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Abstract. In this paper, we investigate L-fuzzy closure operators and L-fuzzy cotopologies in a complete residuated
lattice. Also, we study the categorical relationship between L-fuzzy closure spaces and L-fuzzy cotopological

space. Finally, we give their examples.
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1. Introduction

Hiéjek [7] introduced a complete residuated lattice which is an algebraic structure for many
valued logic. Bélohlavek [2] investigated information systems and decision rules in complete
residuated lattices. Hohle [8]introduced L-fuzzy topological structure with algebraic structure

L(cqm, quantales, MV -algebra).
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Fuzzy topological structures were extended and applied in many directions [3-6, 8-12]. Fang
and Yue [6] studied the relationship between L-fuzzy closure systems and L-fuzzy topological
spaces from a category viewpoint for a complete residuated lattice L.

We investigate L-fuzzy closure operators and L-fuzzy cotopologies in a complete residuated
lattice. Also, we study the categorical relationship between L-fuzzy closure spaces and L-
fuzzy cotopological space. Moreover, there exists the Galois correspondence between L-fuzzy

cotopological spaces and L-fuzzy closure spaces. In particular, we give their examples.

2. Preliminaries

Definition 2.1. [2,7,8] An algebra (L,A,V,®,—, 1, T) is called a complete residuated lattice
if it satisfies the following conditions:

(L1) (L,<,V,A, L, T)is acomplete lattice with the greatest element T and the least element
L1

(L2) (L,®, T) is a commutative monoid,;

L3)xoy<ziff x<y—zforx,y,z€L.

In this paper, we assume that L = (L,V,A\,®,—, L, T) be a complete residuated lattice which
is defined by xy=x" -y, x* =x—0.

Lemma 2.2. [2,7,8] For each x,y,z,x;,y;,w € L, we have the following properties.

(D1 —=-x=x,00x=0and x — 0 =x",

QIfy<zthenx®Oy<x©z,xBy<x®z,x—>y<x—zandz—>x<y—ux

B)xOy<xAy<xVy<x®y,

@ (Vivi)" = Ay

) x© (Aii) < Ni(x©i),

(6) x® (Aiyi) = Ni(x D i),

(D x = (Niyi) = Nilx = yi),

@) (Vixi) =y = Nilxi = y),

) x = (Viyi) 2 Vilx = yi),

(10) (Aixi) =y = Vi(xi = y),
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(D) (xOy) 2 z=x—=>(y—=2)=y = (x—=2),
(I2)x0(x—y)<yandx —>y<(y—z) = (x = 2),
(13)x<x*andx — y < y" — x*,
(14) (x = y) Oz = w) < (xOz) = (YOW),
(15Hx—>y<(x©z) > (yOz)and (x = y) O (y > z) Sx—z,

For oo € L,A € LX, we denote (ot — 1), (¢ ®A),0x € X as (@ — A)(x) = o = A(x), (@ ®
A)(x)=aoi(x), ox(x) = a.

Definition 2.3.[2,7,8] Let X be a set. A mapping R : X X X — L is called an L-partial order
if it satisfies the following conditions:

(E1) reflexive if R(x,x) = T forall x € X,

(E2) transitive if R(x,y) ® R(y,z) < R(x,z), for all x,y,z € X,

(E3) antisymmetric if R(x,y) = R(y,x) = T, thenx = y.

Lemma 2.4. [2,5,10] For a given set X, define a binary mapping S : LX x LX — L by
S(u) = A\ (Ax) = pu(x)).
xex
Then, for each A,u,p,v € LX, and « € L, the following properties hold.
(1) S is an L-partial order on LX.
QA< piff SA,u)>T,
B)IfA < pu,then S(p,A) <S(p,u) and S(A,p) > S(u,p),
@ SA,u)o8(v,p) <SA©Vv,uop)and S(A, 1) ©S(v,p) <SA GV, u®p),
) S(u,p) <S(A,u) — S(A,p) and S(u,p) < S(p,A) = S(u, 1),
6) 0 ©S(u,p) <S(ax — u,p),
D Vyperx (S, p) ©S(A, 1)) = S(4,p).
(8)If ¢ : X — Y is amap, then for A, u € LX and p,v €LY,

S(A,u) <S(97(A),07 (n)),

S(p,v) <S(0(p), ¢ (v)),

and the equalities hold if ¢ is bijective.
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Definition 2.5. [6,8] A map . : LX — L is called an L-fuzzy cotopology on X if it satisfies
the following conditions:

(F1) F(lx)=F(Tx)=T,

F2) F(Aou)>FA)o.ZF(u), VA,uclLX,

(F3) Z(AiAi) > N\i F (A), ¥ {Aitier C LY.

The pair (X,.%) is called an L-fuzzy cotopological space. An L-fuzzy cotopological space is
called enriched if

R) F(a—A)>.F(A) forall A €LX and acL.

Let (X,.#) and (Y,.%;) be two L-fuzzy cotopological spaces. A mapping ¢ : X — Y is said

to be L-fuzzy continuous iff for each A € LY, %> (1) < F1 (¢ (A)).

Remark 2.6. A set 3 C LX is called an L-cotopology on X if (t1) Ly, Tx €3, (2) (A u) €
3, foreach A,u €3, (t3) \;Ai € 3, for all A; € 3. An L-cotopology 3 is called enriched if

oa—AeS3, forallA eJand o € L.

3. L-fuzzy closure spaces and L-fuzzy cotopological spaces

Lemma 3.1. Let L be a complete residuated lattice. Define x &y = x* — y.
D x=2y)Bz—=w) < (x0z2) = (Ydw).
Q) (x=y)0(z—=w) < (x®z) = (YD w).

Proof. (1) Since (x@y*)* = x — y** > x —y, then x O y* < (x = y)*.
[(x=y)@z=w]oEo)oy
=[x=y)" = =w)]o(xoy)oz
<[x=y) = G=w]ok—y) oz

<(z—=w)Oz<w

Hence [(x = y) P (z > w)]|O(x02) 0y <wiff [x > y)® (z—=>w)]O(xOz) <ydwiff
[(x=y)ez=w)]<(xoz) = (yow).
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2)

[(x =)0 (z—=w)]o(xdz) Oy
<[ =x)oE=woE =)oy

<KOz=owo =) <(z—ow) Oz<w

Hence [(x > y) O (z—=w)]0(x®2) 0y <wiff [x > y) O (z—=>w)]O(x&z) <ydwiff
[(x=y)O=2w)] <(x@z) = (yOw).

Definition 3.1. A map ¢ : LX — LX is called an L-fuzzy closure operator if it satisfies the
following conditions:

(C1) €(Lx) = Lx,

(C2)forA € LX, 1 <€(A),

(C3)iIfA<u,€(A) <€),

(C4) forall L, u e LX, €A @u) <EA)DE ().

The pair (X, %) is called an L-fuzzy closure space.

An L-fuzzy closure space is called stratified if

R) C(a—2A)<a—F (1) forall L €LX and a € L.

Let (X,%1) and (Y,%>) be two L-fuzzy closure spaces. A mapping ¢ : X — Y is said to be
C-map if 9 7 (€1 (1)) < 6> (¢ (1)) foreach A € LX.

Lemma 3.2. Let 4 : LX — LX a map. The following statement are equivalent.

(1) Forall A,u € LX, S(A, 1) < S(E(1),% (1)).

Q) IfA<pu,then¥(A) <€ (u)and C(a®p)>a®%(p) forall A € LX and o < L.
) IfA<pu,then (L) <€ (u)and € (o —p)<a— €(p) forall A €LX and a € L.

Proof. (1) (=) (2). If A < pu,then T =S(A,u) <S(€(L),€(u)). Hence € (1) < € (u).
Putuy=a®A. Then S(L,aOA)=a <S(F(1),€(a@®A)). Hence c ©F(A) <€ (a®L).
2)(=)(3).Sinceax @ (a—A)<F(ao(a—A)<FA),C(a—A)<o—FA).
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(3) (=) (1). Since S(A, 1) ©®A < p iff A < S(A,u) = u, C(A) < C(S(A, 1) — 1) <
S(A,u) — € (u). Hence S(A,p) < S(€'(A),€ ().

Theorem 3.3. Let (X,.%) be an L-fuzzy cotopological space. Define a map €'z : LX — [X

as follows:

Cr(A)= N\ (F(u) = (S(A,n) = p))

uerX
Then (X,%#) is a stratified L-fuzzy closure space.
Proof. (C1) €7(Lx) = Apyerx(F (1) = (S(Lx,p) = ) < F(Lx) = (S(Lx, Lx) —
1y)= Ly
(C2), we have €7 (A) > A for each A € LX from:

xeX
=N\ (A@= A (FW) = $Gu) = )
xeX uerx

— ((gz(u) OSA,u)OA(x)) — u(X)))

(C3) and, by Lemma 3.2, € is stratified from

S(€7(2), €7 (W) = N\ (€7 ) (x) = Cz (1) (x))

xeX
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= A (A FP)oStp)=p@) = A\ (FO)@Skv) = v(x)

xeX pelX velX

>\ A ((Z0)0S(.p) = p(x) = (F(p) @ S(1,p) = p(x)))
xeX pelX

> A A (J YO S(i,p) = (F(p) OS(A, )) (by Lemma 2.2 (12) )
xeX pelX

> A A (80.0) > S(A,p)) = S(2,p).(by Lemma 2.4(5) )
xEXpeLX

(C4)

Cr(R) @ (1)

= AN (ZF@pP)=SA.p)=p)e N (F(v)—= (S, v)—v)

pelX velX

(by Lemma 3.1(1) )

= A A ((ZP)os(p) > p)a(F(V)@Su,v) > v))

pelX velX

= A (Z()0FW)oShp)osu,v) = (pev))

p,veLlX

> A\ (Floviosianpav) > (pav))

p,velX

(by Lemma 2.4(4) )

>Cr(Aopn).

Remark 3.4. Let (X, 3) be an L-cotopological space. Define a map €5 : LX — LX as follows:

G()= Muel¥|A<pues).

Then (X, ¢5) is an L-fuzzy closure space. Moreover, if (X,3) is enriched, (X, %3) is stratified.
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Corollary 3.4. Let (X,3) be an L-cotopological space. Define 65 : LX — LX by

%(A) = )\ (S(A.p) = p).
pel

Then the following properties hold.

(1) (X,%5) is an L-fuzzy closure space.

(2) If (X,3) is enriched, then (X, %5) is a stratified L-fuzzy closure space.

() b5(A) = AM{n |2 <p,peSY,

(4) If (X,9) is enriched, then the equality in (3) holds.

Theorem 3.5. Let (X, %) be an L-fuzzy closure space. Define a map % : LX — L by:

Then,
(1) %4 is an L-fuzzy cotopology on X.
(2) If € is stratified, then .%« is an enriched L-fuzzy cotopology.
(3) %z, >C.
WD IEE(E(A))=F(A) forall A € LX, then Fx (€' (L)) = T and Cz, <C.

(5) If .# is an L-fuzzy cotopology on X, then F,7 > Z.

Proof. (F1)
Fe(Tx) = x/;((%(ﬂ() — Tx(x)) ZXQ((Lx(X) —1x(x) =T,
Fo(Lx) = N(€(Lx) = Lx(x)) = A\ (Tx(x) = Tx(x) = T.
(F2) By Lemma 3.1(1), \)’CVEGX havre =
T (A ® M) zxg((‘ﬁ(l Su))x) = (Aeu)(x)
zx/;((%(?t)(w S (1) (x) = A(x) & p(x))
> xg(mwx) — A(x)) ®x/€><‘5(u>(X) — p(x))

= F¢ (L) © F(1).
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(F3) By Lemma 2.2(8),we have

Fe(NA) = N\ (E(N\A)x) = \dilx)

xeX i

> A\ AER)E) > Abl)

xeX i

> A\ A (@O)E) = 1) = \Felh).

i xeX

(2) By Lemma 2.2 (12), we have

Fg(—2A)= \(€(a—A)(x) = (& — 1) (x))

xeX

> A ((@—=FA)) - (6 Aw)

xeX

> N (EQ)x) = A(x) = Fe(A).

xeX

3)

Cr,M)x) = N\ (Folp) = (SA, 1) = p(x)))

uerX

= A\ (@ (1), 1) ©S(A, 1) = p(x))

uerX

(by the definition of .%)

> N\ S(E(n),n) ©S(E(A),% (1)) = u(x))

uerXx

> A (S(¢(A),p) = p(x)) (by Lemma 2.4(3))

uerXx

>%(A)(x).

(4) By (C2), €(€(4)) = €(A).

139
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Hence .7 (¢ (1)) = € (A). Thus, F4 (€ (L)) = T. Moreover,

®)

A (F() > (SRp) = 1) = A())
peLX

<
> ((35(/1) S (S(AA) = 1)) = z(x))
(

(F(A) = A(x) = Ax))

Remark 3.6. Let (X, %) be an L-fuzzy closure space. Define a subset 3 C LX by:
Se={A el | €(A) =A}.
Then, 3¢ is an L-cotopology on X with %3% > €. If € is stratified, then 3 is an enriched

L-cotopology.

Theorem 3.7 Let (X, #x) and (Y, %y) be L-fuzzy cotopological spaces and ¢ : X — Y be a

map. Then



L-FUZZY CLOSURE OPERATORS AND L-FUZZY COTOPOLOGIES 141
(1) For each A € LX,

N (Fr(v) = (Fx(97(v)) <S(97 (€7, (1)), €7, (97 (A)))

velY
(2) If a mapping ¢ : (X, Fx) — (Y, Fy) is continuous, then ¢ : (X,Cz,) — (Y,€z,) is a
C-map.
Proof. (1)

= N\ (07 €z M) (@) = €z, (97 (1)) (9(x))

xeX
= N\ (€7, (M) (x) = C7, (07 (1) (9(x)))
xeX
= ACA (Fx(p)©S(A,p) = p(x))
xeX ngX
= N\ (Fr(v)OS(07(A),v) = v(9(x)))))
velY
= ACA (Zx(0 (V) OS(A, 90 (v)) = ¢ (V)(x))
xeX yeLY
= N\ (Fr(v)OS(97(A),v) = v(9(x)))))
velY
=ACA ((ﬁx(W(w)@S(l,W(v)) — ¢ (V)(x))
xeX yeLY

= (Fr(V)@S(97(2),v) = V(9 (x)))))
= ACA (B8O~ 1),v) > (Fx(67 (V) ©S(2,07 ()

xeX yelY

= A (Fr(v) > Fx(6- ()

veLY

(2) Since Fy (v) < Fx (9 (v)), by (1), 97 (€5, (1)) < €5,(6(1)).



142 JU-MOK OH, YONG CHAN KIM*

Theorem 3.8 Let (X,%x) and (Y, 6y) be fuzzy closure spaces and ¢ : X — Y be a map. Then

(1) S(€x(9(2)), 9 (¢¥(A))) < Fog (A) = Fog (¢ (1)) foreach A € LY.

(2) If a mapping ¢ : (X,%6x) — (Y, %y) is an C-map, then ¢ : (X, F4, ) — (Y, F,) is contin-
uous.

Proof. (1) By Lemma 2.2, we have

0 (G (A)(x) > 9= (M)()) = A (S0 (A)(x) — 9~ (A)(x))

xeX

(
> A\ (9= = 0 (6 (1) ()

(2) Let 9= (%x (1)) < %y (9~ (A)). Then, put A = 9 (u),

Cx (0T (1) < 9T (07(Cx (97 (1)) < 0T (¥ (97 (97 (1)) < ¢° (Gr(m)).

Thus, by (1), if €x (¢ (1)) < ¢ (€v(A)), then Fy, (L) < Fg (97 (R)).
Example 3.9. Let (L = [0, 1],®,—) be a complete residuated lattice defined by
xOy=(x+y—1)V0, x—>y=(1—x+y)AL

x®y=(x+y)Al, xX*=1—x

Let X = {x,y,z} be asetand p,p ® p € LX such that

p(x)=0.4,p(y) =0.8,p(z) =0.7,

popx)=08,pdp(y)=1p&p(z) =1
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(1) We define an L-fuzzy cotopology .% : LX — L as follows
( .
1, lfﬂ,:1x,l:0X,

0.6, ifA=p,
0.3, ifA=padp,

L 0, otherwise.

From Theorem 3.3, we obtain an L-fuzzy closure operator €'# : LX — LX as follows

Cr(A) = Nyerx (F (1) = (S(A, 1) — 1))
= (S(4,0x) = 0x) A (0.6 = (S(A,p) = p)) A (0.3 = (S(A,pBp) = pBP)).

For A; = (0.9,0.4,0.2),
C7(M) =(S(A,0x) = 0x)A (0.6 = (S(A,p) = p))
AN0.3 = (S(A,pdp) = pdp))=(0.9,0.9,0.9)
Fgr,(M) =S(€7(M),M)=03>T(A)=0.

(2) We define an L-fuzzy closure operator € : LX — LX as follows

[0y, ifA =0y,
, ifOx #A <p,
F(0) = p x #A<p
pdp, ifpZA<pop,
Ix, otherwise.

\

% is not stratified because
%09 —p)=%((0.5,0.9,0.8)) = (0.8,1,1) £0.9 — ¥(p) = (0.5,0.9,0.8).

From Theorem 3.5, we obtain an L-fuzzy cotopology .% : LX — L as follows

(

Ix, if A = ly,
S(pal)a 1f0X7£l§Paa
Sp@p,A), ifpZA<pdp,

S(1x,A), otherwise.

\
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Definition 3.10. [1] Suppose that F : ¥ — €, G : € — 2 are concrete functors. The pair
(F,G) is called a Galois correspondence between ¢ and & if foreachY € €, idy : FoG(Y) =Y
is a ¥-morphism, and for each X € 2, idx : X — GoF(X) is a Z-morphism.

If (F,G) is a Galois correspondence, then it is easy to check that F is a left adjoint of G, or

equivalently that G is a right adjoint of F.

Let FC be denote the category of L-fuzzy closure spaces and C-maps for morphisms.

Let FCTS be denote the category of L-fuzzy cotopological spaces and continuous mappings
for morphisms.

Theorem 3.12. (1) F : FC — FCTS defined as F(X,Cx) = (X, .%¢,) is a functor.

(2) G : FCTS — FC defined as G(X, #x) = (X,C4,) is a functor.

(3) The pair (F,G) is a Galois correspondence between FC and FCTS.

Proof. (1) and (2) are follows from Theorems 3.8(2) and 3.7(2), respectively.

(3) By Theorem 3.5(5), if (X, #x) is an L-fuzzy cotopology, then F(G(X, Fx) = (X, Fc;, ) =
(X, Fx). Hence, the identity map idy : (X, Zc; ) =F(G(X,Fx)) — (X, Fx) is a continuous
map. Moreover, if (X,Cx) is an L-fuzzy closure space, by Theorem 3.5(3), G(F(X,Cx) =
(X,Cz, ) = (X,Cx). Hence the identity map idy : (X,Cx) — G(F(X,Cx)) = G(F(X,Cx) is a
C-map. Therefore (F,G) is a Galois correspondence.
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