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Abstract. In this paper, using proximal-point mapping technique and the property of a fixed-point set of multi-

valued contractive mapping, we study the behavior and sensitivity analysis of a solution set for a parametric gen-

eralized multi-valued implicit quasi-variational-like inclusion in real Hilbert space. Further, under some suitable

conditions, we discuss the Lipschitz continuity of the solution set with respect to the parameter. Our results can be

viewed as a refinement and improvement of some known results in the literature.
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1. Introduction

Variational inequality theory has become very effective and powerful tool for studying a wide

range of problems arising in mechanics, optimization, operation research, equilibrium problems
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and boundary value problems etc. Variational inequalities have been generalized and extended

in different directions using novel and innovative techniques. A useful and important general-

ization of variational inequality is called the variational inclusion. Hassouni and Moudafi [9],

Agarwal et al. [2,3], Ding [5,6], Ding and Luo [7], Fang and Huang [8], Huang [10] and Noor

[17,18] have used the resolvent operator technique to obtain some important extensions and

generalizations in existence results for the various classes of variational inequalities (inclusion-

s).

In recent years, much attention has been given to develop general techniques for the sensitiv-

ity analysis of solution set of the various classes of variational inequalities (inclusions). From

the mathematical and engineering point of view, sensitivity properties of various classes of vari-

ational inequalities can provide new insight concerning the problem being studied and stimulate

ideas for solving problems. The sensitivity analysis of solution set for variational inequalities

have been studied extensively by many authors using quite different techniques. By using the

projection technique, Dafermos [4], Ding and Luo [7], Mukherjee and Verma [15] and Yen [21]

studied the sensitivity analysis of solution set for some classes of variational inequalities with

single-valued mappings. By using the implicit function approach that makes use of so-called

normal mappings, Robinson [20] studied the sensitivity analysis of solutions for variational

inequalities in finite-dimensional spaces. By using the projection and resolvent operator tech-

niques, Adly [1], Agarwal et al. [2,3], Ding [5,6], Lim [13], Liu et al. [14], Noor [17,18], Peng

and Long [19] and Zeng et al. [22] studied the behavior and sensitivity analysis of solution

set for the various classes of parametric generalized variational inclusions involving single and

multi-valued mappings.

The technique based on proximal-point mapping is a generalization of projection technique

and has been widely used to study the existence of solutions and to develop iterative schemes for

the various classes of variational (-like) inclusions. Recently Fang and Huang [8], Huang [10],

Kazmi and Alvi [11] and Kazmi and Khan [12] has introduced the notion of η-proximal point

mapping, P-proximal point mapping and P-η-proximal point mapping and used these to study

the behavior and sensitivity analysis of solution set for some classes of parametric generalized

variational (-like) inclusions involving single and multi-valued mappings.
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Motivated by recent work going in this direction, we define strongly P-η-proximal mapping

for strongly maximal P-η-monotone mapping and discuss some of its properties. Further, we

consider a parametric generalized multi-valued implicit quasi-variational-like inclusion prob-

lem (in short, PGMIQVLIP) in real Hilbert space. Further, using proximal-point mapping tech-

nique and the property of a fixed-point set of multi-valued contractive mapping, we study the

behavior and sensitivity analysis of a solution set for the PGMIQVLIP. Furthermore, under

some suitable conditions, we discuss the Lipschitz continuity of the solution set with respect to

the parameter. The results presented in this paper generalize and improve the results given by

many authors, see for example [5,6,8,10-14,18,19,22].

2. Preliminaries

Let H be a real Hilbert space equipped with inner product 〈·, ·〉 and norm ‖·‖; 2H is the power

set of H; CB(H) is the family of all nonempty closed and bounded subsets of H; C(H) is the

family of all nonempty compact subsets of H; H (·, ·) is the Hausdorff metric on C(H) defined

by

H (A,B) = max
{

sup
x∈A

inf
y∈B

d(x,y), sup
y∈B

inf
x∈A

d(x,y)
}
, A,B ∈C(H).

First, we review and define the following known concepts:

Definition 2.1[11]. Let η : H×H→H be a mapping. Then a mapping P : H→H is said to be:

(i) η-monotone if

〈P(x)−P(y), η(x,y)〉 ≥ 0, ∀x,y ∈ H;

(ii) strictly η-monotone if

〈P(x)−P(y), η(x,y)〉 > 0, ∀x,y ∈ H,

and equality holds if and only if x = y;

(iii) δ -strongly η-monotone if there exists a constant δ > 0 such that

〈P(x)−P(y), η(x,y)〉 ≥ δ‖x− y‖2, ∀x,y ∈ H.
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Definition 2.2[11,12]. A mapping η : H×H→ H is said to be τ-Lipschitz continuous if there

exists a constant τ > 0 such that

‖η(x,y)‖ ≤ τ‖x− y‖, ∀x,y ∈ H.

Definition 2.3[11,12]. Let η : H×H → H be a single-valued mapping. Then a multi-valued

mapping M : H→ 2H is said to be:

(i) η-monotone if

〈u− v, η(x,y)〉 ≥ 0, ∀x,y ∈ H, ∀u ∈M(x), ∀v ∈M(y);

(ii) strictly η-monotone if

〈u− v, η(x,y)〉 > 0, ∀x,y ∈ H, ∀u ∈M(x), ∀v ∈M(y),

and equality holds if and only if x = y;

(iii) γ-strongly η-monotone if there exists a constant γ > 0 such that

〈u− v, η(x,y)〉 ≥ γ‖x− y‖2, ∀x,y ∈ H, ∀u ∈M(x), ∀v ∈M(y);

(iv) maximal η-monotone if M is η-monotone and (I +ρM)(H) = H for any ρ > 0, where

I stands for identity mapping.

Remark 2.1. If η(x,y) = x− y, ∀x,y ∈ H, then from Definitions 2.1 and 2.3, we recover the

usual definitions of monotonicity of mappings P and M.

Definition 2.4[10-12]. Let η : H ×H → H and P : H → H be mappings. A multi-valued

mapping M : H → 2H is said to be maximal P-η-monotone if M is η-monotone and (P +

ρM)(H) = H for any ρ > 0.

Definition 2.5[10-12]. Let η : H ×H → H and P : H → H be mappings. A multi-valued

mapping M : H → 2H is said to be γ-strongly maximal P-η-monotone if M is γ-strongly η-

monotone and (P+ρM)H = H for any ρ > 0.

Remark 2.2. Under some suitable conditions on the mappings M, P, η , we recover the usual

definitions of maximal monotonicity discussed by many authors given in [8,10-12,22].
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The following theorems give some important properties of γ-strongly maximal P-η-monotone

mappings.

Theorem 2.1[10-12]. Let η : H×H→H be a mapping and P : H→H be a strictly η-monotone

mapping. Let M : H→ 2H be a γ-strongly maximal P-η-monotone multi-valued mapping. Then

(a) 〈u−v, η(x,y)〉 ≥ 0, ∀(v,y)∈Graph(M) implies (u,x)∈Graph(M), where Graph(M) :=

{(u,x) ∈ H×H : u ∈M(x)};

(b) the mapping (P+ρM)−1 is single-valued for all ρ > 0.

By Theorem 2.1, we define strongly P-η-proximal mapping for a γ-strongly maximal η-monotone

mapping M as follows:

RM
P,η(z) = (P+ρM)−1, ∀z ∈ H, (2.1)

where ρ > 0 is a constant, η : H×H→H is a mapping and P : H→H is a strictly η-monotone

mapping.

Theorem 2.2[10-12]. Let η : H×H→H be a τ-Lipschitz continuous mapping and P : H→H

be a δ -strongly η-accretive mapping. Let M : H → 2H be a γ-strongly maximal η-monotone

multi-valued mapping. Then strongly P-η-proximal mapping RM
P,η is

τ

δ +ργ
-Lipschitz contin-

uous, that is,

‖RM
P,η(x)−RM

P,η(y)‖ ≤
τ

δ +ργ
‖x− y‖, ∀x,y ∈ H.

Lemma 2.1[16]. Let (X ,d) be a complete metric space. Suppose that T : X →C(X) satisfies

H (T (x), T (y)) ≤ ν d(x,y), ∀x,y ∈ X ,

where ν ∈ (0,1) is a constant. Then the mapping T has fixed point in X .

Lemma 2.2[13]. Let (X ,d) be a complete metric space and let T1,T2 : X → C(X) be θ -H -

contraction mappings, then

H (F(T1), F(T2)) ≤ (1−θ)−1 sup
x∈X

H (T1(x), T2(x)),

where F(T1) and F(T2) are the sets of fixed points of T1 and T2, respectively.

3. Formulation of problem
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Let Λ and Ω be open subsets of a real Hilbert space H such that (Λ,d1) and (Ω,d2) are metric

spaces, in which the parameters λ and µ takes values, respectively.

Let g,m : H ×Λ→ H; P : H → H; η : H ×H → H; N : H ×H ×H ×Ω→ H be single-

valued mappings such that g 6= 0, and let A,B,C : H×Ω→ C(H) and F : H×Λ→ C(H) be

multi-valued mappings. Suppose that M : H×H×Λ→ 2H is a multi-valued mapping such that

for each (t,λ ) ∈ H×Λ, M(·, t,λ ) : H→ 2H is strongly maximal P-η-monotone and range(g−

m)(H×{λ})∩domainM(·, t,λ ) 6= /0, where (g−m)(x,λ ) = g(x,λ )−m(x,λ ) for any (x,λ ) ∈

H ×Λ. For each ( f ,λ ,µ) ∈ H ×Λ×Ω, we consider the following parametric generalized

multi-valued implicit quasi-variational-like inclusion problem (PGMIQVLIP):

Find x = x(λ ,µ) ∈ H, u = u(x,µ) ∈ A(x,µ), v = v(x,µ) ∈ B(x,µ), w = w(x,µ) ∈ C(x,µ)

and z = z(x,λ ) ∈ F(x,λ ) such that (g−m)(x,λ ) ∈ domainM(·,z,λ ) and

f ∈ N(u,v,w,µ)+M((g−m)(x,λ ),z,λ ). (3.1)

Some special cases:

(1) If (Λ,d1) = (Ω,d2); N(u,v,w,µ) = N(u,v,λ ); P = I, an identity mapping; η(x,y) =

x− y for all x,y ∈ H; f = 0, and M(·,z,λ ) is maximal monotone for each fixed (z,λ ) ∈

H×Λ, then the PGMIQVLIP (3.1) reduces to the following problem: Find x = x(λ ) ∈

H, u = u(x,λ ) ∈ A(x,λ ), v = v(x,λ ) ∈ B(x,λ ), z = z(x,λ ) ∈ F(x,λ ) such that (g−

m)(x,λ ) ∈ domainM(·,z,λ ) and

0 ∈ N(u,v,λ )+M((g−m)(x,λ ),z,λ ). (3.2)

Problem (3.2) was introduced and studied by Ding [5].

(2) If m(x,λ ) = 0 and A(x,λ ) = B(x,λ ) = F(x,λ ) = x for all (x,λ ) ∈H×Λ, then problem

(3.2) reduces to the following problem: Find x(λ )∈H such that g(x,λ )∈ domainM(·,z,λ )

and

0 ∈ N(x,x,λ )+M(g(x,λ ),x,λ ). (3.3)

Problem (3.3) was introduced and studied by Noor [18].

(3) If N(x,y,λ ) = N(x,λ ) and M(x,y,λ ) = M(x,λ ) for all (x,y,λ ) ∈ H ×H ×Λ, then

problem (3.3) reduces to the following problem: Find x(λ ) ∈ H such that g(x,λ ) ∈
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domainM(·,λ ) and

0 ∈ N(x,λ )+M(g(x,λ ),λ ). (3.4)

Problem (3.4) was introduced and studied by Adly [1].

In brief, for a suitable choice of the mappings A,B,C,F,N,M,P,g,m,η , the element f , the

space H, it is easy to see that the PGMIQVLIP (3.1) includes a number of known classes of

quasi-variational-like inclusions studied by many authors as special cases, see for example [1-

7,11-14,17-21] and the references therein.

Now, for each fixed (λ ,µ)∈Λ×Ω, the solution set S(λ ,µ) of the PGMIQVLIP (3.1) is denoted

as

S(λ ,µ) :=
{

x = x(λ ,µ) ∈ H : u = u(x,µ) ∈ A(x,µ),v = v(x,µ) ∈ B(x,µ),w = w(x,µ) ∈

C(x,µ),z = z(x,λ ) ∈ F(x,λ ) such that f ∈ N(u,v,w,µ)+M((g−m)(x,λ ),z,λ )
}
. (3.5)

In this paper, our main aim is to study the behavior and sensitivity analysis of the solution

set S(λ ,µ), and the conditions on these mappings A,B,C,F,N,M,P,g,m,η under which the

solution set S(λ ,µ) is nonempty and Lipschitz continuous with respect to the parameters λ ∈Λ,

µ ∈Ω.

4. Sensitivity analysis of the solution set S(λ ,µ)

First, we define the following concepts.

Definition 4.1[11,12]. A mapping g : H×Λ→ H is said to be:

(i) (Lg, lg)-mixed Lipschitz continuous if there exist constants Lg, lg > 0 such that

‖g(x1,λ1)−g(x2,λ2)‖ ≤ Lg‖x1− x2‖+ lg‖λ1−λ2‖, ∀(x1,λ1), (x2,λ2) ∈ H×Λ;

(ii) s-strongly monotone if there exists a constant s > 0 such that

〈g(x1,λ )−g(x2,λ ), x1− x2〉 ≥ s‖x1− x2‖2, ∀(x1,λ ),(x2,λ ) ∈ H×Λ.
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Definition 4.2[11,12]. A multi-valued mapping A : H×Ω→ C(H) is said to be (LA, lA)-H -

mixed Lipschitz continuous if there exist constants LA, lA > 0 such that

H (A(x1,µ1),A(x2,µ2)) ≤ LA‖x1− x2‖+ lA‖µ1−µ2‖, ∀(x1,µ1),(x2,µ2) ∈ H×Ω.

Definition 4.3[11,12]. Let A,B,C : H×Ω→C(H) be multi-valued mappings. A single-valued

mapping N : H×H×H×Ω→ H is said to be:

(i) α-strongly mixed monotone with respect to A, B and C if there exists a constant α > 0

such that

〈N(u1,v1,w1,µ)−N(u2,v2,w2,µ), x− y〉 ≥ α‖x− y‖2, ∀(x,y,µ) ∈ H×H×Ω,

u1 ∈ A(x,µ), u2 ∈ A(y,µ), v1 ∈ B(x,µ), v2 ∈ B(y,µ), w1 ∈C(x,µ), w2 ∈C(y,µ);

(ii) (L(N,1),L(N,2),L(N,3), lN)-mixed Lipschitz continuous if there exist constants L(N,1), L(N,2), L(N,3),

lN > 0 such that

‖N(x1,y1,z1,µ1)−N(x2,y2,z2,µ2)‖ ≤ L(N,1)‖x1− x2‖+L(N,2)‖y1− y2‖

+L(N,3)‖z1− z2‖+ lN‖µ1−µ2‖,

∀(x1,y1,z1,µ1), (x2,y2,z2,µ2) ∈ H×H×H×Ω.

Now, we transfer the PGMIQVLIP (3.1) into a parametric fixed-point problem.

Lemma 4.1. For each ( f ,λ ,µ) ∈ H×Λ×Ω, (x,u,v,w,z) with x = x(λ ,µ) ∈ H, u = u(x,µ) ∈

A(x,µ), v = v(x,µ) ∈ B(x,µ), w = w(x,µ) ∈C(x,µ) and z = z(x,λ ) ∈ F(x,λ ) such that (g−

m)(x,λ ) ∈ domainM(·,z,λ ) is a solution of the PGMIQVLIP (3.1) if and only if the multi-

valued mapping G : H×Λ×Ω→ 2H defined by

G(t,λ ,µ)=
⋃

u∈A(t,µ),v∈B(t,µ),w∈C(t,µ),z∈F(t,λ )

[
t−(g−m)(t,λ )

+RM(·,z,λ )
P,η (P◦ (g−m)(t,λ )−ρN(u,v,w,µ)+ρ f )

]
, t ∈ H, (4.1)

has a fixed point, where P : H → H; P◦ (g−m) denotes P composition of (g−m); RM(·,z,λ )
P,η =

(P+ρM(·,z,λ ))−1 and ρ > 0 is a constant.
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Proof. For each ( f ,λ ,µ) ∈ H ×Λ×Ω, PGMIQVLIP (3.1) has a solution (x,u,v,w,z) if and

only if

f ∈ N(u,v,w,µ)+M((g−m)(x,λ ),z,λ )

⇔ P◦ (g−m)(x,λ )−ρN(u,v,w,µ)+ρ f ∈ (P+ρM(·,z,λ ))((g−m)(x,λ )).

Since for each (z,λ ) ∈ H×Λ, M(·,z,λ ) is maximal strongly P-η-monotone, by definition of

strongly P-η-proximal mapping RM(·,z,λ )
P,η of M(·,z,λ ), preceding inclusion holds if and only if

(g−m)(x,λ ) = RM(·,z,λ )
P,η [P◦ (g−m)(x,λ )−ρN(u,v,w,µ)+ρ f ],

that is x ∈ G(x,λ ,µ). This completes the proof.

Theorem 4.1. Let the multi-valued mappings A,B,C : H×Ω→C(H) and F : H×Λ→C(H)

be H -Lipschitz continuous in the first arguments with constant LA,LB,LC and LF , respectively.

Let the mappings η : H×H → H be τ-Lipschitz continuous and P : H → H be δ -strongly η-

monotone. Let the mappings g,m : H×Λ→H be such that (g−m) is s-strongly monotone and

L(g−m)-Lipschitz continuous in the first argument and P ◦ (g−m) be r-strongly monotone and

LP◦(g−m)-Lipschitz continuous in the first argument. Let the mapping N : H×H×H×Ω→ H

be α-strongly mixed monotone with respect to A, B and C and (L(N,1),L(N,2),L(N,3), lN)-mixed

Lipschitz continuous. Suppose that the multi-valued mapping M : H ×H ×Λ→ 2H is such

that for each (z,λ ) ∈ H ×Λ, M(·,z,λ ) : H → 2H is γ-strongly maximal P-η-monotone with

range(g−m)(H×{λ})∩ domainM(·,z,λ ) 6= /0. Suppose that there exist constants k1,k2 > 0

such that

‖RM(·,x1,λ1)
P,η (t)−RM(·,x2,λ2)

P,η (t)‖ ≤ k1‖x1− x2‖+ k2‖λ1−λ2‖, ∀x1,x2, t ∈ H; λ1,λ2 ∈ Λ, (4.2)

and suppose for ρ > 0, the following condition holds:

θ = q+ ε(ρ)< 1, (4.3)

where q := k1LF +
√

1−2s+L2
(g−m)

; ε(ρ) := τ

δ+ργ

[
p+
√

1−2ρα +ρ2L2
N

]
;

p :=
√

1−2r+L2
p◦(g−m)

; LN := (LAL(N,1)+LBL(N,2)+LCL(N,3)).
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Then, for each fixed f ∈ H, the multi-valued mapping G defined by (4.1) is a compact-valued

uniform θ -H -contraction mapping with respect to (λ ,µ) ∈ Λ×Ω, where θ is given by (4.3).

Moreover, for each (λ ,µ)∈Λ×Ω, the solution set S(λ ,µ) of the PGMIQVLIP (3.1) is nonemp-

ty and closed.

Proof. Let (x,λ ,µ) be an arbitrary element of H×Λ×Ω. Since A,B,C,F are compact-valued,

then for any sequences {un} ⊂ A(x,µ), {vn} ⊂ B(x,µ), {wn} ⊂C(x,µ), {zn} ⊂ F(x,λ ), there

exist subsequences {uni} ⊂ {un}, {vni} ⊂ {vn}, {wni} ⊂ {wn}, {zni} ⊂ {zn} and elements u ∈

A(x,µ), v ∈ B(x,µ), w ∈C(x,µ), z ∈ F(x,λ ) such that uni → u, vni → v, wni → w, zni → z as

i→ ∞. By using Theorem 2.2, (4.2) and the mixed Lipschitz continuity of N, we estimate

‖RM(·,zni ,λ )

P,η [P◦ (g−m)(x,λ )−ρN(uni,vni,wni,µ)+ρ f ]

−RM(·,z,λ )
P,η [P◦ (g−m)(x,λ )−ρN(u,v,w,µ)+ρ f ]‖

≤ ‖RM(.,zni ,λ )

P,η [P◦ (g−m)(x,λ )−ρN(uni,vni,wni,µ)+ρ f ]

−RM(·,z,λ )
P,η [P◦ (g−m)(x,λ )−ρN(uni,vni,wni,µ)+ρ f ]‖

+‖RM(·,z,λ )
P,η [P◦ (g−m)(x,λ )−ρN(uni,vni,wni,µ)+ρ f ]

−RM(·,z,λ )
P,η [P◦ (g−m)(x,λ )−ρN(u,v,w,µ)+ρ f ]‖

≤ k1‖zni− z‖+ρ
τ

δ +ργ
‖N(uni,vni,wni,µ)−N(u,v,w,µ)‖

≤ k1‖zni− z‖+ρ
τ

δ +ργ

[
L(N,1)‖uni−u‖+L(N,2)‖vni− v‖+L(N,3)‖wni−w‖

]
→ 0, as i→ ∞. (4.4)

Thus (4.1) and (4.4) yield that G(x,λ ,µ) ∈C(H).

Now, for each fixed (λ ,µ) ∈ Λ×Ω, we prove that G(x,λ ,µ) is a uniform θ -H -contraction

mapping. Let (x1,λ ,µ), (x2,λ ,µ) ∈ H ×Λ×Ω and any t1 ∈ G(x1,λ ,µ), there exist u1 =

u1(x1,µ) ∈ A(x1,µ), v1 = v1(x1,µ) ∈ B(x1,µ), w1 = w1(x1,µ) ∈C(x1,µ) and z1 = z1(x1,λ ) ∈

F(x1,λ ) such that

t1 = x1− (g−m)(x1,λ )+RM(·,z1,λ )
P,η [P◦ (g−m)(x1,λ )−ρN(u1,v1,w1,µ)+ρ f ]. (4.5)
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It follows from the compactness of A(x2,µ), B(x2,µ), C((x2,µ) and F(x2,λ ) and H -Lipschitz

continuity of A,B,C,F that there exist u2 = u2(x2,µ) ∈ A(x2,µ), v2 = v2(x2,µ) ∈ B(x2,µ),

w2 = w2(x2,µ) ∈C(x2,µ) and z2 = z2(x2,λ ) ∈ F(x2,λ ) such that

‖u1−u2‖ ≤ H (A(x1,µ), A(x2,µ)) ≤ LA‖x1− x2‖,

‖v1− v2‖ ≤ H (B(x1,µ), B(x2,µ)) ≤ LB‖x1− x2‖,

‖w1−w2‖ ≤ H (C(x1,µ),C(x2,µ)) ≤ LC‖x1− x2‖,

‖z1− z2‖ ≤ H (F(x1,λ ), F(x2,λ )) ≤ LF‖x1− x2‖. (4.6)

Let

t2 = x2− (g−m)(x2,λ )+RM(·,z2,λ )
P,η [P◦ (g−m)(x2,λ )−ρN(u2,v2,w2,µ)+ρ f ], (4.7)

then we have t2 ∈ G(x2,λ ,µ).

Next, using Theorem 2.2 and (4.1), we estimate

‖t1− t2‖ ≤ ‖x1− x2− ((g−m)(x1,λ )− (g−m)(x2,λ ))‖

+‖RM(·,z1,λ )
P,η [P◦ (g−m)(x1,λ )−ρN(u1,v1,w1,µ)+ρ f ]

−RM(·,z2,λ )
P,η [P◦ (g−m)(x1,λ )−ρN(u1,v1,w1,µ)+ρ f ]‖

+‖RM(·,z2,λ )
P,η [P◦ (g−m)(x1,λ )−ρN(u1,v1,w1,µ)+ρ f ]

−RM(·,z2,λ )
P,η [P◦ (g−m)(x2,λ )−ρN(u2,v2,w2,µ)+ρ f ]‖

≤ ‖x1− x2− ((g−m)(x1,λ )− (g−m)(x2,λ ))‖+ k1‖z1− z2‖

+
τ

δ +ργ

[
‖x1− x2− (P◦ (g−m)(x1,λ )−P◦ (g−m)(x2,λ ))‖

+‖x1− x2−ρ(N(u1,v1,w1,µ)−N(u2,v2,w2,µ))‖
]
. (4.8)

Since (g−m) is s-strongly monotone and L(g−m)-Lipschitz continuous, we have

‖x1− x2− ((g−m)(x1,λ )− (g−m)(x2,λ ))‖2

≤ ‖x1−x2‖2−2〈(g−m)(x1,λ )−(g−m)(x2,λ ),x1−x2〉+‖(g−m)(x1,λ )−(g−m)(x2,λ )‖2

≤ (1−2s+L2
(g−m))‖x1− x2‖2. (4.9)
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Similarly, since P◦(g−m) is r-strongly monotone and LP◦(g−m)-Lipschitz continuous, we have

‖x1−x2−(P◦(g−m)(x1,λ )−P◦(g−m)(x2,λ ))‖2 ≤ (1−2r+L2
P◦(g−m))‖x1−x2‖2. (4.10)

Since N is (L(N,1), L(N,2), L(N,3), lN)-mixed Lipschitz continuous; A,B,C are H -Lipschitz con-

tinuous, we have

‖N(u1,v1,w1,µ)−N(u2,v2,w2,µ)‖ ≤ L(N,1)‖u1−u2‖+L(N,2)‖v1− v2‖+L(N,3)‖w1−w2‖

≤ L(N,1)H (A(x1,µ),A(x2,µ))+L(N,2)H (B(x1,µ),B(x2,µ))+L(N,3)H (C(x1,µ),C(x2,µ))

≤ (LAL(N,1)+LBL(N,2)+LCL(N,3))‖x1− x2‖. (4.11)

Further, since N is α-strongly mixed monotone with respect to A, B and C and using (4.11), we

have

‖x1−x2−ρ(N(u1,v1,w1,µ)−N(u2,v2,w2,µ))‖2

≤ ‖x1− x2‖2−2ρ〈N(u1,v1,w1,µ)−N(u2,v2,w2,µ), x1− x2〉

+ρ
2‖N(u1,v1,w1,µ)−N(u2,v2,w2,µ)‖2

≤ ‖x1− x2‖2−2ρα‖x1− x2‖2 +ρ
2(LAL(N,1)+LBL(N,2)+LCL(N,3))

2‖x1− x2‖2

≤
(

1−2ρα +ρ
2(LAL(N,1)+LBL(N,2)+LCL(N,3))

2
)
‖x1− x2‖2. (4.12)

Now, from (4.8)-(4.12), we have

‖t1− t2‖ ≤ θ ‖x1− x2‖, (4.13)

where θ := q+ ε(ρ) ; q := k1LF +
√

1−2s+L2
(g−m)

;

ε(ρ) :=
τ

δ +ργ

[√
1−2r+L2

P◦(g−m)
+
√

1−2ρα +ρ2L2
N

]
;

LN := (LAL(N,1)+LBL(N,2)+LCL(N,3)).

Hence, we have

d(t1,G(x2,λ ,µ)) = inf
t2∈G(x2,λ ,µ)

‖t1− t2‖ ≤ θ‖x1− x2‖.

Since t1 ∈ G(x1,λ ,µ) is arbitrary, we obtain

sup
t1∈G(x1,λ ,µ)

d(t1,G(x2,λ ,µ)) ≤ θ‖x1− x2‖.
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By using same argument, we can prove

sup
t2∈G(x2,λ ,µ)

d(G(x1,λ ,µ), t2) ≤ θ‖x1− x2‖.

By the definition of the Hausdorff metric H on C(H), we have

H
(

G(x1,λ ,µ),G(x2,λ ,µ)
)
≤ θ‖x1− x2‖, (4.14)

that is, G(x,λ ,µ) is a uniform θ -H -contraction mapping with respect to (λ ,µ)∈Λ×Ω. Also,

it follows from condition (4.3) that θ < 1 and hence G(x,λ ,µ) is a multi-valued contraction

mapping which is uniform with respect to (λ ,µ) ∈ Λ×Ω. By Lemma 2.1 for each (λ ,µ) ∈

Λ×Ω, G(x,λ ,µ) has a fixed point x = x(λ ,µ) ∈H, that is, x = x(λ ,µ) ∈G(x,λ ,µ) and hence

Lemma 4.1 ensure that S(λ ,µ) 6= /0. Further, for any sequence {xn}⊂ S(λ ,µ) with lim
n→∞

xn = x0,

we have xn ∈ G(xn,λ ,µ) for all n≥ 1. By virtue of (4.14), we have

d(x0,G(x0,λ ,µ)) ≤ ‖x0− xn‖+H
(

G(xn,λ ,µ),G(x0,λ ,µ)
)

≤ (1+θ)‖xn− x0‖→ 0 as n→ ∞,

that is, x0 ∈ G(x0,λ ,µ) and hence x0 ∈ S(λ ,µ). Thus S(λ ,µ) is closed in H.

Now, we prove that the solution set S(λ ,µ) of the PGMIQVLIP (3.1) is H -Lipschitz con-

tinuous for each (λ ,µ) ∈ Λ×Ω.

Theorem 4.2. Let the multi-valued mappings A,B,C and F be H -mixed Lipschitz continu-

ous with pairs of constants (LA, lA), (LB, lB), (LC, lC) and (LF , lF), respectively. Let the map-

pings η ,P be the same as in Theorem 4.1. Let the mappings (g−m) be s-strongly mono-

tone and (L(g−m), l(g−m))-mixed Lipschitz continuous, and P◦ (g−m) be r-strongly monotone

and (LP◦(g−m), lP◦(g−m))-mixed Lipschitz continuous. Let the mapping N be α-strongly mixed

monotone with respect to A, B and C, and (L(N,1),L(N,2), l(N,3), lN)-mixed Lipschitz continu-

ous. Suppose that the multi-valued mapping M is same as in Theorem 4.1 and condition (4.3)

holds, then for each (λ ,µ) ∈ Λ×Ω, the solution set S(λ ,µ) of the PGMIQVLIP (3.1) is a

H -Lipschitz continuous mapping from Λ×Ω into H.

Proof. For each (λ ,µ), (λ̄ , µ̄) ∈ Λ×Ω, it follows from Theorem 4.1, S(λ ,µ) and S(λ̄ , µ̄) are

both nonempty and closed subsets of H. Also by Theorem 4.1, G(x,λ ,µ) and G(x, λ̄ , µ̄) both
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are multi-valued θ -H -contraction mappings with same contractive constant θ ∈ (0,1). By

Lemma 2.2, we obtain

H (S(λ ,µ), S(λ̄ , µ̄)) ≤
( 1

1−θ

)
sup
x∈H

H (G(x,λ ,µ),G(x, λ̄ , µ̄)), (4.15)

where θ is given by (4.3).

Now, for any a ∈ G(x,λ ,µ), there exist u = u(x,µ) ∈ A(x,µ), v = v(x,µ) ∈ B(x,µ), w =

w(x,µ) ∈C(x,µ) and z = z(x,λ ) ∈ F(x,λ ) satisfying

a = x− (g−m)(x,λ )+RM(·,z,λ )
P,η [P◦ (g−m)(x,λ )−ρN(u,v,w,µ)+ρ f ]. (4.16)

It is easy to see that there exist ū = u(x, µ̄) ∈ A(x, µ̄), v̄ = v(x, µ̄) ∈ B(x, µ̄), w̄ = w(x, µ̄) ∈

C(x, µ̄) and z̄ = z(x, λ̄ ) ∈ F(x, λ̄ ) such that

‖u− ū‖ ≤ H (A(x,µ), A(x, µ̄)) ≤ lA‖µ− µ̄‖,

‖v− v̄‖ ≤ H (B(x,µ), B(x, µ̄)) ≤ lB‖µ− µ̄‖,

‖w− w̄‖ ≤ H (C(x,λ ),C(x, µ̄)) ≤ lC‖µ− µ̄‖,

‖z− z̄‖ ≤ H (F(x,λ ),F(x, λ̄ )) ≤ lF‖λ − λ̄‖. (4.17)

Let

b = x− (g−m)(x, λ̄ )+RM(·,z̄,λ̄ )
P,η [P◦ (g−m)(x, λ̄ )−ρN(ū, v̄, w̄, µ̄)+ρ f ]. (4.18)

Clearly, b ∈ G(x, λ̄ , µ̄).

Since N is mixed Lipschitz continuous and in view of (4.2), (4.16)-(4.18) and with t = P◦ (g−

m)(x, λ̄ )−ρN(ū, v̄, w̄, µ̄)+ρ f , we have

‖a−b‖ ≤ ‖(g−m)(x,λ )− (g−m)(x, λ̄ )‖

+‖RM(·,z,λ )
P,η [P◦ (g−m)(x,λ )−ρN(u,v,w,µ)+ρ f ]−RM(·,z,λ )

P,η (t)‖

+‖RM(·,z,λ )
P,η (t)−RM(·,z̄,λ )

P,η (t)‖+‖RM(·,z̄,λ )
P,η (t)−RM(·,z̄,λ̄ )

P,η (t)‖

≤ ‖(g−m)(x,λ )− (g−m)(x, λ̄ )‖

+
τ

δ +ργ

[
‖P◦ (g−m)(x,λ )−P◦ (g−m)(x, λ̄ )‖

+ρ‖N(u,v,w,µ)−N(ū, v̄, w̄, µ̄)‖
]
+ k1‖z− z̄‖+ k2‖λ − λ̄‖
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≤ l(g−m)‖λ − λ̄‖+ τ

δ +ργ

[
lP◦(g−m)‖λ − λ̄‖

+ρ(lAL(N,1)+ lBL(N,2)+ lCL(N,3)+ lN)‖µ− µ̄‖
]
+ k1lF‖λ − λ̄‖+ k2‖λ − λ̄‖

≤ θ1

(
‖λ − λ̄‖+‖µ− µ̄‖

)
, (4.19)

where

θ1 := max
{
(l(g−m)+ k1lF + k2 +

τ

δ +ργ
LP◦(g−m)),

τ

δ +ργ
(lAL(N,1)+ lBL(N,2)+ lCL(N,3)+ lN)

}
.

Hence, we obtain

sup
a∈G(x,λ ,µ̄)

d(a,G(x, λ̄ ,µ)) ≤ θ1‖(λ ,µ)− (λ̄ , µ̄)‖∗,

where ‖(λ ,µ)‖∗ = ‖λ‖+‖µ‖.

By using similar argument, we have

sup
b∈G(x,λ̄ ,µ̄)

d(G(x,λ ,µ),b) ≤ θ1‖(λ ,µ)− (λ̄ , µ̄)‖∗.

Hence, for all (x,λ ,µ),(x, λ̄ , µ̄) ∈ H×Λ×Ω, it follows that

H (G(x,λ ,µ),G(x, λ̄ , µ̄))≤ θ1‖(λ ,µ)− (λ̄ , µ̄)‖∗.

By Lemma 2.2, we obtain

H (S(λ ,µ),S(λ̄ , µ̄)) ≤
(

θ1

1−θ

)
‖(λ ,µ)− (λ̄ , µ̄)‖∗,

which implies that S(λ ,µ) is H -Lipschitz continuous in (λ ,µ) ∈ Λ×Ω. This completes the

proof.

Remark 4.1. Since the PGMIQVLIP (3.1) includes many known classes of parametric general-

ized quasi-variational-like inclusions as special cases, Theorems 4.1-4.2 improve and generalize

the known results given in [5,6,8,10-14,18,19,22].
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