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Abstract. In this note we introduce soft fractional ideal of soft rings. Then, we study fractional ideal by applying

few basic soft operations.
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1. Introduction and Preliminaries

Theory of probability, theory of fuzzy sets [13], theory of intuitionistic fuzzy sets [4], theory

of vague sets [7], theory of interval mathematics [8], and theory of rough sets [11] which were

considered best mathematical tools for dealing with uncertainties. In [10], Molodtsov showed

that to fix uncertainties soft set theory works more efficient than any other tool. In [2] authors

discussed soft groups, soft subgroups. In [1] soft rings, soft ideals of soft rings have been

introduced, furthermore the authors also introduced idealistic soft rings. For basic terminologies
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of soft set one may consult [10] and, for soft rings and soft ideals we refer [1]. In the begining

we recall few useful definitions and terminologies.

Let R be an integral domain, and K be its field of fractions. R-submodule I of K such that

there exists a non-zero r ∈ R such that rI ⊆ R is said to be a fractional ideal of R. Every integral

ideal is a fractional ideal of ring R. This type of ideal has its own importance while study

Dedekind domains, valuation, domains etc.

Following [10, definition 2.1] pair (F, E) is called a soft set (over U) if and only if F is a

mapping on E into the set of subsets of the set U . Assume that (F, A) and (H, B) are two soft

sets over a common universe U . We say that (F, A) is a soft subset of (H, B), if it satisfies: (1)

A ⊂ B and (2) F(x) and H(x) are identical approximations for all x ∈ A[10]. In [1, definition

3.1] authors introduced soft rings i.e., Let (F,A) be a non-null soft set over a ring R. Then (F,A)

is called a soft ring over R if F(x) is a subring of R for all x ∈ A. Further in [1, definition 4.1]

introduce soft ideal of a soft ring i.e., Let (F, A) is a soft ring over R. A non-null soft set (γ, I)

over R is called soft ideal of (F, A), if it satisfies: (1) I ⊂ A and (2) γ(x) is an ideal of F(x) for

all x ∈ Supp(γ, I). Throughout this paper E is a set of parameters, P(R) is the power set of R ,

Z is the ring of integer numbers.

Definition 1. Let (F, A) and (G, B) be two soft sets over a common universe U , we say that

(F, A) is a soft subset of (G, B), if it satisfies: (1) A ⊂ B and (2) F(x) and G(x) are identical

approximations for all x ∈ A [9, definition 2.3]. We write it (F, A)
∼
⊂ (G, B)

Definition 2. Let (F, A) and (G, B) be two soft sets over a common universe U . The intersection

of (F, A) and (G, B) is defined as the soft set (H,C) satisfying the following conditions:

(i) C = A∩B

(ii) For all x ∈C, H(x) = F(x) or G(x) (while the two sets are the same).

In this case we write F(A)
∼
∩G(B)[9, definition 2.12].

Definition 3. Let (F, A) and (G, B) be two soft sets over a common universe U . The bi-

intersection of (F, A) and (G, B) is defined as the soft set (H,C) satisfying the following con-

ditions:

(i) C = A∩B
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(ii) For all x ∈C, H(x) = F(x) ∩G(x)

In this case we write H(C) = F(A)
∼
uG(B) [9].

Definition 4. Let (F, A) and (G, B) be two soft sets over a common universe U . The union of

(F, A) and (G, B) is defined as the soft set (H,C) satisfying the following conditions:

(1) C = A∪B

(2) For all x ∈C,

F(x), if x ∈ A−B

H(x) = G(x), if x ∈ B−A

F(x)∪G(x), if x ∈ A∩B.

In this case we write H(x) = F(A)
∼
∪G(B) [9, definition 2.11].

Definition 5. If (F, A) and (G, B) be two soft sets over a common universe U . Then “(F, A)

AND (G, B)” denoted by F(A)
∼
∧G(B) is defined as F(A)

∼
∧G(B) = (H, C), where C = A×B

and H(x, y) = F(x)∩G(y) for all (x, y) ∈C [9, definition 2.9].

Definition 6. If (F, A) and (G, B) be two soft sets over a common universe U . Then “(F, A)

OR (G, B)” denoted by F(A)
∼
∨G(B) is defined as F(A)

∼
∨G(B) = (H,C), where C = A×B and

H(x, y) = F(x)∩G(y) for all (x, y) ∈C [9, definition 2.10].

Definition 7. Let (F, A) be a soft set. The support of (F,A) i.e., Supp(F,A)= {x∈A| F(x) 6= /0}.

A soft set (F, A) is said to be non-null if its support is not equal to empty set [6].

Definition 8. Let (F,A) be a non-null soft set over a ring R. Then (F,A) is called a soft ring

over R if F(x) is a subring of R for all x ∈ A [1, definition 3.1].

Definition 9. Let (F, A) is a soft ring over R, a non-null soft set (γ, I) over R is called soft ideal

of (F, A), and is denoted by (γ, I)
∼
C (F, A) if it satisfies:

(1) I ⊂ A

(2) γ(x) is an ideal of F(x) for all x ∈ Supp(γ, I) [1, definition 4.1].

Definition 10. Let (F,A) and (G, B) be non-null soft sets over a ring R. Then (G, B) is called

a soft subring of (F, A) if it satisfy the following
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(1) A⊂ B

(2) G(x) is a subring of F(x), for all x ∈ Supp(G,B) [1, definition 4.1].

Definition 11. Let (F,A) be a non-null soft sets over a ring R. Then (F,A) is called an idealistic

soft ring over R, if F(x) is an ideal of R for all x ∈ Supp(F,A) [1, definition 5.1].

Definition 12. Let M be a left R-module, A be any nonempty set F : A→ P(M) refers to a

set-valued function and the pair (F, A) is a soft set over M. Then, (F, A) is said to be a soft

module over M if and only if F(x)< M for all x ∈ A [12].

2. Soft fractional ideal of rings

Fuzzy fractionary ideal has been introduced and discussed in the literature(see[5]). Different

types of soft ideals have been also introduced in the literature. Soft substructures of rings, fields

and modules have been discussed in the literature [3]. Soft module and submodules have been

introduced in the literature [12]. In this section we introduce and discuss about soft fractional

ideals of soft rings. Throughout by R we mean an integral domain and K be its field of fraction.

We begin with the definition.

Definition 13. Let µ be a soft set over the field K and µα = {x ∈ K : µ(x)⊇ α} be a level set

for every α ∈ P(K).

We let χA the characteristic function for a subset A of a ring R⊆ K. Let χα
A be a soft subset

of K such that χα
A (x) =U , if x ∈ R, and χα

A (x) = α if x ∈ K−R, where α ∈ P(K).

A soft subset µ is said to be a soft ideal of a ring R if µ(x− y) ⊇ µ(x)∩ µ(y) and µ(xy) ⊇

µ(x)∪µ(y). A soft subset of R is said to be an ideal iff µ(0)⊇ µ(x) for every x ∈ R and µα is

an ideal for every α ∈ P(K).

Definition 14. Let R be a ring contained in a field K, and (β , K) be a soft subset over the field

K. Then β is said to be soft R-submodule of K if:

(i) β (x− y)⊇ β (x)∩β (y)

(ii) β (rx)⊇ β (x)

(iii) β (0) = R, for every x, y ∈ K, r ∈ R.
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For d ∈ K and α ∈ P(K), we let dα denote the soft subset of K, defined by: for every x ∈ K,

dα(x) = α if x = d and dα(x) = 0, otherwise. We call dα(x) a soft singleton.

Definition 15. A soft R-submodule of K is called a fractionary soft ideal of R ifthere exists

d ∈ R; d 6= 0, such that dR ◦β ⊆ χα
R for some α ∈ K−R.

Theorem 1. Let α , β be fractional soft ideals of R. Then α+ β and α ◦β are fractional soft

ideals of R.

Proof. Since α , β are fractional soft ideals of R there exist 0 6= d, d′ ∈ R such that dR ◦α ⊆ χα
R ,

d′R◦β ⊆ χ
β

R for some α, β ∈ R. Thus (d′d)R◦α = d′R◦d ◦α ⊆ d′R◦χ
β

R . Similarly, (dd′)R⊆ χα
R .

Hence (d′d)R ◦ (α +β ) = (d′d)R ◦α +(d′d)R ◦β ⊆ χα
R +χ

β

R . And (d′d)R ◦ (α ◦β )⊆ χα
R ◦χ

β

R .

Hence, α+ β and α ◦β are fractional soft ideals of R. �
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