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Abstract. The aim of this paper is to introduce and study a system of the infinite variational inequalities

for inverse-strongly accretive mappings by using relaxed extradient method. Results proved in this paper

may be viewed as an improvement and refinement of the recent results of X.Qin!!! and Aoyama,K[?!
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1. Introduction

Let H be a real Hilbert space with norm || - || and inner product (-, -), C be a nonempty
closed convex subset of H and A be a operator from C into H . The classical variational

inequality problem is formulated as finding a point u € C such that

(Au,v —u) >0
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for all v € C. Such a point u € C is called a solution of the problem. Variational
inequalities were initially studied by Stampacchia [ 3, 4] and ever since have been widely
studied. The set of solutions of the variational inequality problem is denoted by VI(C,A).

For given z € H,u € C, we see that the following inequality holds
(u—2z,v—u) >0

if and only if u = Poz : ||Poz — z|| = infoec||v — z||. It is known that projection opera-

tor P is nonexpansive. It is also know that Pg satisfies
(x —y, Pox — Pey) > ||[Pow — Poyl|*,Va,y € H.

One can see that the variational inequality is equivalent to a fixed point problem. An
element z* € C is a solution of the variational inequality if and only if 2* € C is a
fixed point of the mapping Po(I — AA), where [ is the identity mapping and A > 0 is a
constant.This alternative equivalent formulation has played a significant role in the studies
of variational inequalities and related optimization problems.

In this paper, let C be a nonempty closed convex subset of a real Banach space E .

Let A, B be two inverse-strongly accretive mappings. We consider the following problem

of finding (z,y) € C x C such that

(MAY+T -y, J(x —T)) > 0,Vx € C,
(BT +y —2,J(x — 7)) > 0,Vx € C,

(1)

which is called a general system of infinite variational inequalities, where {\,}, {i,} C
(0,00). In particular, if A = B, \, = p, = A, then problem reduces to finding (z,7y) €
C x C such that

MNY+T—7,J(x—7)) >0,Vz € C,
MNT+y -7, J(x—7)) >0,Yz € C,

(2)

which is defined by Verma ! and is called the new system of variational inequalities.
Further, if we add up the requirement that z = %, then problem (1) reduces to the

classical variational inequality VI(A | C).
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Recently, many authors studied the problem of finding a common element of the fixed
point set of nonexpansive mappings and the solution set of variational inequalities for
a-inverse-strongly monotone mappings in the framework of Banach space.In 2006, Aoya-
ma, liduka and Takahashi 2 obtained a weak Theorem about weak convergence of an
iterative sequence for accretive operators in a uniformly convex and 2-uniformly smooth
Banach space. In2009,X.Qin!! et al.consider the problem of strong convergence of an it-
erative algorithm for systems of variational inequalities and nonexpansive mapping with
applications.

In this paper, motivated by [1,2,6,7], let E be a uniformly convex and g-uniformly
smooth Banach space, C be a nonempty closed convex subset of E. We introduce a gen-
eral iterative algorithm for the system of infinite variational inequality (1) and a sunny

nonexpansive mapping.

1 =UE€ C
(3) Yn = QC<$n - Nann)
Tyt = o+ Bptn + Y (0Tz, + (1 — 0)Qc(yn — MAy,), n > 0.

The problem (1) is proven to be equivalent to a fixed point problem of nonexpansive
mapping. By using a relaxed extradient methods, we prove that under some conditions
the iterative sequence {z,} converges strongly to ¥ € C' and (Z,y) is a solution of the
problem(1),where ¥ = Q¢ (z — 11, BZ). The results here improve and extend the related

results of other authors, such as [1,2,6].
2. Preliminaries

Recall that a mapping T of C into itself is called nonexpansive, if
[Tx =Ty < [lz =yl

for all ,y € C. We denote by F(T') the set of fixed points of T.

For a > 0, an operator A of C into E is said to be a-inverse strongly accretive if

(Az — Ay, J(x — y)) > af| Az — Ay
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for all z,y € C. It is obviously that
1
Az — Ay|| < —|lz —y]|.
o
Let D be a subset of C and Q be a mapping of C into D, then Q is said to be sunny if

Q(Qz + t(z — Qr)) = Qu,

whenever Qx +t(x — Qz) € C for x € C'and t > 0. A mapping Q of C into itself is called
a retraction if Q* = Q. If a mapping Q of C into itself is a retraction, then Qz = z for
every z € R(Q), where R(Q) is the range of Q. A subset D of C is called a sunny
nonexpansive retract of C if there exists a sunny nonexpansive retraction from C into D.

Assume E be a real Banach space, C be a nonempty closed convex subset of E. Let U =
{r € F : x = 1}, A Banach space E is said to be uniformly convex, if for each ¢ €
(0,2], there exists 0 > 0 such that for any z,y € U, ||x — y|| < €, which implies@ <
1 — 4. It is known that a uniformly convex Banach space is reflexive and strictly convex.

A Banach space E is said to be smooth if the limit lim;_,q Hz_tz”tﬂ

exists for all z,y €
U. It is also said to be uniformly smooth if the limit is attained uniformly for z,y € U. The
norm of E is said to be Frechet differentiable if for each x € U, the limit is attained

uniformly for y € U. And we define a function p : [0,00) — [0, 00) called the modulus of

smoothness of E as follows:

1
p(t) = supis(lle +yll +llz —yl) =1+ flzll = L, llyll = ¢}.

It is known that E is uniformly smooth if and only if lim, @ = 0. Let q be a fixed real
number with 1 < ¢ < 2. Then a Banach space E is said to be g-uniformly smooth if there
exists a constant ¢ > 0 such that p(t) < c¢t? for all £ > 0. We could obtain the following
lemma.

[8,9]

Lemma 2.1. Let q be a real number with 1 < ¢ < 2 and let E be a Banach space.

Then E is gq-uniformly smooth if and only if there exists a constant K > 1 such that
1 q q q q
Ul +yll + e = yll*) < [l2[| + [ K]

for all z,y € E.
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The best constant K in Lemma 2.1 is called the g-uniformly smoothness constant of E.

Let q be a given real number with ¢ > 1. The (generalized) duality mapping J, from E
into 27" is defined by

Jo(@) ={a" € E": (z,2") = |||, |]2"]| = [|=[]"~"}

for all z € F . In particular, J = J, is called the normalized duality mapping. It is known
that J,
Jy(x) = [|2]|*7* I ()

Lemma 2.2.' Let g be a given real number with 1 < ¢ < 2 and let E be a q-uniformly

smooth Banach space. Then
[l 4+ yll* < [12]|" + ¢y, Jo(2)) + 2/| Ky]|*

for all z,y € E, where J, is the generalized duality mapping of E and K is the g-uniformly
smoothness constant of E.

Lemma 2.3.1Y Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T7 and T; be two nonexpansive mappings from C into itself with a common fixed
point. Define a mapping 7' : C' — C by Tx = §T1x + (1 — §)Tox, where § € (0,1). Then
T is nonexpansive and F(T') = F(T1) () F(T3).

Lemma 2.4.1"" In a Banach space E,there holds the inequality

lz + yll* < ll=l* + 20y, j(x + ), Yo,y € C,wherej(z +y) € J(z +y).

Lemma 2.5.1 Let C be a nonempty closed con- vex subset of a smooth Banach space
E. Let Q¢ be a sunny nonexpansive retraction from E onto C and let A be an accretive

operator of C into E. Then.for all A > 0,

Q= F(Qc(I — AA4)).

Lemma 2.6.["% Let E be a uniformly convex Banach space, C a nonempty closed convex

subset of E and T': K — K a nonexpansive mapping. Then I — T is demi-closed at zero.
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(12,13

Lemma 2.7.025] Let {a,}2°, be a sequence of nonnegative real numbers satisfying the

property

(07} S (1 - ’Yn)an + ’Yn(sna n Z 07

where {v,} C (0,1) and {9, } are such that

o,
(D)limy—o0yn = 0, X7, = 00; (2) limsup — < 0(orX|d,| < 00).

n—oo YN

then lim,,_ o0, = 0.

Lemma 2.8.1Let {z, }and{y, } be bounded sequences in a Banach space X and Let {a,,} C

0, 1] with 0 < liminf, . a, <limsup,,_,. @, <1 ,n >0 such that

(1)xn+1 = QpTp + (1 - O‘n)ynQ (2) lim Sup(||yn+1 - yn” - Hxn+1 - xn”) <0.

n—oo

then limy,_oo||yn — xa|| = 0.

Lemma 2.9. For given (z,y) € C' x C, where §y = Qc(Z — p,, BT), 7,7 is a solution of
problem(1),if and only if Z is a common fixed point of the mapping S,, : C — C defined
by

Sn(z) = Qc|Qc(x — ppBx) — \yAQo(x — pu, Bx)],Vn € N,
where {\,}, {in} C (0,1) and Q¢ is a sunny nonexpansive retraction from E onto C.
Proof.

MAT+T =7, J(x — 7)) > 0,Vz € C,
<MnBE+17_EE7 J(l‘—@/)> > O,Vl‘ € C,

T = QC(g_ )‘nAg)
g = QC(EE - MnB%)

& 7= Qc(Qc(T — p1nBT) — MAQc(T — 11, BT))

3. Main results



1666 HONGPING LUO AND YUANHENG WANG~™

Theorem 3.1 Let E be a uniformly convex and q-uniformly smooth Banach space with the
best smooth constant K, C' a nonempty closed conver subset of E. Let Q¢ : B — C' be a
sunny nonexpansive retraction and A, B : C' — E be a-inverse-strongly accretive mapping
and [B-inverse-strongly accretive mapping. Let T : C' — C' be a nonerpansive mapping
with a fizved point and assume that F = F(T) N (N2, F(S,)) # &, where S, is defined as
Lemma 2.9. Suppose {\,} C [a, "} q;;(_ql] , A{unt Cla, 1/ qg;(_ql] ,a>0,0€(0,1). If
the sequences {ay,} , {Bn} and {y.} in [0, 1] satisfy the following conditions:

(C)om + Bn+ 70 = 15

(C2)3a, = 00, limy, ooty = 0;

(C3)0 < liminf, o 3, < limsup,,_,, 8. < 1;

(CHlimy o0 Ana1 — An) = 0, limy oo (fins1 — fn) = 0.

Then the sequence {x,} defined by (3) convergence strongly to T = Qpu , and (Z,y) is

a solution of the problem(1),where §y = Q¢ (T — , BX).

Proof. Stepl We show that F is closed and convex.

Since A is an « -inverse-strongly accretive mapping, applying lemma2.1,2.2and {\,} C

q-1/gqad"!
2K4

[aa ]7 we get

(I = AA)z — (I = XAyl = [[(z — y) — Au(Az — Ay)||?
< lz =yl — gAn{Az — Ay, Jy(z — y)) + 2|[ KA (Az — Ay)||*
= [l =yl = Mgl — y[|*7*(Az — Ay, J(x — y))
+ 2K\ || Ax — Ayl|?
< ||z = y[|? = Aga®H|Az — Ay[|? + 2KINL|| Az — Ayl|?
= [lz = y[|? + M (2K — ga?h)[| Az — Ay]|?

which implies that I — A\, A is nonexpansive, so is [ — u, B. From lemma 2.9, we obtain

that
Spn=Qc(Qc(I — pnB) — MAQc(I — 1, B))
= Qc(I = X A)Qc(I — pnB)

Sy, is nonexpansive. Consequently, F' = (N2, F(S,)) N F(T) is closed and convex.
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Step 2 We observe {x,} is bounded.
Indeed ,taking a fixed point T of F' ;we have T = Q¢ (Qc(T— 1 BT) — M\ AQ ¢ (T — 1, BT))
Let ¥ = Qc(T — pn BT), then T = Qc (g — M\ AY). And let 1, = 6Tz, + (1 — 0)Qc(yn —

MAy,), we get
1ln = || = 6n|| T — || + (1 = 0n) | Qe (Yn — AnAyn) — 7|
< Onllzn —Z| + (1 = ) |Qc(yn — AnAyn) — Qc(¥ — A AY)||
< Onllzn —Z[ + (1 = 0n)llyn — ¥l
< Onllzn — 7| + (1 = 0n) Qe — pnBin) — Qo(T — pn BT)|
< [l — 7|
Then we arrive at
|Znt1 — || = |lonw + Buzn + Yl — 7]
= am|lu = Z|[ + Bullen — (| + yullln — 7|
< (1= an)llzn — 7] + on||u — 7]
< max{||z, —Z||, [Ju — Z||}.
< |lu -]

Hence {z,} is bounded, so are the sets {y, }and{l,}.

According to step 1 and by (4), we observe that

b1 = lnl| < 0| T@ps1 — Tyl + (1 = ) |Qc(Yn+1 — Ans1AYni1) — Qc(yn — AAys) ||
< Oll2nt1 — zall + (1 = )| (Yns1 = Ans1AYns1) = (Un — AnAya)|
< Ollznir = 2all + (1 = (W1 = Ant1AYns1) = (Yn — Ans1Ayn)
+ (A0 = Ans1) Ay
< Ol @nsr — Tl + (1 = 0)|[ynar — ynll + A = Anpa ||| Ayl
<Ol Tng1 — 2l + (1 = 0)|Qc(Tni1 — 1 Brni1) — Qeo(wy — pn By, ||
+ [ An = A || Ay

< ”*TnJrl - xn” + ‘Un - /~Ln+1|Han” + ‘)‘n - )‘n+1|”AynH
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Step 3 We prove that lim, ..||Zni1 — xa|] = 0.
Define z, 11 = fpzn + (1 — B,,)hy, observe that

h b — Tn42 — 6n+lxn+1 Tn41 — ﬁnmn
n+1 = Itn —

1= Bns1 1 =5
S g L e o e
B 1= Bpn 1—p5n
Qg (I —anp1 = Bar)lorn  awu (I—an—B)ln
1= Ban 1= Bu 1 - B, 1— B,
= lf—;+<u b)) = g (= b+ (o = L)

Applying the conclusion of step 1, we have

Oni1 Qp

]-_Bn—l—l 1_Bn

+ i = pnga | Baa || + [An = Anga || Awa |

[lu =il +

i = hn] = [|2n g = 2n]] < [lu = L]

Since {y, } and {l, } are bounded, by(C2),(C3)and(C4),we obtain that lim, sup(||hn+1—

hl| = l[@n1 — 2al]) < 0.
Hence by lemma 2.8, we have lim,,_,oo||hn, — x,|| = 0.
Consequently 1im, o0 ||Tn11 — Tnl|| = limy—oo(1 — Bn)||hn — 4|] = 0.

On the other hand, from z,,1 = a,u + B, + Vul,, we have

Tpt1 — Tp = (v — x,) + Yol — ), then limy, oo||l, — || = 0.

Step 4 We claim that limsup,,_,. (v — Z, J(z, — Z)) < 0. where T = Qpu Define a
mapping W,, : C' — C by Wz =0Tz + (1-90)Qc(I — M\ A)Qc (I — ppB)x, Vo € C, which
implies that W,,x,, = [,.

We choose a sequence {z,,} of {z,} that converges weakly to x such that

limsup(u — z, J(x, — Z)) = limsup(u — z, J(x,, — X))
n—00 1—00

Since {\,} C [a, "} qg‘;;] Apn} Cla, 4/ qg;;zl] ,a > 0, it follows that {\,, }, {pn, } are
bounded. So there exists a subsequence {\,,} of {\,,} which converges to {\g} C
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la, qi\l/ q;“f{ql], and a subsequence {ji,, } of {1, } which converges to {uo} C [a, "1/ %] With-

out loss of generality, we assume that {\,,} — Ao, {{tn, — o}, then

So = Qc(Qc(l — poB) — MAQc(I — poB))

= Qc(l — MA)Qc(I — poB)
S, is nonexpansive.

Since Q¢ is nonexpansive, it follows from I, = 0Tz, + (1 — §)Qc(yn — A\ Ay,), then

||W017m - me < ||5T1Enz + (1 - 5)Qc<ym - )‘OAyn—i) - lm

< ||5T'Inz + (1 - 5)@0(?/7’“ - )‘OAyn—i) - 5Tmm - (1 - 5)QC(ynz

- )\nAyn—Z)H + Hlm — Tn;

< (1= 0)[Ani = Aol | Ayn—ill + llln, — wn,]]
It follows from lemma2.6 that z € F(W,). By using lemma2.5 and same as[15], we can

obtain that z € F(W,) = Qpu.

We have lim sup,,_, .. (u—2, J(z, —)) < 0 = limsup,,_,, (u—7Z, J(x,11 — 7)) < 0 holds.

Step 5 We show that lim,, ||z, — Z|| = 0.
|z = F* = anlu = T, J (@01 = ) + Bultn = T, J (@1 — D)) + 0 lln — T, J (041 — 7))
= an(u =2, J (@1 = T)) + Bullzn = Zll|lwns = 2l + mllln = Zlll2n0 — 2]

< (1 = an)lln = Fllenss — F + anlu — 7, J(20s1 — D)

1—a, - ~ ~ ~
=—5 (llzn - 7+ | an = Z)%) + anlu = 7, J (@p11 — 7))
Then
lnr = < ol = + 7 = B, T (wnr — )
20y, - 20y, -
= (1= Tl = 3+ T = & s — )

Where v, = 11”‘0771,0'” = (u—71,J(xy1 — T)).

Since by (C2),step 3, we have

Uiy —s00Yn = 0, Z% = 00, limsup g, < 0.

n—oo



1670

HONGPING LUO AND YUANHENG WANG*

applying lemma 2.7,we deduce that lim, ||z, — Z|| = 0.

The proof of Theorem 3.1 is completes .
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