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Abstract. The rainbow number rb(G,H) for the graph H in G is defined to be the minimum integer k such that

any k-edge-coloring of G contains a rainbow H. As one of the most important structures in graphs, the rainbow

number of matchings has drawn much attention and has been extensively studied. In this paper, we determine the

rainbow number of some small matchings in Halin graphs.
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1. Introduction

An edge-colored graph is called a rainbow graph if the colors on its edges are distinct. The

anti-Ramsey number AR(G,H) is defined to be the maximum number of colors in an edge

coloring of G without any rainbow H. The anti-Ramsey number was introduced by Erdős et

al. [2] in 1973 and and always, the anti-Ramsey number plus is called the rainbow number of a

∗Corresponding author

E-mail address: 178558868600@163.com

Received March 29, 2018

33



34 LINGYUN SANG, HUAPING WANG, KUN YE

graph. The anti-Ramsey numbers of many graphs have been determined, see two comprehensive

surveys [3, 11].

The anit-Ramsey number for matchings in complete graphs was determined in [1, 4, 14]

independently. During the last ten years, the researchers began to consider the anti-Ramsey

problem in more host graphs other than complete graphs, see [12, 6, 7, 13, 5, 9, 8, 10].

In this paper, we consider the rainbow number of matchings in Halin graphs. A Halin graph

is a type of planar graph, constructed by connecting the leaves of a tree into a cycle. The tree

must have at least four vertices, none of which has exactly two neighbors. It should be drawn

in the plane so none of its edges cross (this is called planar embedding), and the cycle connects

the leaves in their clockwise ordering in this embedding. Thus, the cycle forms the outer face

of the Halin graph, with the tree inside it.

In 1971, Halin introduced the Halin graphs as a class of minimally 3-vertex-connected graphs:

for every edge in the graph, the removal of that edge reduces the connectivity of the graph.

These graphs gained in significance with the discovery that many algorithmic problems that

were computationally infeasible for arbitrary planar graphs could be solved efficiently on them.

Let c be an edge-coloring of the graph G. Denote by c(G) the set colors appearing on the

edges of G. For an edge e ∈ E(G), denote by c(e) the color assigned to the edge e.

2. Main results

Denote by H L n the family of Halin graphs of order n. In this section, we give lower and

upper bounds on rb(H L n,kK2) for all k ≥ 3 and n ≥ 2k. Clearly, if HLn is a Halin graph of

order n≥ 4, then δ (HLn)≥ 3. First we give two definitions.

Definition 2.1. A star is a tree with exactly one internal vertex. Applying the Halin graph

construction to a star produces a wheel graph. Definition Wp is a wheel graph with p leaves in

its tree.

Definition 2.2. A maximal outerplanar graph is a planar graph that is not a spanning subgraph

of another outerplanar graph. Definition Mn is a maximal outerplanar graph of order n.
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Lemma 2.3. (Degree-Sum Formula) For a graph G = (V,E),

∑
v∈V (G)

d(v) = 2|E(G)|.

Lemma 2.4. Let HLn be a Halin graph, d3n
2 e ≤ |E(HLn)| ≤ 2n−2.

Proof. First we prove the upper bound of the edge of HLn. HLn is formed by embedding

a tree T having no degree-2 vertices in the plane and connecting its leaves by a cycle C that

crosses none of its edges. Since HLn has n vertices, we get |E(T )| ≤ n− 1. Since there are at

most only n−1 leaves in T , we get |E(C)| ≤ n−1. So |E(HLn)| ≤ 2n−2.

Next we will prove the lower bound of the edge of HLn. Since δ (HLn)≥ 3, we get ∑
v∈V (HLn)

d(v)≥

3n for all v ∈ HLn. According to the lemma , we can get |E(HLn)| ≥ d3n
2 e.

Hence d3n
2 e ≤ |E(HLn)| ≤ 2n−2. The proof is complete. �

Lemma 2.5. rb(H L n,2K2) =

 4, n = 4;

2, n≥ 5.
.

Proof. Let HLn be a Halin graph of order n. First we consider the case n = 4. The edges of

HL4 can be partitioned into E1,E2,E3, where both E1, E2 and E3 are matching of size 2. We

color the edges in Ei by the color i for i = 1,2,3. Clearly, there is not any rainbow matching of

size 2. On the other hand, if we color the edges of HL4 by 4 colors, then at least one of E1, E2

and E3 is rainbow. This proves that rb(Mn,2K2) = 4.

When n≥ 5, let HLn be a Halin graph of order n. We color the edges of HLn by color 1 and

color 2. Let w∈V (HLn) and the edges connected with w contains two colors. Let the neighbors

of w is a set {v1,v2, ...,vd} and d ≥ 2. Without loss of generality, we let c(wv1) 6= c(wv2). Since

n ≥ 5, there must be two disjoint edges e1,e2 that do not belong to E = {wvi|1 ≤ i ≤ d}, and

e1,e2 are connected with v1,v2, respectively. Suppose that HLn does not contain any rainbow

2K2, then c(e1) = c(wv2) and c(e2) = c(wv1). Since c(wv1) 6= c(wv2), we get c(e1) 6= c(e2).

Since e1,e2 are disjointed, we get {e1,e2} is a rainbow 2K2, a contradiction.

The proof is complete. �
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Now we will show the exact values of rb(H L n,3K2) for all n ≥ 6. First we give two

lemmas.

Lemma 2.6. Let G be an edge colored graph of order n≥ 6 which contains a rainbow 4-cycle,

say v1v2v3v4v1. If there is an edge in G−{v1,v2,v3,v4}, then G contains a rainbow 3K2.

A graph G is called factor-critical if G− v contains a perfect matching for every vertex v ∈

V (G).

Lemma 2.7. [15] Given a graph G = (V,E) of order n, let d be the size of a maximum

matching of G. Then there exists a subset S ⊂ V such that d = 1
2(n− (o(G−S)−|S|)), where

o(G−S) is the number of odd components in G−S. Moreover, each odd component of G−S

is factor-critical.

Theorem 2.8. For all n≥ 6, rb(Mn,3K2) = n+1.

Proof. We have proved the lower bound in the previous section and here we only consider the

upper bound case. Let HLn be a Halin graph with n vertices. Let c be a (n+1)-edge-coloring

of HLn. Clearly, HLn contains a rainbow 2K2. Suppose that HLn does not contain any rainbow

3K2. Now let G⊂ HLn be a rainbow spanning subgraph of size n+1 which contains a 2K2.

Since the size of the maximum matching of G is 2, by Lemma , there exists a subset S⊂V (G)

such that o(G− S)− |S| = n− 4. Let |S| = s, o(G− S) = q and denote the odd components

of G− S be A1,A2, ...,Aq. Let |V (Ai)| = ai for 1 ≤ i ≤ q and a1 ≥ a2 ≥ ... ≥ aq ≥ 1. Let

C(G) =V (G−S)\{
q⋃

i=1

V (Ai)}.

Since q = s+n−4 and s+q ≤ n, then 0 ≤ s ≤ 2. We distinguish the following three cases

to finish the proof of the theorem.

Case 1. s = 0.

In this case, q = n−4. If a1 ≤ 3, then |E(G)| ≤ 6 < n+1, a contradiction. Then a1 = 5 and

a2 = a3 = ...= aq = 1. When n≥ 8, |E(G)| ≤ 2×5−2 = 8 < n+1, a contradiction.

When n = 7, suppose that |E(G)| ≥ 8, we get G[V (A1)] ∼=W4. Then, there are one non-leaf

vertex and four leaf vertices in V (A1). This four leaf vertices will form a cycle. For n ≥ 6, the

remaining vertices in the graph HLn can only be connected with the non-leaf vertices in A1.

This contradicts that δ (HLn)≥ 3. Then |E(G)|< 8 = n+1, a contradiction. So n = 6.
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When n = 6, suppose that |E(G)| ≥ 8, we get G[V (A1)] ∼= W4. Contradictions can be seen

form the above. Suppose that |E(G)|= 7, then G[V (A1)]∼=M5. Hence G[V (A1)] contains a rain-

bow C4. Since HLn is a connected plane graph, there must be an edge between V (A1)\V (C4)

and V (A2) in graph HLn. By lemma , we get HLn contains a rainbow 3K2, a contradiction.

Then |E(G)|< 7 = n+1, a contradiction.

Case 2. s = 1.

In this case, q = s+ n− 4 = n− 3. If |C(G)| = 2, then a1 = 1. Then |E(G)| ≤ 1+ n− 1 =

n < n+1, a contradiction. So |C(G)|= 0. Hence a1 = 3 and a2 = a3 = ...= aq = 1.

Since A1 is factor-critical, A1 ∼= C3. Then, there is only one non-leaf vertex in V (A1). So

|EG(V (A1),S)| ≤ 1. We get |E(G)| ≤ 3+(n−4)+1 = n < n+1, a contradiction.

Case 3. s = 2.

In this case, q = s+ n− 4 = n− 2, then |C(G)| = 0 and a1 = a2 = ... = aq = 1. Let S =

{w1,w2}, V (Ai) = {vi}(i = 1,2, ...,n−2) and U = {v1,v2, ...,vn−2}.

Suppose that w1w2 /∈ E(G). Since |E(G)| = n+ 1, there are (n+ 1)− (n− 2) = 3 vertices

in U which have 2 degrees in graph G. Without loss of generality, we let dG(v1) = dG(v2) =

dG(v3) = 2 and U1 = {v4,v5, ...,vn−2}, U2 = {v1,v2,v3}.

Suppose that w1,w2 are non-leaf vertices. Suppose that there is a leaf vertex in U2, then one

leaf vertex connects two non-leaf vertices. This contradicts that HLn is a Halin graph. So all

vertices of U2 are non-leaf vertices. Then tow vertices of U2 and w1,w2 will form a 4-cycle, that

is to say, non-leaf vertices form a 4-cycle. This contradicts that the tree T of HLn has no cycle.

Hence, there is only one non-leaf vertices in S.

Without loss of generality, we assume that w1 is a non-leaf vertices. There is one vertex of

U2 lie in the inner area of a 4-cycle. Without loss of generality, we let v3 lie in the inner area of

cycle v1w1v2w2v1. Since w2 is a leaf vertex, there is only one non-leaf vertex in U2. Suppose

that v3 is a non-leaf vertex, then v1,v2 are leaf vertices and v1,v2 are not connected with v3. We

can get dHLn(v3) = 2, This contradicts that δ (HLn) = 3. Then v3 is a leaf vertex. Since there is

one non-leaf vertex in U2, without loss of generality, we let v1 is a non-leaf vertex. Since one

leaf vertex only connects one non-leaf vertex and w1v3 ∈ E(HLn), we get v1v3 /∈ E(HLn). Since
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w2,v2 are two leaf vertices, v2v3 /∈ E(HLn), otherwise leaf vertex w2,v2,v3 will form a C3. We

can get dHLn(v3) = 2, this contradicts that δ (HLn) = 3. Then w1w2 ∈ E(G).

Since |E(G)|= n+1, we choose two vertices v1,v2 from U such that dG(v1)= dG(v2)= 2 and

dG(vi)= 1(3≤ i≤ n−2). Let U3 = {v3,v4, ...,vn−2} and U4 = {v1,v2}, we get |EHLn(S,U4)|= 4

and |EHLn(S,U3)|= n−4. Let c(w1v1) = 1, c(w1v2) = 2, c(w2v1) = 3, c(w2v2) = 4, c(w1w2) =

5. Without loss of generality, we assume that w2v3 ∈ E(G). Let c(w2v3) = 6, then w2 is a

non-leaf vertex. Since G[S∪U4] contains a rainbow 4-cycle, we get E(HLn[U3]) = /0, otherwise

HLn contains a rainbow 3K2.

Suppose that E(HLn[U4]) 6= /0, then v1v2 ∈ E(HLn). Suppose that v1,v2 are non-leaf vertices,

then non-leaf vertices v1,v2,w2 will form a cycle. This contradicts that the tree T of HLn has

no cycle. Suppose that there is only one leaf vertex in {v1,v2}. Without loss of generality, we

assume that v1 is a non-leaf vertex, then v2 is a leaf vertex. Since leaf vertex v2 connects two

non-leaf vertices v1,w2, this contradicts that HLn is a Halin graph. Suppose that v1,v2 are leaf

vertices, we get w1 is a leaf vertex, otherwise leaf vertices v1,v2 connects two non-leaf vertices

w1,w2. Then leaf vertices v1,v2,w1 will form a cycle. Since n≥ 6, this contradicts that HLn is

a Halin graph. Then E(HLn[U4]) = /0.

We get |EHLn(U3,U4)| ≥ d3n
2 e− 1− 4− (n− 4) = d3n

2 e− n− 1. So, when n ≥ 6, we have

|EHLn((U3,U4)| ≥ 1. Let |EHLn({v3},U4)|≥ |EHLn({v4},U4)|≥ ... ≥|EHLn({vn−2},U4)|, then

|EHLn({v3},U4)| ≥ 1. Without loss of generality, we assume that v1v3 ∈ E(HLn).

Without loss of generality, we assume that w2v4 ∈ E(G) and let c(w2v4) = 7, then c(v1v3) ∈

{2,7}. Now we suppose that there is a vertex u in {v4,v5, ...,vn−2} such that v2u ∈ E(Mn),

then c(v2u) ∈ {1,6}. We get {w1w2,v1v3,v2u} is a rainbow 3K2 in HLn, a contradiction. So

v2vi /∈ E(HLn)(i = 4, ...,n−2), then v1vi ∈ E(HLn)(i = 3,4, ...,n−2). Hence, v1 is a non-leaf

vertex. Suppose that v3 is a leaf vertex, then leaf vertex v3 connects two non-leaf vertices v1,w2,

this contradicts that HLn is a Halin graph. Then v3 is a non-leaf vertex. We get non-leaf vertices

{v1,v3,w2} form a cycle. This contradicts that the tree T of HLn has no cycle.

The proof is complete. �

Now, we will show that the exact value of rb(Mn,4K2) for all n≥ 8. First we give a lemma.
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Lemma 2.9. Let G be an edge-colored graph of order n ≥ 8 which contains a rainbow 6-

cycle, say v1v2v3v4v5v6v1. If there is an edge in G−{v1,v2,v3,v4,v5,v6}, then G contains a

rainbow 4K2.

Theorem 2.10. For all n≥ 8, rb(H L n,4K2) = n+3.

Proof. We have proved the lower bound in the previous section and here we only consider the

upper bound case. Let HLn be a Halin graph with n vertices. Let c be a (n+3)-edge-coloring

of HLn. Clearly, HLn contains a rainbow 3K2. Suppose that HLn does not contain any rainbow

4K2. Now let G⊂ HLn be a rainbow spanning subgraph of size n+3 which contains a 3K2.

Since the size of the maximum matching of G is 3, by Lemma , there exists a subset S⊂V (G)

such that o(G− S)− |S| = n− 6. Let |S| = s, o(G− S) = q and denote the odd components

of G− S be A1,A2, ...,Aq. Let |V (Ai)| = ai for 1 ≤ i ≤ q and a1 ≥ a2 ≥ ... ≥ aq ≥ 1. Let

C(G) =V (G−S)\{
q⋃

i=1

V (Ai)}.

Since q = s+n−6 and s+q≤ n, then 0≤ s≤ 3. We distinguish the following four cases to

finish the proof of the theorem.

Case 1. s = 0.

In this case, q = n−6. If a1≤ 3, then |E(G)| ≤ 10 < n+3(n≥ 8), a contradiction. So a1 = 5,

a2 = 3 and a3 = a4 = ... = aq = 1. When n ≥ 9, then |E(G)| ≤ 2 · 5− 2+ 3 = 11 < n+ 3, a

contradiction. When n = 8, suppose that |E(G)| ≥ 11, then G[V (A1)]∼=W4 and G[V (A2)]∼=C3.

So there are four leaf vertices in V (A1) and the four leaf vertices form a cycle. Since n≥ 8, this

contradicts that HLn is a Halin graph. Then, |E(G)|< 11 = n+3 for all n≥ 8, a contradiction.

Hence, a1 = 7 and a2 = a3 = ...= aq = 1.

When n ≥ 10, we get |E(G)| ≤ 2 · 7− 2 = 12 < n+ 3, a contradiction. Then n ≤ 9. When

n = 9, suppose that |E(G)| ≥ 12, then G[V (A1)] ∼= W6. So there are six leaf vertices in V (A1)

and the six leaf vertices will form a cycle. since n = 9, the remaining vertices in the graph

HL9 can only be connected to the non-leaf vertices in the A1, which contradicts δ (HLn) = 3.

Then, |E(G)| < 12 = n+ 3, a contradiction. Hence, n = 8. Suppose that |E(G)| ≥ 11, then

G[V (A1)] ∼= M7. We get G[V (A1)] contains a rainbow C6. Since HLn is a connected plane

graph, there must be an edge between V (A1) \V (C6) and V (A2) in HLn. By Lemma , HLn

contains a rainbow 4K2, a contradiction. Then |E(G)|< 11 = n+3, a contradiction.
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Case 2. s = 1.

In this case, q = s+n−6 = n−5. If |C(G)|= 4, then a1 = a2 = a3 = ...= aq = 1. Suppose

that G[C(G)]∼=W3, there are three leaf vertices in C(G) and this three leaf vertices form a cycle,

this contradicts that HLn is a Halin graph. Then, G[C(G)] ∼= M4. There is only one non-leaf

vertices in C(G), we get |EG(C(G),S)| ≤ 1. Then |E(G)| ≤ 2 ·4−3+1+n−5= n+1< n+3, a

contradiction. Hence |C(G)|= 2, and a1 = 3, a2 = a3 = ...= aq = 1. Since A1 is factor-critical,

A1 ∼= C3. There is only one non-leaf vertex in V (A1), we get |EG(V (A1),S)| ≤ 1. Hence,

|E(G)| ≤ 1+3+(n−6)+2+1 = n+1 < n+3, a contradiction. So |C(G)|= 0.

If a1 = 5, then a2 = a3 = ...= aq = 1. Suppose that G[V (A1)]∼=W4, then there are four leaf

vertices in V (A1) and the four leaf vertices form a cycle. Since n≥ 8, this contradicts that HLn

is a Halin graph. Then G[V (A1)] ∼= M5. There is only one non-leaf vertex in V (A1), we get

|EG(V (A1),S)| ≤ 1. Hence, |E(G)| ≤ (2 ·5−3)+1+(n−6) = n+2 < n+3, a contradiction.

Case 3. s = 2.

In this case, q= s+n−6= n−4. Let S= {w1,w2}. If |C(G)|= 2, then a1 = a2 = ...= aq = 1.

Suppose that w1w2 /∈ E(G). Since |E(G)| = n+ 3, there are n+ 3− 1− (n− 4)− 2 = 4

vertices in V (G)\S which are adjacent to both w1 and w2. Let this four vertices be v1,v2,v3,v4

and U1 = {v1,v2,v3,v4}. We get dHLn(w1)≥ 4, dHLn(w2)≥ 4, then w1,w2 are non-leaf vertices.

Suppose there is a vertex in U1 that is a leaf vertex, then there is a leaf vertex in U1 which is

connected to two non-leaf vertices. This contradicts that HLn is a Halin graph. So all of the

vertices in U1 are non-leaf vertices. And any two points in U1 and non-leaf vertex w1,w2 form

a C4, this contradicts that the tree T of HLn has no cycle. Hence w1w2 ∈ E(G).

Since |E(G)| = n+ 3, there are n+ 3− 1− 1− (n− 2) = 3 vertices in V (G) \ S which are

adjacent to both w1 and w2. We get dHLn(w1)≥ 4, dHLn(w2)≥ 4. Then we get the contradiction

form above. Hence |C(G)|= 0. So a1 = 3 and a2 = a3 = ...= aq = 1. Since A1 is factor-critical,

A1 ∼=C3. Then, there is only one leaf vertex in V (A1).

Suppose that there is only one leaf vertex in S and let w1 be the leaf point in S, then

|EG(V (A1),w1)| ≤ 2 and |EG(V (A1),w2)| ≤ 1. Hence |EG(V (A1),S)| ≤ 3. Since |EG(V (G) \

V (A1),w1)| ≤ 1, we get |E(G)| ≤ 3+ 3+ 1+(n− 5) = n+ 2 < n+ 3, a contradiction. Then

w1,w2 are non-leaf vertices and we get |EG(V (A1),S)| ≤ 1.
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Suppose that w1w2 /∈ E(G), then there are n+ 3− 3− 1− (n− 5) = 4 vertices in V (G) \ S

which are adjacent to both w1 and w2. We get dHLn(w1) ≥ 4 and dHLn(w2) ≥ 4, we can get

contradictions from above. Hence, w1w2 ∈ E(G). Then there are (n+ 3)− 3− 1− 1− (n−

5) = 3 vertices in V (G) \ S which are adjacent to both w1 and w2. We get dHLn(w1) ≥ 4 and

dHLn(w2)≥ 4, we can get contradictions from above.

Case 4. s = 3.

In this case, q = s+ n− 6 = n− 3, then |C(G)| = /0 and ai = 1 for all 1 ≤ i ≤ n− 3. Let

S = {w1,w2,w3}, V (Ai) = {vi} for all 1 ≤ i ≤ n− 3 and U = {v1,v2, ...,vn−3}. Suppose that

G[S]∼=C3, then there is only one non-leaf vertex in S. So |EG(U,S)| ≤ 2+2+(n−5) = n−1.

Then |E(G)| ≤ (n− 1) + 3 = n+ 2 < n+ 3, a contradiction. Hence G[S] ∼= P3 and let P3 =

w1w2w3.

Suppose that there are 3 vertices of U in graph G have the degree of 2. We choose two

vertices v1,v2 form U and such that dG(vi) = 3(i = 1,2) and dG(vi) = 1(i = 3, ...,n− 3), then

w2 is a non-leaf vertex. Since dG(vi) = 1(i = 3, ...,n− 3), we get that there is one non-leaf

vertex in {w1,w3}. Without loss of generality, we assume that w1 is a non-leaf vertex. Since

G[S∪{v1,v2}] ∼= W4, we get v1,v2 are two non-leaf vertices. Then, v1,v2 and non-leaf vertex

w1,w2 form a cycle. This contradicts that the tree T of HLn has no cycle.

Suppose that there are 3 vertices of U in graph G have the degree of 1. Since HLn is a Halin

graph and |E(G)|= n+3, then the degree of 2 vertices in the U is 2 in graph G. Without loss of

generality, we assume that w1v1,w1v2,w2v1,w2v2,w2v3,w3v3,w3v2∈ E(G), then w2 is a non-leaf

vertex. Let U1 = {v1,v2,v3} and U2 = {v4,v5, ...,vn−3}.

Suppose that there is not only one non-leaf vertex w2 in S. Without loss of generality, we

assume that w1 is a non-leaf vertex in S. Suppose that v1 is a leaf vertex, then one leaf vertex

v1 connects two non-leaf vertices w1,w2. This contradicts that HLn is a Halin graph. Then

v1 is a non-leaf vertex. We get v1 and two non-leaf vertices w1,w2 will form a cycle. This

contradicts that the tree T of HLn has no cycle. So there is only one non-leaf vertex w2 in S.

Then |EHLn(S,U2)| ≤ n−6.
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Suppose that there is a non-leaf vertex in U1, then leaf vertex w1 or w3 connects two non-leaf

vertices w1,w2. This contradicts that HLn is a Halin graph. Then all of vertices in U1 are leaf

vertices. Hence |EHLn(S,U1)| ≤ 7.

Suppose that E(HLn[U2]) 6= /0. Since G[S∪U1] contains a rainbow 6-cycle, by Lemma , we

get HLn contains a rainbow 4K2, a contradiction. Then E(HLn[U2]) = /0.

Suppose that |E(HLn[U1])| ≥ 1. Suppose that v1v2 ∈ E(HLn) or v3v2 ∈ E(HLn). Since all of

vertices in U1 are leaf vertices, we get leaf vertices v1,v2,w1 or leaf vertices v2,v3,w3 form a C3.

Since n≥ 8, this contradicts that HLn is a Halin graph. So v1v2 /∈ E(HLn) and v3v2 /∈ E(HLn),

that is to say, v1v3 ∈ E(HLn). Hence G[S∪U1]∼=W5, then all of vertices in U1 and leaf vertices

w1,w3 form a cycle. Since n≥ 8, the remaining vertices in the graph HLn can only be connected

to the non-leaf vertex w2. This contradicts that δ (HLn) = 3. So |E(HLn[U1])|= 0.

Since |EHLn(U1,U2)| ≥ d3n
2 e−7−2− (n−6) = d3n

2 e−n−3, when n≥ 8, we have

|EHLn(U1,U2)| ≥ 1. Let |EHLn({v4},U1)|≥ |EHLn({v5},U1)|≥ ... ≥|EHLn({vn−3},U1)|, then

|EHLn({v4},U1)| ≥ 1. Without loss of generality, we let v1v4 ∈ E(HLn). Since δ (HLn) = 3

and |E(HLn[U2])| = 0, v4v3 ∈ E(HLn), otherwise dHLn(v4) = 2. So, G[S∪U1∪ v4] ∼=W6, then

all of vertices in U1 and w1,w3,v4 form a cycle. Since n≥ 8, the remaining vertices in the graph

HLn can only be connected to the non-leaf vertex w2. This contradicts that δ (HLn) = 3. So

there are no vertex of U in graph G has degree of 3.

Since HLn is a Halin graph and |E(G)| = n+ 3, there are four vertex of U which have 2-

degree in graph G. Without loss of generality, we assume that w1v1, w1v2, w2v1, w2v2, w2v3,

w2v4, w3v3, w3v4∈ E(G). Then w2 is a non-leaf vertex. Let U ′1 = {v1,v2,v3,v4} and such that

dG(vi) = 2(i = 1,2,3,4). Let U ′2 = {v5,v6, ...,vn−3} and dG(vi) = 1(i = 5, ...,n−3).

Suppose that there is not only one non-leaf vertex w2 in S. Without loss of generality, we

assume that w1 is a non-leaf vertex in S. Suppose that v1 is a leaf vertex, then v1 connects

non-leaf vertex w1,w2. This contradicts that HLn is a Halin graph, then v1 is a non-leaf vertex.

We get v1 and two non-leaf vertices w1,w2 will form a cycle. This contradicts that the tree T of

HLn has no cycle. Then there is only one non-leaf vertex w2 in S.
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Suppose that there is a non-leaf vertex in U ′1, then leaf vertex w1 or w3 connects two non-leaf

vertices. This contradicts that HLn is a Halin graph. Then all of vertices in U ′1 are leaf vertices.

Hence |EHLn(S,U
′
1)| ≤ 8 and |EHLn(S,U

′
2)| ≤ n−7.

Now suppose that E(HLn[U ′2]) 6= /0, then we choose e∈E(HLn[U ′2]). Since {w1v2,w3v3,w2v4}

is a rainbow 3K2 in HLn, we can get c(e) ∈ {c(w1v1),c(w3v3),c(w2v4)}, otherwise HLn con-

tains a rainbow 4K2. So {e,w1v2,w2v3,w3v4} is a rainbow 4K2 in HLn, a contradiction. Hence

E(HLn[U ′2]) = /0.

Suppose that |E(HLn[U ′1])| ≥ 2. Suppose that v1v2 ∈E(HLn), then leaf vertices v1,v2,w1 will

form a C3. since n≥ 8, this contradicts that HLn is a Halin graph, we get v1v2 /∈ E(HLn). The

same reason can be obtained v3v4 /∈ E(HLn). Since |E(HLn[U ′1])| ≥ 2, we let v1v3 ∈ E(HLn)

and v2v4 ∈ E(HLn). Then all of vertices of U ′1 and w1,w3 form a cycle. Since n ≥ 8, the

remaining vertices in the graph HLn can only be connected to the non-leaf vertex w2. This

contradicts that δ (HLn) = 3. So |E(HLn[U ′1])| ≤ 1.

Since |EHLn(U
′
1,U

′
2)| ≥ d

3n
2 e−8−2− (n−7)−1 = d3n

2 e−n−4. Then, when n≥ 9, we get

|EHLn(U
′
1,U

′
2)| ≥ 1. Let |EHLn({v5},U ′1)|≥ |EHLn({v6},U ′1)|≥ ... ≥|EHLn({vn−2},U ′1)|, we get

|EHLn({v5},U ′1)| ≥ 1. Without loss of generality, we let v1v5 ∈ E(HLn) and we have w2v5 ∈

E(G). Since {w1v2,w3v3,w2v4} and {w1v2,w2v3,w3v4} are two rainbow 3K2 in HLn, we get

c(v1v5) = c(w1v2), otherwise HLn contains a rainbow 4K2.

Suppose that |E(HLn[U ′1])| = 1. Without loss of generality, we let v2v4 ∈ E(HLn). Since

{w1w2,v1v5,w3v3} and {w1v1,w2v5,w3v3}are two rainbow 3K2 in HLn, we get c(v2v4)= c(w3v3),

otherwise HLn contains a rainbow 4K2.

Suppose that there is a vertex x in U ′2 such that v3x ∈ E(HLn). Since {v1v5,w1w2,w3v4} is

a rainbow 3K2 in HLn, we can get that c(v3x) ∈ {c(v1v5),c(w1w2),c(w3v4)}, otherwise HLn

contains a rainbow 4K2. Then {v3x,v1w1,v2v4,w2w3} is a rainbow 4K2 in HLn, a contradiction.

Hence v3vi /∈ E(HLn)(i = 6, ...,n− 2), then v1vi ∈ E(HLn)(i = 5,6, ...,n− 2). So v1 is a non-

leaf vertex. Suppose that v5 is a leaf vertex, then one leaf vertex connects two non-leaf vertices

v1,w2. This contradicts thatHLn is a Halin graph. Then v5 is a non-leaf vertex. The non-leaf

vertex v1,v5,w2 will form a cycle, this contradicts that the tree T of HLn has no cycle. Hence

|E(HLn[U ′1])|= 0. So we get v2v4 /∈ E(HLn).
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Since v2 is a leaf vertex, then dHLn(v2) = 3. Since |E(HLn[U ′1])| = 0, there exists a ver-

tex y in U ′2 such that v2y ∈ E(HLn). Since {v1v5,w1w2,w3v4} is a rainbow 3K2 in HLn,

we get c(v2y) ∈ {c(v1v5),c(w1w2),c(w3v4)}, otherwise HLn contains a rainbow 4K2. Hence,

{v2y,v1w1,w2v4,v3w3} is a rainbow 4K2 in HLn, a contradiction. Then n = 8.

When n = 8, then |E(G)|= 11 and w2v5 ∈ E(G). since all of vertices in U ′1 are leaf vertices

and are connected to the non-leaf vertex w2, we get v5 is leaf vertex, otherwise one leaf vertex

connects two non-leaf vertices w2,v5. Then HL8 ∼= W7, so |E(HL8)| = 14. Without loss of

generality, we let v1v5,v3v5,v2v4 ∈ E(HL8).

Since {w1v2,w3v3,w2v4} and {w1v2,w2v3,w3v4} are two rainbow 3K2 in HLn, we get c(v1v5)=

c(w1v2), otherwise HLn contains a rainbow 4K2. Since {w1w2,v1v5,w3v3} and {w1v1,w2v5,w3v3}

are two rainbow 3K2 in HLn, we get c(v2v4) = c(w3v3), otherwise HLn contains a rainbow 4K2.

Since {w1v1,v2v4,w2w3} is a rainbow 3K2 in HLn, we get c(v3v5)∈{c(w1v1),c(v2v4),c(w2w3)}.

Hence, {v3v5,v1w2,w1v2,v4w3} is a rainbow 4K2 in HLn, a contradiction.

The proof is complete. �
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