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1. Introduction

Hájek [8] introduced a complete residuated lattice which is an algebraic structure for many

valued logic. Bělohlávek [2] investigated information systems and decision rules over complete

residuated lattices. Hence residuated lattices and their generalizations are the main structures of

truth degree used in many-valued logic [4, 28, 33]. Höhle [12] introduced L-fuzzy topologies

with algebraic structure L (cqm, quantales, MV -algebra). It has developed in many directions

[3, 5, 6, 7, 18].
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Fang and Yue [7] studied the relationship between L-fuzzy closure systems and L-fuzzy topo-

logical spaces from a category viewpoint for a complete residuated lattice L. Ramadan [29]

studied the relationship between L-fuzzy interior systems and L-fuzzy topological spaces over

complete residuated lattices. Yao and Han characterized Alexandroff L-topological spaces by

means of L-orderings [39].

The rough set theory was originally proposed by Pawlak [22, 23] as a mathematical approach

for handling imprecision and uncertainty in data analysis. In recent years, rough set theory has

developed significantly due to its widespread applications. Various generalized rough set mod-

els have been established and their properties or structures have been investigated intensively

[3, 17, 19, 25, 30, 34, 36, 37, 38, 41]. Radzikowska [26, 27] developed fuzzy rough sets in

complete residuated lattice. An interesting and natural research topic in rough set theory is the

study of rough set theory via topology. Kortelainen [15] considered the relationship between

modified sets, topological spaces, and rough sets based on a preorder. Subsequently, as general-

izations of rough sets from the viewpoint of fuzzy sets, Qin and Pei [32] showed that there exists

a one-to-one correspondence between the family of all the lower approximation sets based on

fuzzy preorder and the set of all fuzzy topologies that satisfy the so-called (TC) axiom. Pei et al.

[23] observed that inverse serial relations are the weakest relations that can induce topological

spaces, and that different relations based on generalized rough set models will induce different

topological spaces. In addition, Hao and Li [10] determined a one-to-one correspondence be-

tween the set of all reflexive, transitive L-fuzzy relations and the set of all Alexandroff L-fuzzy

topologies. Ma and Hu [20] investigated the topological and lattice structures of L-fuzzy rough

sets determined by lower and upper sets. Qiao and Hu [24] studied the relationship between

L-fuzzy pretopological spaces [40] and L-fuzzy approximation spaces based on the reflexive L-

fuzzy relations from a category viewpoint. Kim [13, 14] investigated the properties of various

approximation operators and Alexandroff topologies in complete residuated lattices.

In this paper, we investigate the relationships between the category of Alexandroff L-fuzzy

topological spaces and the category of reflexive L-fuzzy approximation spaces. In particular,

we obtain some interesting adjunctions between the considered categories.
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2. Preliminaries

Throughout this paper, L denotes a complete lattice. The greatest element of L is denoted by

> and the least element of L is denoted by⊥. For A⊆ L, we write
∨

A for the least upper bound

of A and
∧

A of A for the greatest lower bound of A. Specifically,
∨

L = > and
∧

L = ⊥ are

respectively the universal upper and the universal lower bounds in L. We assume that > 6= ⊥,

i.e. L has at least two elements.

Definition 2.1. ([2, 4, 8, 33]) An algebra (L,∧,∨,�,→,⊥,>) is called a complete residuated

lattice if it satisfies the following conditions:

(1) (L,≤,∨,∧,⊥,>) is a complete lattice with the greatest element > and the least element

⊥;

(2) (L,�,>) is a commutative monoid;

(3) x� y≤ z iff x≤ y→ z for x,y,z ∈ L.

An operator ∗ : L→ L defined by a∗ = a→⊥ is called a strong negation if a∗∗ = a.

In this paper, we assume that (L,≤,�) is a complete residuated lattice unless otherwise

specified.

Some basic properties of the binary operation � and residuated operation→ are collected in

the following lemma, and they can be found in many works.

Lemma 2.2. [2, 4, 8, 33] Let L be a complete residuated lattice. Then the following

properties hold for each x,y,z,xi,yi ∈ L,

(1) If y≤ z, x� y≤ x� z, x→ y≤ x→ z and z→ x≤ y→ x.

(2) x� y≤ x∧ y.

(3) x→ y => iff x≤ y, x→>=> and >→ x = x.

(4) x� (
∨

i∈Γ yi) =
∨

i∈Γ(x� yi) and (
∨

i∈Γ xi)� y =
∨

i∈Γ(xi� y).

(5) x→ (
∧

i∈Γ yi) =
∧

i∈Γ(x→ yi) and (
∨

i∈Γ xi)→ y =
∧

i∈Γ(xi→ y).

(6)
∨

i∈Γ(xi→ y)≤ (
∧

i∈Γ xi)→ y and
∨

i∈Γ(x→ yi)≤ x→ (
∨

i∈Γ yi).

(7) y→ z≤ x� y→ x� z, y≤ x→ (x� y).

(8)
∧

i∈Γ xi→
∧

i∈Γ yi ≥
∧

i∈Γ(xi→ yi) and
∨

i∈Γ xi→
∨

i∈Γ yi ≥
∧

i∈Γ(xi→ yi)

(9) (x→ y)� x≤ y and (x→ y)� (y→ z)≤ (x→ z).
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(10) x→ y≤ (y→ z)→ (x→ z) and x→ y≤ (z→ x)→ (z→ y).

(11) (x� y)→ z = x→ (y→ z) = y→ (x→ z) and x� (y→ z)≤ y→ (x� z).

If the strong negation law is done, then L satisfies moreover

(12)
∧

i∈Γ x∗i = (
∨

i∈Γ xi)
∗ and

∨
i∈Γ x∗i = (

∧
i∈Γ xi)

∗.

(13) x→ y = y∗→ x∗ and x� y = (x→ y∗)∗.

An L-subset on a set X is a mapping from X to L, and the family of all L-subsets on X will

be denoted by LX . For α ∈ L,λ ∈ LX , we denote (α → λ ),(α�λ ),αX ∈ LX as (α → λ )(x) =

α → λ (x), (α�λ )(x) = α�λ (x), αX(x) = α , >x ∈ LX ,

>x(y) =

 >, if y = x,

⊥, otherwise,

Definition 2.3. [2] Let X be a set. A mapping RX : X ×X → L is called L-fuzzy relation on

X . Then R is said to be

(1) reflexive if R(x,x) => for all x ∈ X ,

(2) symmetric if it satisfies R(x,y) = R(y,x) for all x,y ∈ X ,

(3) transitive if R(x,y)�R(y,z)≤ R(x,z) for all x,y,z ∈ X .

An L-fuzzy relation on X is called an L-fuzzy preorder if it is reflexive and transitive. And an

L-fuzzy equivalence relation if it is reflexive,symmetric and transitive.

There exists an inherent L-order S on LX defined by

S(λ ,µ) =
∧
x∈X

(λ (x)→ µ(x)).

The lemma below collects some properties of S used in this paper.

Lemma 2.4. [2, 6, 7] Let λ ,µ,ρ,ν ∈ LX , and α ∈ L. Then the following properties hold.

(1) λ ≤ µ ⇔ S(λ ,µ) =>.

(2) If λ ≤ µ , then S(ρ,λ )≤ S(ρ,µ) and S(λ ,ρ)≥ S(µ,ρ).

(3) S(λ ,µ)�S(ν ,ρ)≤ S(λ �ν ,µ�ρ) and S(λ ,α�λ )≥ α.

(4) S(λ ,µ)�S(µ,ρ)≤ S(λ ,ρ) and λ �S(λ ,µ)≤ µ.
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(5) S(λ ,αX → µ) = S(αX �λ ,µ) = αX → S(λ ,µ) and S(µ,λ )→ λ ≥ µ.

(6) Let ϕ : X → Y be an ordinary mapping. Define φ→ : LX → LY and ϕ← : LY → LX by

ϕ→(λ )(y) =
∨

ϕ(x)=y λ (x), ∀λ ∈ LX , y ∈ Y and ϕ←(µ)(x) = µ(ϕ(x)) = µ ◦ϕ(x), ∀µ ∈ LY .

Then, for λ ,µ ∈ LX and ρ,ν ∈ LY , we have S(λ ,µ) ≤ S(ϕ→(λ ),ϕ→(µ)) and S(ρ,ν) ≤

S(ϕ←(ρ),ϕ←(ν)) and the equalities hold if ϕ is bijective.

Definition 2.5. (See Adámek et al. [1], Herrlich and Hušek [11]) Suppose that F : D → C ,

G : C →D are concrete functors.

(1) (F,G) is called a Galois correspondence between C and D if for each Y ∈ C , idY :

F ◦G(Y )→ Y is a C -morphism, and for each X ∈D , idX : X → G◦F(X) is a D-morphism.

(2) The categories C and D are said to be isomorphic if F ◦G = idC and G◦F = idD .

Definition 2.6. [13, 14] A map T : LX → L is called an Alexandroff L-fuzzy topology on

X if it satisfies the following conditions:

(AT1) T (>X) => and T (⊥X) =>.

(AT2) T (
∧

i∈Γ λi)≥
∧

i T (λi) and T (
∨

i∈Γ λi)≥
∧

i T (λi) for all {λi}i∈Γ ⊆ LX .

(AT3) T (αX �λ )≥T (λ ) and T (αX → λ )≥T (λ ) for all λ ∈ LX and α ∈ L.

The pair (X ,T ) is called an Alexandroff L-fuzzy topological space. A mapping ϕ : (X ,TX)−→

(Y,TY ) between Alexandroff L-fuzzy topological spaces is called continuous if TX(ϕ
←(λ ))≥

TY (λ ) for all λ ∈ LY . The category of Alexandroff L-fuzzy topological spaces with continuous

mappings as morphisms is denoted by AFTop.

Definition 2.7. [13, 14] A map J : LX → LX is called an L-lower approximation operator

on X if

(J1) J (>X) =>X ,

(J2) J (λ )≤ λ for all λ ∈ LX ,

(J3) J (
∧

i∈Γ λi) =
∧

i∈Γ J (λi) for all λi ∈ LX , and

(J4) J (α → λ ) = α →J (λ ).

The pair (X ,J ) is called L-lower approximation space.
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Let LAS be a category with object (X ,JX), where JX is an L-fuzzy lower approximation

operator with a lower approximation mapping ϕ : (X ,JX)→ (Y,JY ) such that ϕ←(JY (λ ))≤

JX(ϕ
←(λ )) for each λ ∈ LY .

Definition 2.8. [13, 14] A map H : LX → LX is called an L-upper approximation operator

on X if

(H1) H (⊥X) =⊥X ,

(H2) H (λ )≥ λ for all λ ∈ LX ,

(H3) H (
∨

i∈Γ λi) =
∨

i∈Γ H (λi) for all λi ∈ LX , and

(H4) H (α�λ ) = α�H (λ ).

The pair (X ,H ) is called L-upper approximation space.

Let UAS be a category with object (X ,HX), where HX is an L-fuzzy upper approximation

operator with an upper approximation mapping ϕ : (X ,HX)→ (Y,HY ) such that ϕ←(HY (λ ))≥

HX(ϕ
←(λ ))for each λ ∈ LY ,

Let RFR be a category with object (X ,RX), where RX is a reflexive L-fuzzy relation with an

order preserving map ϕ : (X ,RX)→ (Y,RY ) such that RX(x,y)≤RY (ϕ(x),ϕ(y)) for all x,y∈X .

Let H and J be an L-upper and L-lower approximation on X , respectively. The pair

(J (λ ),H (λ )) is called a fuzzy rough set for λ .

Theorem 2.9. [13, 14] (1) Let (X ,J ) be an L-upper approximation space. Define a map

TH : LX → L by

TH (λ ) = S(H (λ ),λ ).

Then TH is an Alexandroff L-fuzzy topology on X .

(2) Let (X ,J ) be an L-lower approximation space. Define a map TJ : LX → L by

TJ (λ ) = S(λ ,J (λ )).

Then TJ is an Alexandroff L-fuzzy topology on X .
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3. Alexandroff L-fuzzy topological spaces and reflexive L-fuzzy relations

We devote this section to the categorical aspect of the relationship between Alexandroff L-

fuzzy topological spaces and reflexive L-fuzzy relations.

Theorem 3.1. Let (X ,TX) be an Alexandroff L-fuzzy topological space. Define a mapping

RTX : X×X −→ L as

RTX (x,y) =
∧

λ∈LX

(TX(λ )→ (λ (x)→ λ (y))).

(1) RTX is a reflexive L-fuzzy relation.

(2) Let ϕ : (X ,TX) −→ (Y,TY ) be continuous mapping between Alexandroff L-fuzzy topo-

logical spaces. Then ϕ : (X ,RTX )−→ (Y,RTY ) is an order preserving mapping.

Proof. (1) For any x ∈ X ,

RT (x,x) =
∧

λ∈LX

(T (λ )→ (λ (x)→ λ (x))) =>,

i.e., RT is reflexive.

(2) For any x,z ∈ X ,

RTX (x,z) =
∧

λ∈LX

(TX(λ )→ (λ (x)→ λ (z)))

≤
∧

µ∈LY

(TX(ϕ
←(µ))→ (ϕ←(µ)(x)→ ϕ

←(µ)(z)))

≤
∧

µ∈LY

(TY (µ)→ (µ(ϕ(x))→ µ(ϕ(z)))) = RTY (ϕ(x),ϕ(z)).

The above theorem shows that Γ : AFTop→ RFR is a concrete functor with

Γ(X ,TX) = (X ,RTX ), Γ(ϕ) = ϕ.

Theorem 3.2 Let (X ,RX) be a reflexive L-fuzzy relation. Define a mapping TRX : LX −→ L

as

TRX (λ ) =
∧

x,y∈X

(RX(x,y)→ (λ (x)→ λ (y))).

(1) TRX is an Alexandroff L-fuzzy topological space such that RTRX
≥ RX .

(2) If TX is an Alexandroff L-fuzzy topological space, then TRTX
≥TX .
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(3) If ϕ : (X ,RX)−→ (Y,RY ) is an order preserving mapping, then f : (X ,TRX )−→ (Y,TRY )

is continuous.

Proof. (1)

TRX (
∧
i∈Γ

λi) =
∧

x,y∈X

(RX(x,y)→ (
∧
i∈Γ

λi(x)→
∧
i∈Γ

λi(y)))

≥
∧

x,y∈X

(RX(x,y)→
∧
i∈Γ

(λi(x)→ λi(y)))

=
∧
i∈Γ

∧
x,y∈X

(RX(x,y)→ (λi(x)→ λi(y)))

=
∧
i∈Γ

TRX .

TRX (
∨
i∈Γ

λi) =
∧

x,y∈X

(RX(x,y)→ (
∨
i∈Γ

λi(x)→
∨
i∈Γ

λi(y)))

≥
∧

x,y∈X

(RX(x,y)→
∧
i∈Γ

(λi(x)→ λi(y)))

=
∧
i∈Γ

∧
x,y∈X

(RX(x,y)→ (λi(x)→ λi(y)))

=
∧
i∈Γ

TRX (λi).

TRX (α → λ ) =
∧

x,y∈X

(RX(x,y)→ ((α → λ (x))→ (α → λ (y)))

≥
∧

x,y∈X

(RX(x,y)→ (λ (x)→ λ (y)))

= TRX (λ ).

TRX (α�λ ) =
∧

x,y∈X

(RX(x,y)→ ((α�λ (x))→ (α�λ (y)))

≥
∧

x,y∈X

(RX(x,y)→ (λ (x)→ λ (y)))

= TRX (λ ).
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RTRX
(x,y) =

∧
λ∈LX

(TRX (λ )→ (λ (x)→ λ (y)))

≥
∧

λ∈LX

((
∧

z,w∈X

(RX(z,w)→ (λ (z)→ λ (w))→ (λ (x)→ λ (y)))

≥
∧

λ∈LX

((RX(x,y)→ (λ (x)→ λ (y)))→ (λ (x)→ λ (y)))

≥ RX(x,y).

(2) For any λ ∈ LX ,

TRTX
(λ ) =

∧
x,y∈X

(RTX (x,y)→ (λ (x)→ λ (y)))

≥
∧

x,y∈X

((TX(λ )→ (λ (x)→ λ (y))→ (λ (x)→ λ (y)))

≥ TX(λ ).

(3) For any µ ∈ LY ,

TRX (ϕ
←(µ)) =

∧
x,y∈X

(RX(x,y)→ (ϕ←(µ)(x)→ ϕ
←(µ)(y)))

≥
∧

x,y∈X

(RY (ϕ(x),ϕ(y))→ (ϕ←(µ)(x)→ ϕ
←(µ)(y)))

≥ TRX (ϕ
←(µ)).

The above theorem shows that ∆ : RER→ AFTop is a concrete functor with

∆(X ,RX) = (X ,TRX ), ∆(ϕ) = ϕ.

Theorem 3.3. (∆,Γ) forms a Galois connection between the category RER and the category

AFTop.

Proof. (1) From Theorem 3.2(2), idX : (X ,∆◦Γ(T ))−→ (X ,T ) is continuous.

(2) From Theorem 3.2(1), idX : (X ,RX) −→ (X ,Γ ◦∆(RX)) is an order preserving mapping.

Thus (∆,Γ) forms a Galois connection between the category RER and the category AFTop.

The following theorem can be obtained in a method similar to reference [14].

Theorem 3.4.[14] Let R be a reflexive L-fuzzy relation. Then
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(1) JR : LX → LX defined as JR(λ ) =
∧

y∈X(R(x,y)→ λ (y)) is an L-lower approximation

operator with JRJ = J , where RJ (x,y) = J ∗(>∗y)(x) and RJR = R.

(2) HR : LX → LX defined as HR(λ )(x) =
∨

y∈X(R(x,y)�λ (y)) is an L-upper approximation

operator with HRH = H , where RH (x,y) = H (>y)(x) and RHR = R.

(3) From (1), Θ : RER→ LAS is a concrete functor with

Θ(X ,RX) = (X ,JRX ), ∆(ϕ) = ϕ.

Moreover, Λ : LAS→ RER is a concrete functor with

Λ(X ,JRX ) = (X ,RJX ), Λ(ϕ) = ϕ.

Then RER and LAS are isomorphic.

(4) From (2), ϒ : RER→ UAS is a concrete functor with

ϒ(X ,RX) = (X ,TRX ), ϒ(ϕ) = ϕ.

Moreover, Φ : UAS→ RER is a concrete functor with

Φ(X ,RX) = (X ,TRX ), Φ(ϕ) = ϕ.

Then RER and UAS are isomorphic.

Theorem 3.5 Let (X ,T ) be an Alexandroff L-fuzzy topological space. Define a mapping

JTX : LX −→ LX as

JTX (λ )(y) =
∧
x∈X

(RTX (y,x)→ λ (x)).

(1) JTX is an L-lower approximation operator such that TRTX
= TJTX

.

(2) If ϕ : (X ,TX) −→ (Y,TY ) be a continuous mapping. Then f : (JTX ) −→ (JTX ) is an

lower approximation mapping.

(3) If R is an L-fuzzy reflexive relation, then RJTR
= RTR .
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Proof. (1) Since RTX is reflexive, by Theorem 3.4(1), JTX is an L-lower approximation

operator. For any λ ∈ LX ,

TJTX
(λ ) =

∧
x∈X

(λ (x)→JTX (λ )(x))

=
∧
x∈X

(λ (x)→
∧
y∈X

(RTX (y,x)→ λ (y)))

=
∧

x,y∈X

(RTX (x,y)→ (λ (x)→ λ (y))) = TRTX
(λ ).

(2) For any λ ∈ LY , by Theorem 3.1(2),

JTX (ϕ
←(λ ))(x) =

∧
z∈X

(RTX (x,z)→ ϕ
←(λ )(z))

≥
∧
z∈X

(RTY (ϕ(x),ϕ(z))→ λ (ϕ(z)))

≥
∧
y∈Y

(RTY (ϕ(x),y)→ λ (y)) = ϕ
←(JTY (λ ))(x).

(3) For any x,y ∈ X ,

RTJR
(x,y) =

∧
λ∈LX

(TJR(λ )→ (λ (x)→ λ (y)))

=
∧

λ∈LX

(S(λ ,JR(λ ))→ (λ (x)→ λ (y)))

=
∧

λ∈LX

(
∧
x∈X

(λ (x)→JR(λ )(x))→ (λ (x)→ λ (y)))

=
∧

λ∈LX

(
∧

x,y∈X

(λ (x)→ (R(x,y)→ λ (y)))→ (λ (x)→ λ (y)))

=
∧

λ∈LX

(
∧

x,y∈X

(R(x,y)→ (λ (x)→ λ (y)))→ (λ (x)→ λ (y)))

= RTR(x,y).

Lemma 3.6 (1) If T is an Alexandrov L-fuzzy topology such that T (λ ) = T (λ ∗) for each

λ ∈ LX , then RT is symmetric.

(2) If R is symmetric, then TR(λ ) = TR(λ
∗) for each λ ∈ LX .
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Proof. (1) If T (λ ) = T (λ ) for each λ ∈ LX , then

RT (x,y) =
∧

λ∈LX

(T (λ )→ (λ (x)→ λ (y)))

=
∧

λ∈LX

(T (λ )→ (λ ∗(y)→ λ
∗(x)))

=
∧

λ∈LX

(T (λ ∗)→ (λ ∗(y)→ λ
∗(x)))

= RT (y,x).

(2)If R is symmetric, then for any λ ∈ LX ,

TR(λ
∗) =

∧
x,y∈X

(R(x,y)→ (λ ∗(x)→ λ
∗(y)))

=
∧

x,y∈X

∧
y∈X

(R(y,x)→ (λ (y)→ λ (x)))

= TR(λ ).

Theorem 3.7 Let (X ,T ) be an Alexandroff L-fuzzy topological space. Define a mapping

HTX : LX −→ LX as

HTX (λ )(y) =
∨
x∈X

(RTX (x,y)�λ (x)).

(1) HTX is an L-lower approximation operator such that TRTX
= THTX

= TJTX
.

(2) If ϕ : (X ,TX) −→ (Y,TY ) be a continuous mapping. Then ϕ : (HTX ) −→ (HTX ) is an

upper approximation mapping.

(3) If R is a reflexive L-fuzzy relation, then RHTR
= RTR .

Proof. (1) Since RTX is reflexive, by Theorem 3.4(2), HTX is an L-upper approximation

operator. For any λ ∈ LX ,
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TJTX
(λ ) =

∧
x∈X

(λ (x)→JTX (λ )(x))

=
∧
x∈X

(λ (x)→
∧
y∈X

(RTX (x,y)→ λ (y)))

=
∧

x,y∈X

(RTX (x,y)→ (λ (x)→ λ (y))) = TRTX
(λ )

=
∧

x,y∈X

(
∧

µ∈LX

(T (µ)→ (µ(x)→ µ(y))→ (λ (x)→ λ (y)))

=
∧
y∈X

(
∨
x∈X

(RTX (x,y)�λ (x))→ λ (y))) = THTX
(λ ).

(2) For any λ ∈ LY , by Theorem 3.1(2),

HRTX
(ϕ←(λ ))(x) =

∨
z∈X

(RTX (x,z)�ϕ
←(λ )(z))

≤
∨
z∈X

(RTY (ϕ(x),ϕ(z))�λ (ϕ(z)))

≤
∨
y∈Y

(RTY (ϕ(x),y)�λ (y)) = ϕ
←(HRTY

(λ ))(x).

(3) For any x,y ∈ X ,

RTHR
(x,y) =

∧
λ∈LX

(THR(λ )→ (λ (x)→ λ (y)))

=
∧

λ∈LX

(S(HR(λ ),λ )→ (λ (x)→ λ (y)))

=
∧

λ∈LX

(
∧
s∈X

(HR(λ )(s)→ λ (s))→ (λ (x)→ λ (y)))

=
∧

λ∈LX

(
∧

s,t∈X

(R(t,s)�λ (t))→ λ (s))→ (λ (x)→ λ (y)))

=
∧

λ∈LX

(
∧

s,t∈X

(R(t,s)→ (λ (t)→ λ (s)))→ (λ (x)→ λ (y)))

= RTR(x,y)
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Theorem 3.8. Let ϕ : (X ,HX) −→ (Y,HY ) be an upper approximation mapping. Then

ϕ : (X ,THX )−→ (Y,THY ) is continuous.

Proof. For any λ ∈ LY ,

THY (λ ) = S((X ,HY (λ ),λ )≤ S(ϕ←(HY (λ )),ϕ
←(λ ))

≤ S(HX(ϕ
←(λ )),ϕ←(λ )) = THX (ϕ

←(λ )).

Example 3.9.Let X = {a,b,c} be a set and (L = [0,1],≤,∧,�,0,1) a complete residuated

lattice with x∗ y = (x+ y−1)∨0 and x→ y = (1− x+ y)∧1. Put λ ∈ [0,1]X as follows:

λ (a) = 0.9,λ (b) = 0.4,λ (c) = 0.6.

Define Alexandrov [0,1]-fuzzy topology as T : [0,1]X → [0,1] as follows:

T (B) =


1, if B ∈ {0X ,1Y},

0.8, if B ∈ {α → λ ,α�λ | α ∈ [0,1]}−{0X ,1Y},

0, otherwise.

We obtain RT ∈ [0,1]X×X as follows:

RT (a,a) = RT (b,a) = RT (b,b) = RT (b,c) = 1,

RT (a,b) = 0.7,RT (a,c) = 0.9,

RT (c,a) = RT (c,b) = RT (c,c) = 1.

We obtain an Alexandrov [0,1]-fuzzy topology as T s : [0,1]X → [0,1] with T s(λ ) =T (λ ∗)

as follows:

T s(µ) =


1, if µ ∈ {0X ,1Y},

0.8, if µ ∈ {α → λ ∗,α�λ ∗ | α ∈ [0,1]}−{0X ,1Y},

0, otherwise.

We obtain RT s ∈ [0,1]X×X such that

RT s(a,b) = R−1
T (a,b) = RT (b,a).
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For µ ∈ [0,1]X with µ(a) = 0.4,µ(b) = 0.6,µ(c) = 0.3,

TRT (µ) = 0.7 > T (µ) = 0.

We obtain [0,1]-fuzzy lower approximations JT ,JT s : [0,1]X → [0,1]X as follows:

JT (λ )(x) =
∧
y∈X

(RT (x,y)→ λ (y)

JT s(λ )(x) =
∧
y∈X

(RT (y,x)→ λ (y)


JT (λ )(a)

JT (λ )(b)

JT (λ )(c)

=


λ (a)∧ (0.7→ λ (b))∧ (0.9→ λ (c))

λ (a)∧λ (b)∧λ (c)

λ (a)∧λ (b)∧λ (c)


We obtain [0,1]-fuzzy upper approximations HT ,HT s : [0,1]X → [0,1]X as follows:

HT (λ )(y) =
∨
x∈X

(RT (x,y)�λ (x)

HT s(λ )(y) =
∨
x∈X

(RT (y,x)�λ (x)


HT (λ )(a)

HT (λ )(b)

HT (λ )(c)

=


λ (a)∨λ (b)∨λ (c)

(0.7�λ (a))∨λ (b)∨λ (c)

(0.9�λ (a))∨λ (b)∨λ (c)
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[12] U. Höhle, S.E. Rodabaugh, Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Hand-

books of Fuzzy Sets Series 3, Kluwer Academic Publishers, Boston, 1999.

[13] Y.C. Kim, Alexandrov L-topologies and L-join meet approximation operators, Inter. J. Pure and Appl. Math.,

91(1)(2014), 113-129

[14] Y.C. Kim, Categorey of fuzzy preorders, approximation operators and Alexandrov topologies J. Intell. Fuzzy

Syst., , 31(2016), 1787-1739

[15] J. Kortelainen, On relationship between modified sets, topological space and rough sets, Fuzzy Sets Syst., 61

(1994) 91-95.

[16] H. Lai, D. Zhang, Fuzzy preorder and fuzzy topology, Fuzzy Sets Syst., 157 (2006) 1865-1885.

[17] Z. Li, T. Xie, Q. Li, Topological structure of generalized rough sets, Comput. Math. Appl., 63 (2012)

1066-1071.

[18] L.Q. Li, Q. G. Li, On enriched L- topologies: Base and subbase, J. Intell. Fuzzy Syst., 28(6) (2015) 2423-

2432.

[19] L.Q. Li, Q. Jin, K. Hu and F.F. Zhao, The axiomatic characterizations on L-fuzzy covering-based approxima-

tion operators, Int. J. Gen. Syst., 46(2017)332–353.

[20] Z.M. Ma, B.Q. Hu, Topological and lattice structures of L-fuzzy rough sets determined by lower and upper

sets, Inf. Sci., 218 (2013) 194-204.

[21] Z. Pawlak , Rough sets, Int. J. Comput. Inf. Sci., 11(1982)341-356.

[22] Z. Pawlak, Rough Set: Theoretical Aspects of Reasoning About Data, Kluwer Academic Publishers, Boston,

1991.

[23] Z. Pei, D. Pei, L. Zheng, Topology vs generalized rough sets, Int. J. Approx. Reason., 52 (2011) 231-239.

[24] J. Qiao, B. Q. Hu, A short note on L-fuzzy approximation spaces and L-fuzzy pretopological spaces, Fuzzy

Sets Syst., 312(2017)126-134.

[25] K.Y. Qin, Z. Pei, On the topological properties of fuzzy rough sets, Fuzzy Sets Syst., 151 (2005) 601-613.

[26] A.M. Radzikowska, E.E. Kerre, Fuzzy rough sets based on residuated lattices, in: Transactions on Rough

Sets II, in: LNCS, 3135 (2004) 278-296.

[27] A.M. Radzikowska, E.E. Kerre, A comparative study of fuzzy rough sets, Fuzzy Sets Syst., 126 (2002)

137-155.



ALEXANDROFF L-FUZZY TOPOLOGICAL SPACES AND REFLEXIVE L-FUZZY RELATIONS 453

[28] S.E. Rodabaugh, E.P. Klement, Topological and Algebraic Structures In Fuzzy Sets, The Handbook of Recent

Developments in the Mathematics of Fuzzy Sets, Kluwer Academic Publishers, Boston, Dordrecht, London,

2003.

[29] A.A. Ramadan, L-fuzzy interior systems, Comp. Math. Appl., 62 (2011) 4301-4307.

[30] A.A. Ramadan, E.H. Elkordy, M.El-Dardery, L-fuzzy approximition spaces and L-fuzzy toplogical spaces,

Ir. J. Fuzzy Syst., 13(1) (2016)115-129.

[31] Y.H. She, G.J. Wang, An axiomatic approach of fuzzy rough sets based on residuated lattices, Comput. Math.

Appl., 58 (2009) 189-201.
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