

Available online at http://scik.org

J. Math. Comput. Sci. 2 (2012), No. 5, 1335-1352

ISSN: 1927-5307

ESTIMATION OF EIGEN FUNCTIONS TO THE NEW TYPE OF SPECTRAL PROBLEM

KARWAN H.F JWAMER*, ARYAN ALI. M

Department of Mathematics, Faculty of Science and Science Education ,School of Science, University of Sulaimani, Kurdistan Region, Sulaimani, Iraq

Abstract:In this paper, we study some properties of eigenvalues and the corresponding eigen functions of new type of spectral problem (1)-(4).

Keywords: Spectral problem, eigenvalues, eigen functions.

2010 AMS Subject Classification: 47E05, 34B05, 34B07

1. Introduction

In this paper, we study the new type of spectral problem T_0 which is defined by:

$$-y''(x) + y'(x) = \lambda^2 \rho(x) y(x), x \in [0, a], \tag{1}$$

$$y(0) = y'(0) = y(a) + y'(a) = 0,$$
 (2)

$$\int_0^a y'(x)\bar{y}(x)dx = \tau^2 \ (\tau \ is \ constant), \tag{3}$$

$$\left(\int_{0}^{a} \rho(x)|y(x)|^{2} dx\right)^{\frac{1}{2}} = 1,\tag{4}$$

where λ is a spectral parameter, and $\lambda = \delta + i\sigma$, where δ , $\sigma \in \mathbb{R}$, and $i = \sqrt{-1}$. Let a > 0, we assume that $\rho(x) = \rho$ is a constant and let m and M be fixed such that $0 < m \le M$. Let

Received May 6, 2012

^{*} Corresponding author

 $V^+[0,a]$ denotes the family of allpositive integrable functions $\rho(x)$ on the closed interval [0,a] that satisfy the condition $0 < m \le \rho(x) \le M$, equipped with usual L_1 metric. In what follows we refer to these functions as weight functions. Here we attempt to specify the properties of eigenvalues of the spectral problem T_0 and estimating the eigen functions corresponding to the eigenvalues. For the first time an Italian physicist T.Regge[7] has studied the differential equation $-y'' + q(x)y = \lambda^2 \rho(x)y(x), x \in (0,a)$ with the boundary condition $y(0) = 0, y'(a) - i\lambda y(a) = 0$, and was considered by who showed that the system of eigen functions of this problem are completed and studied asymptotic behavior of eigenvalues of this problem $\rho(x) = 1$. Kravitsky [6] specified a class of functions that allowed expansion in uniformly convergent series in eigen functions and associated functions in the Regge problem when $\rho(x) \equiv 1$. The present time they are many Arthurs studied the estimation of eigen functions to the equation $-y'' + q(x)y = \lambda^2 \rho(x)y(x)$ but with different boundary conditions for more known about their works see [1-5].

2. Features of Eigenvalues of the problem T_o

Here we determine the properties of the eigenvalues of our problem T_o with the given boundary conditions.

Theorem 1: Let y(x) be an eigen function corresponding to the eigenvalue λ of the problem T_0 , and $\rho(x) = \rho$ is a constant, then: (i) If $\delta \neq 0$, then λ is real.

(ii) If $\sigma \neq 0$, then λ is complex.

Proof: Multiplying equation (1) by $\bar{y}(x)$ and integrating the obtained equation from 0 to a, yields:

$$-\int_{0}^{a} y''(x)\overline{y}(x)dx + \int_{0}^{a} y'(x)\overline{y}(x)dx = \lambda^{2} \int_{0}^{a} \rho(x)y(x)\overline{y}(x)dx$$

$$-\bar{y}(x)y'(x) \quad \left| \int_{0}^{a} + \int_{0}^{a} y'(x)\bar{y}'(x)dx + \int_{0}^{a} y'(x)\bar{y}(x)dx = \lambda^{2} \int_{0}^{a} \rho(x)|y(x)|^{2}dx \right|$$

$$-\bar{y}(a)y'(a) + \bar{y}(0)y'(0) + \int_{0}^{a} y'(x)\bar{y}'(x)dx + \int_{0}^{a} y'(x)\bar{y}(x)dx = \lambda^{2} \int_{0}^{a} \rho(x)|y(x)|^{2}dx$$

By using boundary conditions (2), we get:

$$\bar{y}(a)y(a) + \int_{0}^{a} |y'(x)|^{2} dx + \int_{0}^{a} y'(x)\bar{y}(x)dx = \lambda^{2} \int_{0}^{a} \rho(x)|y(x)|^{2} dx$$

In view of condition (3) and normalized condition (4), we have:

$$|y(a)|^2 + \int_0^a |y'(x)|^2 dx + \tau^2 = \lambda^2$$
 (5)

From equation (1) and the conditions (2)-(4) replace y(x) by $\overline{y}(x)$, we get:

$$-\bar{y}''(x) + \bar{y}'(x) = \overline{\lambda^2} \rho(x) \bar{y}(x)$$

$$\bar{y}(0) = \bar{y}'(0) = \bar{y}(a) + \bar{y}'(a) = 0, \int_{0}^{a} \bar{y}'(x)y(x)dx = \tau^{2}.$$

Multiplying the above differential equation by y(x) and integrate from 0 up to a, we obtain:

$$|y(a)|^2 + \int_0^a |y'(x)|^2 dx + \tau^2 = \overline{\lambda^2}(6)$$

Subtracting equation (6) from equation (5) yields:

$$\lambda^2 - \overline{\lambda^2} = 0 \rightarrow (\lambda - \overline{\lambda})(\lambda + \overline{\lambda}) = 0, (\lambda - \overline{\lambda}) = 0 \text{ or } (\lambda + \overline{\lambda}) = 0, \text{ then:}$$

(i) If
$$\delta \neq 0$$
, $\therefore (\lambda + \bar{\lambda}) \neq 0$, thus $(\lambda - \bar{\lambda}) = 0 \rightarrow \lambda = \bar{\lambda}$, then λ is real.

(ii) If
$$\sigma \neq 0$$
, $so(\lambda - \bar{\lambda}) \neq 0$, $hence(\lambda + \bar{\lambda}) = 0 \rightarrow \lambda = -\bar{\lambda}$, then λ is complex.

3. Estimation of Eigen functions of problem T_o

In this section, we estimate the eigen function y(x) corresponding to eigenvalue λ of problem T_0 .

Theorem 2: Let λ be an eigenvalue corresponding to the eigen function y(x) of problem T_o , and $\rho(x) \in L^+[0, a]$, and $\delta \neq 0$, then

$$\lim_{n\to\infty}\frac{\max_{x\in[0,a]}|y(x)|}{|\lambda|^{\frac{1}{2}}}=A, \text{ where } A=\frac{\sqrt{2}}{\sqrt[4]{m}}.$$

Proof:

Let us consider the identity:

$$|y(x)|^{2} = y(x)\overline{y}(x) = \int_{0}^{x} [\overline{y}(t)y'(t) + y(t)\overline{y}'(t)]dt + |y(0)|^{2}$$

$$= \int_{0}^{x} \frac{\sqrt{\rho(t)}[\overline{y}(t)y'(t) + y(t)\overline{y}'(t)]}{\sqrt{\rho(t)}}dt + |y(0)|^{2}$$

From inequality $(t) \geq m$, we get:

$$|y(x)|^{2} \leq \int_{0}^{x} \frac{\sqrt{\rho(t)}|\bar{y}(t)y'(t) + y(t)\bar{y}'(t)|}{\sqrt{m}} dt + |y(0)|^{2}$$

$$\leq \frac{1}{\sqrt{m}} \left[\int_{0}^{x} \sqrt{\rho(t)}|\bar{y}(t)y'(t)| dt + \int_{0}^{x} \sqrt{\rho(t)}|y(t)\bar{y}'(t)| dt \right] + |y(0)|^{2}$$

$$\leq \frac{1}{\sqrt{m}} \left[\int_{0}^{x} \sqrt{\rho(t)}|\bar{y}(t)||y'(t)| dt + \int_{0}^{x} \sqrt{\rho(t)}|y(t)||\bar{y}'(t)| dt \right] + |y(0)|^{2}$$

$$= \frac{2}{\sqrt{m}} \int_{0}^{x} \sqrt{\rho(t)}|y(t)||y'(t)| + |y(0)|^{2}$$

And from boundary condition (2), y(0) = 0, therefore

$$|y(x)|^2 \le \frac{2}{\sqrt{m}} \int_{0}^{x} \sqrt{\rho(t)} |y(t)| |y'(t)|$$

$$\leq \frac{2}{\sqrt{m}} \int_{0}^{a} \sqrt{\rho(t)} |y(t)| |y'(t)|.$$

Using Bunyakovsky's inequality on the last inequality, we shall obtain:

$$|y(x)|^2 \le \frac{2}{\sqrt{m}} \left[\int_0^a \rho(t) |y(t)|^2 dt \right]^{\frac{1}{2}} \left[\int_0^a |y'(t)|^2 dt \right]^{\frac{1}{2}}$$

From normality condition (4) we have: $\left[\int_0^a \rho(t) |y(t)|^2 dt\right]^{\frac{1}{2}} = 1, \text{ hence}$ $|y(x)|^2 \le \frac{2}{\sqrt{m}} \left[\int_0^a |y'(t)|^2 dt\right]^{\frac{1}{2}} \tag{7}$

From equation (5), we have:

 $\int_0^a |y'(x)|^2 dx = \lambda^2 - |y(a)|^2 - \tau^2, \text{therefore equation (7) becomes:}$

$$|y(x)|^2 \le \frac{2}{\sqrt{m}} [\lambda^2 - |y(a)|^2 - \tau^2]^{\frac{1}{2}} = \frac{2}{\sqrt{m}} [\lambda^2 - (|y(a)|^2 + \tau^2)]^{\frac{1}{2}}$$

And since $\delta \neq 0$, so by theorem (1) λ is real, hence $\lambda^2 = \left|\lambda\right|^2$, thus the last inequality becomes:

$$|y(x)|^{2} \leq \frac{2}{\sqrt{m}} \left[\left| \lambda \right|^{2} - \left(|y(a)|^{2} + \tau^{2} \right) \right]^{\frac{1}{2}} = \frac{2\left| \lambda \right|}{\sqrt{m}} \left[1 - \frac{\left(|y(a)|^{2} + \tau^{2} \right)}{\left| \lambda \right|^{2}} \right]^{\frac{1}{2}}$$

Or

$$|y(x)|^2 \le \frac{2}{\sqrt{m}} |\lambda| \to |y(x)| \le |\lambda|^{\frac{1}{2}} \sqrt{\frac{2}{\sqrt{m}}}$$

And since x is any value in the interval [0, a], thus

$$\max_{x \in [0,a]} |y(x)| \le \left| \lambda \right|^{\frac{1}{2}} \sqrt{\frac{2}{\sqrt{m}}} \to \frac{\max_{x \in [0,a]} |y(x)|}{\left| \lambda \right|^{\frac{1}{2}}} \le \frac{\sqrt{2}}{\sqrt[4]{m}}$$

Hence

$$\lim_{n\to\infty} \frac{\max_{x\in[0,a]} |y(x)|}{|\lambda|^{\frac{1}{2}}} = A, \text{ where } A = \frac{\sqrt{2}}{\sqrt[4]{m}}.$$

Theorem 2.3.2: Let ρ be a constant in the problem T_o and if y(x) is an eigen function of the problem T_o , then y(x) satisfy the inequality

$$\frac{1}{\sqrt{|\lambda|}}K_1 \leq \max_{x \in [0,a]} |y(x)| \leq \frac{1}{\sqrt{|\lambda|}}K_2,$$

Where K_1 and K_2 are constants.

Proof:

From equation (1), we have $y''(x) - y'(x) + \lambda^2 \rho y(x) = 0$ this is second order linear differential equation with constant coefficients, and then general solution is:

$$y(x) = e^{\frac{1}{2}x} \left[c_1 e^{i\sqrt{\lambda^2 \rho - \frac{1}{4}}x} + c_2 e^{-i\sqrt{\lambda^2 \rho - \frac{1}{4}}x} \right]$$

Applying the condition y(0) = 0, yields $c_2 = -c_1$, then we have

$$y(x) = c_1 \left[e^{\left(\frac{1}{2} + i\sqrt{\lambda^2 \rho - \frac{1}{4}}\right)x} - e^{\left(\frac{1}{2} - i\sqrt{\lambda^2 \rho - \frac{1}{4}}\right)x} \right]$$

Then

$$y'(x) = c_1 \left[\left(\frac{1}{2} + i \sqrt{\lambda^2 \rho - \frac{1}{4}} \right) e^{\left(\frac{1}{2} + i \sqrt{\lambda^2 \rho - \frac{1}{4}} \right) x} - \left(\frac{1}{2} - i \sqrt{\lambda^2 \rho - \frac{1}{4}} \right) e^{\left(\frac{1}{2} - i \sqrt{\lambda^2 \rho - \frac{1}{4}} \right) x} \right]$$

From the boundary condition y(a) + y'(a) = 0, we obtain:

$$c_1 \left[e^{\left(\frac{1}{2} + i\sqrt{\lambda^2 \rho - \frac{1}{4}}\right)a} - e^{\left(\frac{1}{2} - i\sqrt{\lambda^2 \rho - \frac{1}{4}}\right)a} \right] +$$

$$c_1 \left[\left(\frac{1}{2} + i \sqrt{\lambda^2 \rho - \frac{1}{4}} \right) e^{\left(\frac{1}{2} + i \sqrt{\lambda^2 \rho - \frac{1}{4}} \right) a} \right. \\ \left. - \left(\frac{1}{2} - i \sqrt{\lambda^2 \rho - \frac{1}{4}} \right) e^{\left(\frac{1}{2} - i \sqrt{\lambda^2 \rho - \frac{1}{4}} \right) a} \right] = 0$$

Dividing both sides of the above equation by c_1 , we get:

$$\frac{\frac{3}{2} - i\sqrt{\lambda^2 \rho - \frac{1}{4}}}{\frac{3}{2} + i\sqrt{\lambda^2 \rho - \frac{1}{4}}} = e^{2i\sqrt{\lambda^2 \rho - \frac{1}{4}}} a \tag{8}$$

The resulting equation (8) is used for specifying the eigenvalues of our problem.

To find the coefficient c_1 , we use the normalization condition (4)

$$\int_{0}^{a} \rho |c_{1}|^{2} \left| e^{\frac{1}{2}x} \left[e^{i\sqrt{\lambda^{2}\rho - \frac{1}{4}}x} - e^{-i\sqrt{\lambda^{2}\rho - \frac{1}{4}}x} \right] \right|^{2} dx = 1,$$

Or

$$\rho |c_1|^2 \int_0^a \left| e^{\frac{1}{2}x} \left[e^{i\sqrt{\lambda^2 \rho - \frac{1}{4}} x} - e^{-i\sqrt{\lambda^2 \rho - \frac{1}{4}} x} \right] \right|^2 dx = 1.$$

We introduce the notation $\alpha + i\beta = i\sqrt{\lambda^2\rho - \frac{1}{4}}$ (where α and β are real numbers), then

$$\rho |c_1|^2 \int_0^a \left| e^{\frac{1}{2}x} \left[e^{(\alpha+i\beta)x} - e^{-(\alpha+i\beta)x} \right] \right|^2 dx = 1,$$

Or

$$\rho |c_1|^2 \int_0^a \left| e^{\left(\frac{1}{2} + \alpha\right)x + i\beta x} - e^{\left(\frac{1}{2} - \alpha\right)x - i\beta x} \right|^2 dx = 1 \tag{9}$$

Since

$$\left| e^{\left(\frac{1}{2} + \alpha\right)x + i\beta x} - e^{\left(\frac{1}{2} - \alpha\right)x - i\beta x} \right|^2 = 2 e^x (\cosh 2\alpha x - \cos 2\beta x)$$

Thus equation (9) becomes:

$$\rho |c_1|^2 \int_0^a 2 e^x (\cosh 2\alpha x - \cos 2\beta x) dx = 1.$$

By integrating the last equation by parts, we obtain

$$2\rho |c_1|^2 \left[\frac{1}{2(1+2\alpha)} \left(e^{(1+2\alpha)a} - 1 \right) + \frac{1}{2(1-2\alpha)} \left(e^{(1-2\alpha)a} - 1 \right) - \frac{(2\beta \sin 2\beta a + \cos 2\beta a)}{(4\beta^2 + 1)} e^a + \frac{2\beta}{(4\beta^2 + 1)} \right] = 1$$

After some algebraic operations, we get

$$|c_1|^2 = (1 - 4\alpha^2)(4\beta^2 + 1) / 2\rho [e^a(\cosh 2\alpha a - 2\alpha \sinh 2\alpha a)(4\beta^2 + 1)$$
$$-(4\beta^2 + 1) + 2\beta(1 - 4\alpha^2) - e^a(2\beta \sin 2\beta a + \cos 2\beta a)(1 - 4\alpha^2)]$$

Or

$$|c_{1}| = \frac{1}{\sqrt{2\rho}} \frac{1}{\sqrt{\frac{1}{(1-4\alpha^{2})}} [e^{\alpha}(\cosh 2\alpha a - 2\alpha \sinh 2\alpha a) - 1] + \frac{1}{(4\beta^{2}+1)} [2\beta - e^{\alpha}(2\beta \sin 2\beta a + \cos 2\beta a)]}$$

By substituting $|c_1|$ in equation y(x), we conclude that:

$$y(x) = c_o \frac{1}{\sqrt{2\rho}} \frac{1}{\sqrt{\frac{1}{(1-4\alpha^2)}} [e^a(\cosh 2\alpha a - 2\alpha \sinh 2\alpha a) - 1] + \frac{1}{(4\beta^2+1)} [2\beta - e^a(2\beta \sin 2\beta a + \cos 2\beta a)]}$$

$$\left[e^{\left(\frac{1}{2}+i\sqrt{\lambda^2\rho^{-\frac{1}{4}}}\right)x} - e^{\left(\frac{1}{2}-i\sqrt{\lambda^2\rho^{-\frac{1}{4}}}\right)x}\right]. \tag{10}$$

Where c_o arbitrary complex number with module is one (i.e. $|c_o| = 1$).

If λ satisfies equation (8) (i.e. λ eigenvalue), then equation (10) gives eigen functions for our problem T_o (corresponding to the eigenvalue λ).

Now we determine $\max_{x \in [0,a]} |y(x)|$ and its behaviour depends on, α and β .

From

$$\left|e^{\left(\frac{1}{2}+\alpha\right)x+i\beta x}-e^{\left(\frac{1}{2}-\alpha\right)x-i\beta x}\right|^{2}=2\ e^{x}(cosh2\alpha x-cos2\beta x),$$

We conclude that

$$\left| e^{\left(\frac{1}{2} + \alpha\right)x + i\beta x} - e^{\left(\frac{1}{2} - \alpha\right)x - i\beta x} \right| = \sqrt{2 e^x (\cosh 2\alpha x - \cos 2\beta x)}$$

Therefore,

$$|y(x)| = \frac{c_o}{\sqrt{2\rho}} \frac{e^{\left(\frac{1}{2} + i\sqrt{\lambda^2 \rho - \frac{1}{4}}\right)x} - e^{\left(\frac{1}{2} - i\sqrt{\lambda^2 \rho - \frac{1}{4}}\right)x}}{\sqrt{\frac{1}{(1 - 4\alpha^2)} \left[e^a(\cosh 2\alpha a - 2\alpha \sinh 2\alpha a) - 1\right] + \frac{1}{(4\beta^2 + 1)} \left[2\beta - e^a(2\beta \sin 2\beta a + \cos 2\beta a)\right]}}$$

Or

$$|y(x)| = \frac{1}{\sqrt{\rho}} \frac{e^{x}(\cosh 2\alpha x - \cos 2\beta x)}{\frac{1}{(1-4\alpha^{2})} [e^{a}(\cosh 2\alpha a - 2\alpha \sinh 2\alpha a) - 1] + \frac{1}{(4\beta^{2}+1)} [2\beta - e^{a}(2\beta \sin 2\beta a + \cos 2\beta a)]}$$

Then

$$\frac{1}{\sqrt{\rho}} \frac{e^{x}(\cosh 2\alpha x - 1)}{\frac{1}{(1 - 4\alpha^{2})} [e^{a}(\cosh 2\alpha a - 2\alpha \sinh 2\alpha a) - 1] + \frac{1}{(4\beta^{2} + 1)} [2\beta - \frac{1}{(4\beta^$$

$$\leq \frac{1}{\sqrt{\rho}} \left[\frac{e^{x}(\cosh 2\alpha x + 1)}{\frac{1}{(1 - 4\alpha^{2})} [e^{a}(\cosh 2\alpha a - 2\alpha \sinh 2\alpha a) - 1] + \frac{1}{(4\beta^{2} + 1)} [2\beta - e^{a}(2\beta \sin 2\beta a + \cos 2\beta a)]} \right]$$

Or

$$\sqrt{\frac{e^{x}(\cosh 2\alpha x - 1)}{\rho\left[\left(1 - e^{a}(\cosh 2\alpha a - 2\alpha \sinh 2\alpha a)\right) + \left(2\beta + e^{a}(2\beta + 1)\right)\right]}} \le |y(x)| \le$$

$$\sqrt{\frac{e^{x}(\cosh 2\alpha x+1)}{\rho\left[\left(e^{a}(\cosh 2\alpha a-2\alpha \sinh 2\alpha a)-1\right)+\frac{1}{\left(4\beta^{2}+1\right)}\left(2\beta-e^{a}(2\beta+1)\right)\right]}}$$

Let $\max_{x \in [0,a]} |y(x)|$ be achieved at the point of x_o , then

$$\max_{x \in [0,a]} |y(x)| = |y(x_o)|$$

$$\leq \sqrt{\frac{e^{x_o}(\cosh 2\alpha x_o + 1)}{\rho \left[\left(e^a(\cosh 2\alpha a - 2\alpha \sinh 2\alpha a) - 1 \right) + \frac{1}{(4\beta^2 + 1)} \left(2\beta - e^a(2\beta + 1) \right) \right]}}$$

$$\leq \sqrt{\frac{e^{a}(\cosh 2\alpha a+1)}{\rho\left[\left(e^{a}(\cosh 2\alpha a-2\alpha \sinh 2\alpha a)-1\right)+\frac{1}{(4\beta^{2}+1)}\left(2\beta-e^{a}(2\beta+1)\right)\right]}}$$

(Since e^x and $\cosh 2\alpha x$ are monotonic increasing on [0, a]), on the other hand

$$|y(x_o)| = \max_{x \in [0,a]} |y(x)| \ge |y(a)| \ge$$

$$\sqrt{\frac{e^a(cosh2\alpha a - 1)}{\rho[\left(1 - e^a(cosh2\alpha a - 2\alpha sinh2\alpha a)\right) + \left(2\beta + e^a(2\beta + 1)\right)]}}$$

Therefore

$$\sqrt{\frac{e^{a}(\cosh 2\alpha a - 1)}{\rho\left[\left(1 - e^{a}(\cosh 2\alpha a - 2\alpha \sinh 2\alpha a)\right) + \left(2\beta + e^{a}(2\beta + 1)\right)\right]}} \le \max_{x \in [0,a]} |y(x)|$$

$$\leq \sqrt{\frac{e^{\alpha}(\cosh 2\alpha a + 1)}{\rho \left[\left(e^{\alpha}(\cosh 2\alpha a - 2\alpha \sinh 2\alpha a) - 1 \right) + \frac{1}{(4\beta^2 + 1)} \left(2\beta - e^{\alpha}(2\beta + 1) \right) \right]}}$$

Or

$$\sqrt{\frac{\left(\cosh 2\alpha a - 1\right)}{\rho\left[\left(\frac{1}{e^{a}} - \left(\cosh 2\alpha a - 2\alpha \sinh 2\alpha a\right)\right) + \left(\frac{2\beta}{e^{a}} + \left(2\beta + 1\right)\right)\right]}} \leq \max_{x \in [0,a]} |y(x)|$$

$$\leq \sqrt{\frac{\left(\cosh 2\alpha a + 1\right)}{\rho\left[\left(\left(\cosh 2\alpha a - 2\alpha \sinh 2\alpha a\right) - \frac{1}{e^{a}}\right) + \frac{1}{\left(4\beta^{2} + 1\right)}\left(\frac{2\beta}{e^{a}} - \left(2\beta + 1\right)\right)\right]}}$$
(11)

Now, in the obtained equation (11) used parameters α and β clearly are not parts of the equation (1) and the boundary and normalized conditions (2)-(4). Therefore we express α and β through ρ .

Suppose $\arg \lambda = \theta$, then $\lambda^2 = |\lambda|^2 (\cos 2\theta + i \sin 2\theta)$.

$$\lambda^{2}\rho - \frac{1}{4} = \rho |\lambda|^{2} \cos 2\theta - \frac{1}{4} + i\rho |\lambda|^{2} \sin 2\theta$$

On the other hand $-\left(\lambda^2\rho - \frac{1}{4}\right) = (\alpha + i\beta)^2 = \alpha^2 - \beta^2 + i2\alpha\beta$,

Hence

$$\alpha^{2} - \beta^{2} = -\rho |\lambda|^{2} \cos 2\theta + \frac{1}{4}$$
$$2\alpha\beta = -\rho |\lambda|^{2} \sin 2\theta$$

Or

$$\alpha^2 - \beta^2 = -\rho |\lambda|^2 \cos 2\theta + \frac{1}{4}$$

$$4\alpha^2\beta^2 = \rho^2 |\lambda|^4 \sin^2 2\theta$$

Solving these two last systems of equations, we get

$$\alpha^{2} = \frac{-\rho |\lambda|^{2} cos2\theta + \frac{1}{4} + \sqrt{(\rho |\lambda|^{2} cos2\theta - \frac{1}{4})^{2} + \rho^{2} |\lambda|^{4} + \sin^{2} 2\theta}}{2}$$

and

$$\beta^{2} = \frac{\rho^{2} |\lambda|^{4} \sin^{2} 2\theta}{2[-\rho |\lambda|^{2} \cos 2\theta + \frac{1}{4} + \sqrt{(\rho |\lambda|^{2} \cos 2\theta - \frac{1}{4})^{2} + \rho^{2} |\lambda|^{4} \sin^{2} 2\theta}}$$

(Since $\alpha^2 \ge 0$, then chose non negative root). Separating out the factor $\rho |\lambda|^2$ from the last relations, we deduce

$$\alpha^{2} = \rho \left| \lambda \right|^{2} \left(\frac{-\cos 2\theta + \frac{1}{4\rho \left| \lambda \right|^{2}} + \sqrt{1 - \frac{1}{2\rho \left| \lambda \right|^{2}}\cos 2\theta + \left(\frac{1}{4\rho \left| \lambda \right|^{2}}\right)^{2}}}{2} \right)$$

and

$$\beta^{2} = \frac{\rho \left| \lambda \right|^{2} \sin^{2} 2\theta}{2 \left[-\cos 2\theta + \frac{1}{4\rho \left| \lambda \right|^{2}} + \sqrt{1 - \frac{1}{2\rho \left| \lambda \right|^{2}} \cos 2\theta + \left(\frac{1}{4\rho \left| \lambda \right|^{2}} \right)^{2}} \right]}$$

Or

$$\alpha = |\lambda| \sqrt{\frac{-\rho cos2\theta + \frac{1}{4|\lambda|^2} + \rho\sqrt{1 - \frac{1}{2\rho|\lambda|^2}cos2\theta + \left(\frac{1}{4\rho|\lambda|^2}\right)^2}}{2}}$$

and

$$\beta = \frac{\sqrt{\rho} \left| \lambda \right| \sin 2\theta}{\sqrt{-2cos2\theta + \frac{1}{2\rho\left|\lambda\right|^2} + 2\sqrt{1 - \frac{1}{2\rho\left|\lambda\right|^2}cos2\theta + \left(\frac{1}{4\rho\left|\lambda\right|^2}\right)^2}}}$$

(We take the positive root and for negative root we proceed by similar way).

By substituting α and β in equation (11) and making some algebraic operations we get:

$$cosh2a \left(|\lambda| \sqrt{\frac{-\rho cos2\theta + \frac{1}{4|\lambda|^2} + \rho \sqrt{1 - \frac{1}{2\rho|\lambda|^2} cos2\theta + \left(\frac{1}{4\rho|\lambda|^2}\right)^2}}{2}} \right) - 1$$

$$\frac{1}{\sqrt{|\lambda|}} \left(|\lambda| \sqrt{\frac{-\rho cos2\theta + \frac{1}{4|\lambda|^2} + \rho \sqrt{1 - \frac{1}{2\rho|\lambda|^2} cos2\theta + \left(\frac{1}{4\rho|\lambda|^2}\right)^2}}{2}} \right) - 1$$

$$+ \rho \sqrt{2} \sqrt{-\rho cos2\theta + \frac{1}{4|\lambda|^2} + \rho \sqrt{1 - \frac{1}{2\rho|\lambda|^2} cos2\theta + \left(\frac{1}{4\rho|\lambda|^2}\right)^2}}} \times sinh2a \left(|\lambda| \sqrt{\frac{-\rho cos2\theta + \frac{1}{4|\lambda|^2} + \rho \sqrt{1 - \frac{1}{2\rho|\lambda|^2} cos2\theta + \left(\frac{1}{4\rho|\lambda|^2}\right)^2}}{2}} \right)$$

$$\frac{2e^{-a} \sqrt{\rho^3} \sin2\theta}}{\sqrt{-2cos2\theta + \frac{1}{2\rho|\lambda|^2} + 2 \sqrt{1 - \frac{1}{2\rho|\lambda|^2} cos2\theta + \left(\frac{1}{4\rho|\lambda|^2}\right)^2}}} + \frac{\rho}{|\lambda|}$$

$$\frac{2\sqrt{\rho^3} \sin2\theta}}{\sqrt{-2cos2\theta + \frac{1}{2\rho|\lambda|^2} + 2 \sqrt{1 - \frac{1}{2\rho|\lambda|^2} cos2\theta + \left(\frac{1}{4\rho|\lambda|^2}\right)^2}}} + \frac{\rho}{|\lambda|}$$

$$\leq \max_{x \in [0,a]} |y(x)| \leq$$

$$cosh2a \left(|\lambda| \sqrt{\frac{-\rho cos2\theta + \frac{1}{4|\lambda|^{2}} + \rho \sqrt{1 - \frac{1}{2\rho|\lambda|^{2}} cos2\theta + \left(\frac{1}{4\rho|\lambda|^{2}}\right)^{2}}}{2}} \right) + 1$$

$$\frac{1}{\sqrt{|\lambda|}} \left(|\lambda| \sqrt{\frac{-\rho cos2\theta + \frac{1}{4|\lambda|^{2}} + \rho \sqrt{1 - \frac{1}{2\rho|\lambda|^{2}} cos2\theta + \left(\frac{1}{4\rho|\lambda|^{2}}\right)^{2}}}{2}} \right) + 1$$

$$-\rho \sqrt{2} \sqrt{2} \sqrt{-\rho cos2\theta + \frac{1}{4|\lambda|^{2}} + \rho \sqrt{1 - \frac{1}{2\rho|\lambda|^{2}} cos2\theta + \left(\frac{1}{4\rho|\lambda|^{2}}\right)^{2}}} \times \sinh2a \left(|\lambda| \sqrt{\frac{-\rho cos2\theta + \frac{1}{4|\lambda|^{2}} + \rho \sqrt{1 - \frac{1}{2\rho|\lambda|^{2}} cos2\theta + \left(\frac{1}{4\rho|\lambda|^{2}}\right)^{2}}}{2}} \right) - \frac{\rho e^{-a}}{|\lambda|}$$

$$+ \frac{\rho}{|\lambda|} \left(\frac{-\rho cos2\theta + \frac{1}{4|\lambda|^{2}} + \rho \sqrt{1 - \frac{1}{2\rho|\lambda|^{2}} cos2\theta + \left(\frac{1}{4\rho|\lambda|^{2}}\right)^{2}}}}{2\rho|\lambda|^{2}} \right) - \frac{\rho e^{-a}}{|\lambda|^{2}} \times \frac{\rho e^{-a} \sqrt{\rho} \sin2\theta}{2\rho|\lambda|^{2}} \times$$

 $Let K_1 =$

$$cosh2a \left(|\lambda| \sqrt{\frac{-\rho cos2\theta + \frac{1}{4|\lambda|^{2}} + \rho \sqrt{1 - \frac{1}{2\rho|\lambda|^{2}} cos2\theta + \left(\frac{1}{4\rho|\lambda|^{2}}\right)^{2}}}{2}} \right) - 1$$

$$\frac{\rho e^{-a}}{|\lambda|} - \frac{\rho}{|\lambda|} cosh2a \left(|\lambda| \sqrt{\frac{-\rho cos2\theta + \frac{1}{4|\lambda|^{2}} + \rho \sqrt{1 - \frac{1}{2\rho|\lambda|^{2}} cos2\theta + \left(\frac{1}{4\rho|\lambda|^{2}}\right)^{2}}}{2}} \right) + \rho \sqrt{2} \sqrt{2} \sqrt{-\rho cos2\theta + \frac{1}{4|\lambda|^{2}} + \rho \sqrt{1 - \frac{1}{2\rho|\lambda|^{2}} cos2\theta + \left(\frac{1}{4\rho|\lambda|^{2}}\right)^{2}}} \times sinh2a \left(|\lambda| \sqrt{\frac{-\rho cos2\theta + \frac{1}{4|\lambda|^{2}} + \rho \sqrt{1 - \frac{1}{2\rho|\lambda|^{2}} cos2\theta + \left(\frac{1}{4\rho|\lambda|^{2}}\right)^{2}}}{2}} \right)$$

$$\frac{2e^{-a} \sqrt{\rho^{3}} sin2\theta}{\sqrt{-2cos2\theta + \frac{1}{2\rho|\lambda|^{2}} + 2 \sqrt{1 - \frac{1}{2\rho|\lambda|^{2}} cos2\theta + \left(\frac{1}{4\rho|\lambda|^{2}}\right)^{2}}}} + \frac{\rho}{|\lambda|}$$

$$\sqrt{-2cos2\theta + \frac{1}{2\rho|\lambda|^{2}} + 2 \sqrt{1 - \frac{1}{2\rho|\lambda|^{2}} cos2\theta + \left(\frac{1}{4\rho|\lambda|^{2}}\right)^{2}}} + \frac{\rho}{|\lambda|}$$

And

$$K_2 =$$

$$cosh2a \left(|\lambda| \sqrt{\frac{-\rho cos2\theta + \frac{1}{4|\lambda|^{2}} + \rho \sqrt{1 - \frac{1}{2\rho|\lambda|^{2}} cos2\theta + \left(\frac{1}{4\rho|\lambda|^{2}}\right)^{2}}}{2}} \right) + 1$$

$$\frac{\rho}{|\lambda|} cosh2a \left(|\lambda| \sqrt{\frac{-\rho cos2\theta + \frac{1}{4|\lambda|^{2}} + \rho \sqrt{1 - \frac{1}{2\rho|\lambda|^{2}} cos2\theta + \left(\frac{1}{4\rho|\lambda|^{2}}\right)^{2}}}{2}} \right)$$

$$-\rho\sqrt{2} \sqrt{-\rho cos2\theta + \frac{1}{4|\lambda|^{2}} + \rho \sqrt{1 - \frac{1}{2\rho|\lambda|^{2}} cos2\theta + \left(\frac{1}{4\rho|\lambda|^{2}}\right)^{2}}} \times sinh2a \left(|\lambda| \sqrt{\frac{-\rho cos2\theta + \frac{1}{4|\lambda|^{2}} + \rho \sqrt{1 - \frac{1}{2\rho|\lambda|^{2}} cos2\theta + \left(\frac{1}{4\rho|\lambda|^{2}}\right)^{2}}}{2}} \right) - \frac{\rho e^{-a}}{|\lambda|}$$

$$+ \frac{\rho}{|\lambda|} \left(\frac{-\rho cos2\theta + \frac{1}{4|\lambda|^{2}} + \rho \sqrt{1 - \frac{1}{2\rho|\lambda|^{2}} cos2\theta + \left(\frac{1}{4\rho|\lambda|^{2}}\right)^{2}}}}{2\rho|\lambda|^{2}} \right) - \frac{\rho e^{-a}}{|\lambda|^{2}} \times sin^{2}2\theta - cos2\theta + \frac{1}{4\rho|\lambda|^{2}} + \rho \sqrt{1 - \frac{1}{2\rho|\lambda|^{2}} cos2\theta + \left(\frac{1}{4\rho|\lambda|^{2}}\right)^{2}}} \times \frac{2\rho|\lambda|^{2}}{2\rho|\lambda|^{2}} \times \frac{2e^{-a}\sqrt{\rho} \sin2\theta}}{\sqrt{-2cos2\theta + \frac{1}{2\rho|\lambda|^{2}} + 2\sqrt{1 - \frac{1}{2\rho|\lambda|^{2}} cos2\theta + \left(\frac{1}{4\rho|\lambda|^{2}}\right)^{2}}}} - 1$$

Then

$$\frac{1}{\sqrt{|\lambda|}}K_1 \leq \max_{x \in [0,a]} |y(x)| \leq \frac{1}{\sqrt{|\lambda|}}K_2.$$

Thus the proof of theorem is completed.

REFERENCES

- [1] Aigunov G.A and Jwamer K.H, Asymptotic behavior of orthonormalized eienfunctions in a Regge type problem with asummable positive weight function, (2009), UMN, Moscow, Vol(64)6, P.169-170.
- [2] Aigounov G.A, Jwamer K. H and Dzhalaeva G.A, Estimates for the eigenfunctions of the Regge problem, Mathematical Notes, (2012), Vol. 92, No.7, pp.127-130.
- [3] Aigunov, G. A, the boundedness of the orthonormal eigenfunctions of a certain class of non-linear Strum-Liouville type operators with a weight function of unbounded variation on a finite interval ,Russian Math, Surveys, (2000),Vol. 55, No. 4, pp. 815-821.
- [4] Gadzhieva, T. Yu, Analysis of spectral characteristics of one non self adjoint problem with smooth coefficients, PhD thesis, Dagestan State university, (2010), South of Russian.
- [5]JwamerK.H and AigounovG.A., About Uniform Limitation of Normalized EigenFunctions of T.Regge Problem in the Case of WeightFunctions, Satisfying to LipschitzCondition, Gen. Math. Notes, (2010) 1(2),115-129.
- [6] Jwamer K. H andQadir K.H, Estimation of Normalized egienfunctions of spectral problem with smooth coefficients, ActaUniversitatis Apulensis, Special Issue, Romania, (2011), P.113-132.
- [7] Jwamer K. H and Qadir K.H., Estimates Normalized Eigenfunction to the Boundary Value Problem in Different Cases of Weight Functions, Int. J. Open Problems Compt.Math., (2011), Vol. 4(3), P.62-71.
- [8] KravitskyA.O, On series expansion in eigen functions of one non self-adjointboundary problem, Report of Academy of Science, USSR, (1966), Vol.170, No.6, P.1255-1258.
- [9] Naimark. M. A, Linear differential operators, 2nd edition, Nauka, Moscow, (1969), English trans1. Of 1st edition, Vols. I, II, Ungar, New York, 1967, 1968.
- [10] Regge .T , Analytical properties of the scattering matrix , Mathematics(collection of translations), (1963), Vol.4, P.83-89.