,b)+ chφ
′(u,b)+

σ2

2!
hφ
′′(u,b)+ γhφ(b,b).(7)

Thus, following (5), (7), subtracting φ(u,b) from both sides of (3) and then divide by h and let

h→ 0 ,simplifying yields (2). This completes the proof.

Remark 2.1.

(1) With λ = 0, means no claims, the surplus process can be rewritten as

U(t) = u+ ct +σW (t),

the model is converted into the Gamma Omega model in Wiener surplus process with a barrier

dividend strategy, then φ(u,b) satisfy the integro-differential equations can be rewritten as
σ2

2 φ ′′(u,b)+ cφ ′(u,b)− (δ +ω(u))φ(u,b)+ω(u)w(u) = 0, (u0 < u≤ 0)
σ2

2 φ ′′(u,b)+ cφ ′(u,b)−δφ(u,b) = 0, (0 < u≤ b)
σ2

2 φ ′′(u,b)+ cφ ′(u,b)− (δ + γ)φ(u,b)+ γφ(b,b) = 0, (u > b)

the result coincides exactly with Section 1 in Gerber, Shiu and Yang[18].

(2) With γ = 0, means no dividend payments, the model is converted into the classical risk
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model in compound Poisson surplus process perturbed by diffusion, then φ(u,b) = φ(u) until

bankruptcy satisfy the integro-differential equations can be rewritten as



σ2

2 φ ′′(u)+ cφ ′(u)− (λ +δ +ω(u))φ(u)+ω(u)w(u)

+λ
∫ u−u0

0 φ(u− x)p(x)dx+λ
∫+∞

u−u0
w(u− x)p(x)dx = 0, (u0 < u≤ 0)

σ2

2 φ ′′(u)+ cφ ′(u)− (λ +δ )φ(u)+λ
∫ u−u0

0 φ(u− x)p(x)dx

+λ
∫+∞

u−u0
w(u− x)p(x)dx = 0. (u > 0)

(3) With ω(u) = 0, means the model is converted into the ”extreme” model with the company

can not bankruptcy, then φ(u,b) satisfy the integro-differential equations can be rewritten as


σ2

2 φ ′′(u,b)+ cφ ′(u,b)− (λ +δ )φ(u,b)+λ
∫+∞

0 φ(u− x,b)p(x)dx = 0, (u≤ b)
σ2

2 φ ′′(u,b)+ cφ ′(u,b)− (λ +δ + γ)φ(u,b)+ γφ(b,b)

+λ
∫+∞

0 φ(u− x,b)p(x)dx = 0. (u > b)

3. An explicit formula of φ(u,b) for exponential claim amounts

In this section, the explicit solutions of the Gerber-Shiu function φ(u,b) are derived when

the claim size is exponentially distributed P(x) = 1−e−νx, the bankruptcy rate function ω(u) =

ω(constant value), the penalty function w(u) = w(constant value) and u0→−∞ with a barrier

dividend strategy.

In order to derive the explicit solutions of φ(u,b), according to the size of initial value, the

function φ(u,b) is classified into the following three functions

φ(u,b) =


φl(u,b), (u≤ 0)

φm(u,b), (0 < u≤ b)

φn(u,b), (u > b)
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thus φ(u,b) satisfy the integro-differential equations can be rewritten as

σ2

2 φ ′′l (u,b)+ cφ ′l (u,b)− (λ +δ +ω(u))φl(u,b)+ω(u)w(u)

+λ
∫ u−u0

0 φl(u− x,b)p(x)dx+λ
∫+∞

u−u0
w(u− x)p(x)dx = 0, (u0 < u≤ 0)

σ2

2 φ ′′m(u,b)+ cφ ′m(u,b)− (λ +δ )φm(u,b)+λ
∫ u

0 φm(u− x,b)p(x)dx

+λ
∫ u−u0

u φl(u− x,b)p(x)dx+λ
∫+∞

u−u0
w(u− x)p(x)dx = 0, (0 < u≤ b)

σ2

2 φ ′′n (u,b)+ cφ ′n(u,b)− (λ +δ + γ)φn(u,b)+ γφn(b,b)+λ
∫ u−b

0 φn(u− x,b)p(x)dx (u > b)

+λ
∫ u

u−b φm(u− x,b)p(x)dx+λ
∫ u−u0

u φl(u− x,b)p(x)dx+λ
∫+∞

u−u0
w(u− x)p(x)dx = 0.

According the continuity of φ(u,b) and the continuity of φ ′(u,b) at u = 0, one have

σ2

2
φ
′′
l (0−,b)−ω(0)φl(0,b)+ω(0)w(0) =

σ2

2
φ
′′
m(0+,b),(8)

σ2

2
φ
′′
m(b−,b)+ cφ

′
m(b−,b) =

σ2

2
φ
′′
n (b+,b)+ cφ

′
n(b+,b).(9)

With the substitution z = u−x, φ(u,b) satisfy the integro-differential equations can be rewritten

as 

σ2

2 φ ′′l (u,b)+ cφ ′l (u,b)− (λ +δ +ω(u))φl(u,b)+ω(u)w(u)

+λ
∫ u

u0
φl(z,b)p(u− z)dz+λ

∫ u0
−∞

w(z)p(u− z)dz = 0, (u0 < u≤ 0)
σ2

2 φ ′′m(u,b)+ cφ ′m(u,b)− (λ +δ )φm(u,b)+λ
∫ u

0 φm(z,b)p(u− z)dz

+λ
∫ 0

u0
φl(z,b)p(u− z)dz+λ

∫ u0
−∞

w(z)p(u− z)dz = 0, (0 < u≤ b)
σ2

2 φ ′′n (u,b)+ cφ ′n(u,b)− (λ +δ + γ)φn(u,b)+ γφn(b,b)

+λ
∫ u

b φn(z,b)p(u− z)dz+λ
∫ b

0 φm(z,b)p(u− z)dz

+λ
∫ 0

u0
φl(z,b)p(u− z)dz+λ

∫ u0
−∞

w(z)p(u− z)dz = 0. (u > b)

(10)

It is assume that the claim size density is given by p(x) = ve−vx, x > 0, v > 0, applying the

differential operator (d/du+ν) to the above equations, then φ(u,b) satisfy the third-order dif-

ferential equations

σ2

2 φ ′′′l (u,b)+(σ2

2 ν + c)φ ′′l (u,b)+ [cν− (λ +δ +ω(u))]φ ′l (u,b)

−[ν(δ +ω(u))+ω ′(u)]φl(u,b)

+(ω ′(u)w(u)+ω(u)w′(u)+ vω(u)w(u)) = 0, (u0 < u≤ 0)
σ2

2 φ ′′′m (u,b)+(σ2

2 ν + c)φ ′′m(u,b)+ [cν− (λ +δ )]φ ′m(u,b)−δνφm(u,b) = 0, (0 < u≤ b)

σ2

2 φ ′′′n (u,b)+(σ2

2 ν + c)φ ′′n (u,b)+ [cν− (λ +δ + γ)]φ ′n(u,b)

−(δ + γ)νφn(u,b)+ γνφn(b,b) = 0. (u > b)

(11)
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For u≤ 0, φl(u,b) satisfies the nonhomogeneous differential equation in (11), when the bank-

ruptcy rate function ω(u) = ω(constant value), the penalty function w(u) = w(constant value)

and u0→−∞, the special solution of φl(u,b) is

φl0(u,b) =
ωw

δ +ω
,

then the general solution of φl(u,b) is

φl(u,b) =
ωw

δ +ω
+Klh(u),

with the Kl is arbitrary coefficient and independent of u, h(u) is the homogeneous solution of the

third-order differential equation of φl(u,b) and satisfies the boundary condition lim
u→−∞

h(u) = 0,

that is, h(u) satisfies the third-order differential equation

σ2

2
h′′′(u)+(

σ2

2
ν + c)h′′(u)+ [cν− (λ +δ +ω)]h′(u)−ν(δ +ω)h(u) = 0.

Using the characteristic roots methods, the solution of h(u) is

h(u) = K∗1 eq1u +K2eq2u +K3eq3u,

with the K∗1 , K2, K3 are arbitrary coefficients and independent of u, q1 ≥ 0, q2 < 0, q3 < 0 being

the roots of the characteristic equation

σ2

2
ξ

3 +(
σ2

2
ν + c)ξ 2 +[cν− (λ +δ +ω)]ξ −ν(δ +ω) = 0.

Following the boundary condition lim
u→−∞

h(u) = 0 that K2 = 0, K3 = 0, then the solution of h(u)

is

h(u) = K∗1 eq1u,

thus, let K1 = KlK∗1 , the solution of φl(u,b) can be rewritten as

φl(u,b) = K1eq1u +
ωw

δ +ω
.

For 0 < u≤ b, φm(u,b) satisfies the homogeneous differential equation in (11), similarly, the

solution of φm(u,b) is

(12) φm(u,b) = G1es1u +G2es2u +G3es3u,
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with the G1, G2, G3 are arbitrary coefficients and independent of u, s1 ≥ 0, s2 < 0, s3 < 0 being

the roots of the characteristic equation

σ2

2
ξ

3 +(
σ2

2
ν + c)ξ 2 +(cν− (λ +δ ))ξ −νδ = 0.

Substitution (12) into (10), with subsequent comparison of the coefficients of e−νu yields that

νK1

q1 +ν
+

ωw
δ +ω

=
νG1

s1 +ν
+

νG2

s2 +ν
+

νG3

s3 +ν
.(13)

For u > b, φ(u,b) satisfies the nonhomogeneous differential equation in (11), the special

solution of φn(u,b) is

φn0(u,b) =
γ

γ +δ
φ(b,b),

then the general solution is

φn(u,b) =C1er1u +C2er2u +C3er3u +
γ

γ +δ
φ(b,b),

with the C1, C2, C3 are arbitrary coefficients and independent of u, r1 ≥ 0, r2 < 0, r3 < 0 being

the roots of the characteristic equation

σ2

2
ξ

3 +(
σ2

2
ν + c)ξ 2 +(cν− (λ +δ + γ))ξ − (δ + γ)ν = 0.

Following the condition φn(u,b)→ 0 for u→+∞ that C1 = 0, then the solution of φn(u,b) can

be rewritten as

(14) φn(u,b) =C2er2u +C3er3u +
γ

γ +δ
φ(b,b).

Substituting (14) into (10), with subsequent comparison of the coefficients of e−νu yields that

νC2er2b

r2 +ν
+

νC3er3b

r3 +ν
+

γ

δ + γ
φ(b,b) = νG1

es1b

s1 +ν
+νG2

es2b

s2 +ν
+νG3

es3b

s3 +ν
.(15)

Therefore,

φ(u,b) =


K1eq1u + ωw

δ+ω
, (u≤ 0)

G1es1u +G2es2u +G3es3u, (0 < u≤ b)

C2er2u +C3er3u + γ

γ+δ
φ(b,b), (u > b)

(16)

with boundary conditions (13), (15).
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Subject to the condition (8), the K1, G1, G2 and G3 satisfy

(17)
σ2

2
K1q2

1−ω(K1 +
ωw

δ +ω
)+ωw =

σ2

2
[G1s2

1 +G2s2
2 +G3s2

3],

subject to the condition (9), the G1, G3, G3 and C2, C3 satisfy

σ2

2
(G1s2

1es1b +G2s2
2es2b +G3s2

3es3b)+ c(G1s1es1b +G2s2es2b +G3s3es3b)

=
σ2

2
(C2r2

2er2b +C3r2
3er3b)+ c(C2r2er2b +C3r3er3b).(18)

Considering the continuity of φ(u,b), following (16), let u = 0 and u = b, one can get

K1 +
ωw

δ +ω
= G1 +G2 +G3,(19)

G1es1b +G2es2b +G3es3b =C2er2b +C3er3b +
γ

γ +δ
φ(b,b).(20)

Considering the continuity of φ ′(u,b) at u = 0, one can get

K1q1 = G1s1 +G2s2 +G3s3.(21)

By solving the simultaneous equations from (13), (15) and (17)-(21), the unknown coefficients

K1, G1, G2, G3, C2, C3, φ(b,b) are determined, then substitution them in (16), the explicit

solutions of φ(u,b) can be derived.

Based on the above analysis, when some parameters are given by specific numerical values,

the numerical results of φ(u,b) can be obtained in next section.

4. Numerical example

In this section, a numerical example is presented to verify the relationship between φ(u,b)

and initial surplus u or parameter b with a barrier dividend strategy.

It is assumed that the claim size is exponentially distributed P(x) = 1− e−νx, for σ = 0.5,

c = 1.5, λ = 1, δ = 0.5, γ = 0.5, ω(u) = ω = 0.1, ν = 1, w(u) = w = 1, the Table 1 provides

numerical results for the expected sum of discounted penalty φl(u,b), the Table 2 provides

numerical results for the expected sum of discounted penalty φm(u,b) and the Table 3 provides

numerical results for the expected sum of discounted penalty φn(u,b).
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TABLE 1. The expected sum of discounted penalty φl(u,b) with ω = 0.1, ν = 1.

b\u −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0

0.1 0.41968 0.435962 0.453291 0.471736 0.491368 0.512263 0.534502 0.558173 0.583367 0.610183

0.2 0.18103 0.181954 0.182938 0.183985 0.1851 0.186286 0.187549 0.188892 0.190323 0.191845

0.3 0.120711 0.117753 0.114605 0.111255 0.107689 0.103894 0.0998546 0.0955552 0.090979 0.0861084

0.4 0.105228 0.101274 0.0970657 0.0925867 0.0878196 0.0827456 0.0773452 0.0715972 0.0654793 0.0589677

0.5 0.101056 0.0968337 0.0923399 0.0875568 0.082466 0.0770475 0.0712804 0.0651421 0.0586088 0.0516551

0.6 0.0997595 0.0954539 0.0908712 0.0859937 0.0808022 0.0752767 0.0693956 0.063136 0.0564737 0.0493825

0.7 0.0992124 0.0948716 0.0902515 0.085334 0.0801001 0.0745294 0.0686002 0.0622895 0.0555726 0.0484235

0.8 0.098877 0.0945146 0.0898715 0.0849296 0.0796697 0.0740713 0.0681126 0.0617705 0.0550202 0.0478356

TABLE 2. The expected sum of discounted penalty φm(u,b) with ν = 1.

b\u 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.63979

0.2 0.195734 0.202089

0.3 0.0834972 0.0832552 0.0838455

0.4 0.054688 0.0527526 0.051576 0.0507225

0.5 0.0469258 0.0445342 0.0428815 0.0415275 0.0403492

0.6 0.0445135 0.0419801 0.0401794 0.03867 0.0373277 0.0361159

0.7 0.0434956 0.0409023 0.0390392 0.0374641 0.0360527 0.0347679 0.0335966

0.8 0.0428715 0.0402416 0.0383402 0.0367248 0.035271 0.0339415 0.0327231 0.0316092

0.9 0.042385 0.0397265 0.0377953 0.0361486 0.0346617 0.0332974 0.0320422 0.0308895 0.029835

1 0.0419677 0.0392847 0.0373278 0.0356542 0.0341391 0.0327448 0.0314581 0.0302722 0.0291826 0.0281855

TABLE 3. The expected sum of discounted penalty φn(u,b) with γ = 0.5, ν = 1.

b\u 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.63979 0.441255 0.386195 0.369396 0.362899 0.359269 0.356521 0.354122 0.351922 0.349874

0.2 0.202089 0.148326 0.13274 0.127379 0.124812 0.12306 0.121593 0.120266 0.119035

0.3 0.0838455 0.0686017 0.0635608 0.0612934 0.059822 0.0586175 0.0575358 0.0565353

0.4 0.0507225 0.0457657 0.043577 0.0421793 0.0410438 0.0400267 0.0390866

0.5 0.0403492 0.0381752 0.0367912 0.0356685 0.0346634 0.0337347

0.6 0.0361159 0.0347282 0.0336021 0.0325938 0.0316621

0.7 0.0335966 0.0324623 0.0314464 0.0305074

0.8 0.0316092 0.0305842 0.0296369

0.9 0.029835 0.0288789

1 0.0281855



194 ZHONG-QIN GAO

Consequently, the number results show that the higher the initial surplus of the insurance

company, the smaller the expected sum of discounted penalty prior to the time of bankruptcy

for fixed b, and when 0.1≤ b≤ 1, it following Table 1, Table 2, Table 3 that φl(u,b), φm(u,b)

and φn(u,b) are decreasing with respect to b for fixed u. Furthermore, to compare the number

results, the maximize or minimize the expected sum of discounted penalty until bankruptcy can

be obtained through choosing b appropriately in this model.
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