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Abstract. In this paper, we introduce Geraghty-Berinde type contraction maps for a pair of maps in partial metric
spaces and prove the existence of common fixed points in which the pair is weakly compatible and restricting the

completeness of X to its subspace. Also, we extend the same for two pairs of maps. We provide examples in

support of our results.
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1. Introduction

The development of fixed point theory is based on the generalization of contraction conditions
in one direction or/and generalization of ambient space of the operator under consideration on
the other. Banach contraction principle plays an important role in solving nonlinear equations,
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and it is one the most useful result in fixed point theory. In 1994, Matthews [18] introduced the

notion of a partial metric in which the concept of self distance need not be equal to zero.

2. Preliminaries

The Banach fixed point theorem in the context of partial metric spaces due to Matthews [18]
is the following:

Theorem 2.1. [18] Let (X,p) be a complete partial metric space, and let T : X — X be a
mapping such that there exists k € [0, 1), satisfying p(Tx,Ty) < kp(x,y) for all x,y € X. Then
T has a unique fixed point in X.

In 1996, Neill [21] defined the notion of the dualistic partial metric, later Oltra and Valero
[20] proved Banach fixed point theorem on complete dualistic partial metric spaces. Further,
Valero [22] established a fixed point theorem using a nonlinear contractive condition instead of
a Banach contraction condition. The notation of almost contractions was introduced by Berinde
([9], [10]) as a generalization of contraction maps. For further works in this direction, we refer
([8], [11], [12], [13]). In 2012, Altun and Acar [2] characterized this concept in the context of
partial metric spaces and proved some fixed point results. For more works on fixed point results
and common fixed point results in partial metric spaces, we refer ([1]-[6]).

In 1973, Geraghty [17] proved a fixed point theorem, generalizing Banach contraction
principle. Several authors proved later various results using Geraghty-type conditions.
Recently, Duki¢, Kadelburg and Radenovié [14] proved a fixed point theorem using Geraghty-
type contraction in partial metric spaces as follows.

We denote § = {f : [0,00) — [0,1)/B(t,) — 1l asn — o =1, — 0 as n — oo}.

Theorem 2.2. [14] Let (X,d) be a complete partial metric space and let 7 : X — X be a
selfmapping. Suppose that there exists § € 8 such that p(Tx,Ty) < B(p(x,y))p(x,y) holds for
all x,y € X. Then T has a unique fixed point u € X and for each x € X the Picard sequence
{T"x} converges to u when n — co.

Definition 2.1. [18] Let X be a nonempty set. A mapping p: X x X — R, RT = [0,0) is said
to be a partial metric, if it satisfies the following conditions:

For any x,y,z € X
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(P1) x=y & p(x,x) = p(x,y) = p(»y),
(P2) p(x, ) p(x,y), p(»y) < p(x,y),
(P3) p(x,y) = p(y,x),

(P4) p(x,y) < p(x,z) + p(z,y) — p(z,z). The pair (X, p) is called a partial metric space.

If p is a partial metric on X, then the functions p*, p" : X x X — RT, R™ = [0, o) defined by
p*(x,y) =2p(x,y) — p(x,x) — p(y,y) and p"(x,y) = p(x,y) —min{p(x,x), p(y,y) } are ordinary
metrics on X.

Example 2.1. [18] Consider X = [0,0) with p(x,y) = max{x,y}. Then (X, p) is a partial metric
space. It is clear that p is not a (usual) metric.

Note that in this case, p*(x,y) = |x —y|.

Example 2.2. [15] Let X = {[a,b] : a,b € R,a < b} and define p([a,b],[c,d]) = max{b,d} —
min{a,c}. Then (X, p) is a partial metric space.

Each partial metric p on X generates 7y topology 7, on X, which has a base the family of
open p-balls {B,(x,€) : x € X,€ > 0}, where B,(x,€) = {y € X/p(x,y) < p(x,x) + €} for all
x€ X and € > 0.

Clearly, a limit of a sequence in a partial metric space need not be unique. Moreover, the
function p need not be continuous.

Example 2.3. [19] Consider X = [0, ) with p(x,y) = max{x,y}. For {x,} = {1},

p(xp,x) =x = p(x,x) for each x > 1.

Definition 2.2. [18] Let (X, p) be a partial metric space. A sequence {x,} is converges to x if
and only if p(x,x) = r}i_r)rgop(x,xn).

Definition 2.3. [18] Let (X, p) be a partial metric space. A sequence {x,} is said to be a Cauchy
sequence if ngrgm p(xn,x,) exists and is finite.

Definition 2.4. [18] A partial metric space (X, p) is said to be complete if every Cauchy

sequence {x, } in X converges with respect to 7,, to a point x € X, such that p(x,x) = n}?lglm P (Xn, Xm).

The following lemmas in a partial metric space are useful in proving our main results.
Lemma 2.1.[18] Let (X, p) be a partial metric space. Then the sequence {x,} is a Cauchy
sequence in X if and only if it is a Cauchy sequence in the metric space (X, p*).

Lemma 2.2. [18] A partial metric space (X, p) is complete if and only if the metric space
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(X, p®) is complete. Moreover, nggops(x,xn) =0< p(x,x) = r}ijgop(x,xn) = n}'iglwp(xn,xm).
Definition 2.5. [16] Let X be a nonempty set. Let f: X — X and g : X — X be two
selfmaps. If fx = gx implies that fgx = gfx for x in X, then we say that the pair (f, g) is weakly
compatible.

The following theorem is due to Dinarvand [19].
Theorem 2.3. [19] Let (X, p) be a complete partial metric space and let T : X — X be a selfmap.
Suppose that there exist B € § and L > 0 such that
p(Tx,Ty) < B(M(x,y))M(x,y)+LN(x,y) holds for all x,y € X, where

M(x,y) = max{p(x,y), p(x,Tx), p(y, Ty), 5 [P(x,Ty) + p(y, Tx)]} and
N(x,y) = min{p" (x, Tx), p" (v, Ty), p" (x,Ty), p" (y, Tx)}.
Then T has a unique fixed point u € X. Moreover, P(u,u) = 0.

In the following, we introduce Geraghty-Berinde type contraction map for a pair of maps.
Definition 2.6. Let (X, p) be a partial metric space, and let f and g be selfmaps of X. If there
exist B € § and L > 0 such that

p(fx,fy) < B(M(x,y))M(x,y) +LN(x,y) (2.1)
for all x,y € X, where M(x,y) = max{p(gx,y), p(gx, fx), p(8y: ), 5 [P(gx, f) + p(gy. fx)]}
and N(x,y) = min{p"(gx, fx), p" (gx, fy), P" (), [X)},
then we call the pair (f,g) is a Geraghty-Berinde type contraction maps.

If L =0 in (2.1) then we say that the pair (f,g) is a generalized Geraghty type contraction
maps.

Example 2.4. Let X = [0, 1]. We define p(x,y) = max{x,y} for all x,y € X. Then (X,p) is a

partial metric space. We define selfmaps f, g: X — X by f(x) = "72, g(x) =x? and

0 ifr=0
B(t) = | with L > 0.

T+ lfl>0

Then clearly the pair (f,g) is a Geraghty-Berinde type contraction map.

The following proposition is useful to prove our main results.
Proposition 2.1.[7] Let (X, p*) be a metric space with Jl_t}glo P (YnyYn+1) = 0. Assume that {y,, }
is a Cauchy sequence in (X, p*) then {y,} is also Cauchy in (X, p*).

In Section 3, we extend Theorem 2.3 to a pair of maps in which we prove the existence of

common fixed points of Geraghty-Berinde type contraction maps in which the pair is weakly
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compatible in partial metric spaces and by restricting the completeness of X (Theorem 3.1).
Also, we extend the same for two pairs of selfmaps. In Section 4, we draw some corollaries

from our main results and provide examples in support of our results.
3. Main results

Theorem 3.1. Let (X, p) be a partial metric space and let the pair (f,g) be Geraghty-Berinde
type contraction maps. If f(X) C g(X), the pair (f,g) is weakly compatible and g(X) is a
complete subspace of X then f and g have a unique common fixed point in X.
Proof. Let xo be arbitrary point in X. Since f(X) C g(X) there exists x; € X such that
fxo = gx1 = yo (say).
In general we have there exists x, € X satisfying fx, = gx,+1 =y, (say),n=0,1,2,....
Case (i): Assume that p(y,,y,+1) > 0 for some n.
We show that p(yn,ynt1) < p(Yn—1,n),n=1,2,3,....
We consider
POnsYnt1) = p(fxn, fXnt1)
< B(M (xn, Xn41) )M (X, Xn 1) + LN (X0, X 1) (3.1)
Since 3 [p(yn—1,Yn11) +POns¥n)] < 3 [POn1,30) + PO Yut1)] < max{p(yu—1,¥n), PV, Ynr1)}
Now
M (xn, Xn11) = max{p(gxn, 8%n-+1), P(8Xn, fXn), P(8Xn+1, [Xn+1),
3 1P(8%ns fXni1) + p(&Xns1, fn)]}
= max{p(Vu—1,Yn), POn—1,Yn)s POs Ynr1) 3 [P On—1:Yn1) + (s )1}
Therefore M (xy,xp+1) = max{p(yn—1,Yn), ?(Vn,Yn+1)} and
N (Xn,Xng1) = min{ p" (gxu, fxn), p" (%n; foXn+1), P (8%n+1, [ Xn) }
= min{p" (Yn—1,n), P (¥n—1,Yn41), 2" (¥, 3n) }-
As p"(yn,yn) = 0, it follows that N (xp,x,+1) = 0.
If M(xp,%n+1) = p(Yn,Yn+1) then from (3.1), we have
POnsYnt1) < BP0 Yns1))POns Y1) < Py Ynt1)s
which is a contradiction.

Hence, M (x,,Xp+1) = P(Yn—1,Yn)-
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Therefore from (3.1), we obtain

PO Ynt1) < BPG-1Y0))P(n—1:Yn) < P(Yn—1,Yn)-
Hence, {p(yn,yn+1)} is a decreasing sequence of nonnegative reals and bounded below by 0.
So, there exists r > 0 such that ’}ijgop(yn,yn+1) =r (3.2)
We claim that 7 = 0. On the contrary suppose r > 0.
On letting n — o in (3.1), and using (3.2), we get
r<B(ryr<r,

a contradiction.

Hence, li_r>n P(Yn,Yni1) =0. (3.3)
n—ro0
Thus from (P,), we get that lim p(y,,y,) = 0. (3.4)
n—yoo
By the definition of p*, (3.3) and (3.4), we get lim p*(y,,yn+1) = 0. (3.5)
n—yoo

Next, we prove that {y, } is Cauchy in (X, p*). On the contrary suppose that {y, } is not Cauchy.
There exist € > 0 and monotone increasing sequence of natural numbers {m;} and {n;} such
that ny > my, with

P’ Omgs V) > € and p* (g, Y —1) < €. (3.6)
Now we prove that (i) kh_r>r°1° POVmsyn) = 5.
Since € < p*(Ymy,yn,) for all k, we have

& < iminfp* (v, yiy)- (3.7)
Now for each positive integer k, by the triangular inequality, we get

P Omyos ) < P s Ym—1) + P* =1, Ym)

On taking limit superior as k — oo, from (3.5) and (3.6), we have

limsup p* (Y, yn,) < €. (3.8)
k—yo0
Hence, from (3.7) and (3.8), we get klim P°(Ymy »Yn,) exists and klim P Vmg» yn,) = €.
—>00 —>00
Hence, from the definition of p* and (3.4), we have kh_r)go POy yn) = 5.

In similar way, it is easy to see that

(if) ]}ergop()’nk—i-laymk) = %; (iii) klgl;lop(ynk?ymk_l) = % and

(iv) I}ggop@mk—l?ynk-i-l) = %
We now consider

p(ynk—i—IJ’mk) = p(fxnk+17fxmk)
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< B(M (X1, Xy ) )M (X1, Xy ) + LN (X415 Xy ) (3.9)
where
M (X1, Xy ) = max{ p(8xn, 11, 8%my ), P(&Xn 15 [Xmt 1) P(&%Xmys fXmy )
3 (P(&%n 15 Fxmy) + P(&%mg Fome+1)]}
= max{p(ne; Yi—1)s P Ome> Y1), PVmg—1, Yy )
3 (PO ym) + POm—1,Ym+1)]}
On letting k — oo and using (3.3), (i), (i), (iii) and (iv), we get
klggM(x”kH’xm") =max{$%,0,0, %[% +£]} =5 and
N (X1, %m ) = min{ p (81, f X 11), P (8%t 15 S Xy ), P (8%my, [Xm+1) }
= min{p" (yu, Y1), 2" s Y ) " (Ymy—1, Ym1) }-
On letting k — oo and using (3.3), (3.4), (i) and (iv), it follows that N (X, 1 1,Xm, ) = 0.
On letting k — o in (3.9), we obtain
5<B(B)5 <5
a contradiction.
Hence, {y,} is a Cauchy sequence in (X, p*).
Case (ii): Assume that y, =y, for some n.
If p(¥n+1,Ynt2) > 0. We have
M (Xp11,%n+2) = max{p(gxn+1,8%n+2), P(§Xn+1, [ Xn+1)s P(8Xn+25 [Xn+2),
3[P(g%nr1, fxns2) + p(gXnr2, fans1)]}
= max{p(yn,Ynt1), PVn>Yn41); PVt 1, Yn+2),
3 (PO yas2) + POty )]}
However, p(yn,yn+1) = POn+1:Vn+1) < P(Ynt1,Yn+2), from (P2) and
2POnet,yn41) + PO ynr2)] < 3P Onynr1) + POns1,Yns2)] < POntt s Ynr2),
M (xn+1,%n4+2) = P(Vn+1,Yn+2) and N (X1, Xp42) = 0.
From the inequality (2.1), we have
POnt1,Yn+2) = P(fXnt1, fXni2)
< BM (xn+1,%n+2) )M (Xn+1,%n+2) + LN (Xp1-1,Xn12)
= B(pOn+1,Y042)) PPt 15 ¥n42) < P(Ynt1;Ynr2),

which is a contradiction.
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Hence, yu+1 = yn+2-
Continuing in this way, we can conclude that y, =y, for all k > 0.
Thus, {y,} is a Cauchy sequence in (X, p*).
From the Lemma 2.1, it follows that {y, } is a Cauchy sequence in (X, p).
Therefore n}}glwp(yn,ym) =0. (3.10)
Suppose g(X) is complete.
Since y, = fx, = gxn+1, it follows that {y,} C g(X) is a Cauchy sequence in the complete
metric space (g(X), p*), it follows that {y, } converges in (g(X), p*).
Thus, r}i_r)rt}ops(yn,u) = 0 for some u € g(X). i.e., nh_r)rgoy,, =u=gt € g(X)forsometcX.
Since {y,} is a Cauchy sequence in X and y, — u, it follows that y, | — u as n — .
From the Lemma 2.2, we have
p(u,u) = Hm p(yni1,u) = Hm p(yn,u) = 1im_p(yu,ym)-
From (3.10), we have

p(u,u) = Hm p(yai1,u) = Him p(yn,u) = 1im_p(ya,ym) = 0.
We now show that ft = u.
Suppose p(ft,u) > 0.
We now consider

P(ft,Yn11) = p(f1, fxnp1) < BM(8,x010) )M (2, Xn11) + LN (2, 2041) (3.11)
where
M(t,xn+1) = max{p(gt, gxn+1), P(8t, f1), P(8Xn+1, fXn+1),

%[P(gf»fxnﬂ) + p(gxnt1, f1)]}
= max{p(u,yn), p(it, 1), POVns Y1) 3 [P(ts Y1) + p (v, )]}
On letting n — oo, we get
Tim M (¢,x,1) = max{0, p(u, f1),0, 3 (p(u, f1))} = p(u, 1) and
N(t,xp41) = min{p" gz, f1), P (81, fXn+1), P (8%n+1, /1) }
= min{p" (u, f1), P (, Yn11), P" (¥, f1) }-

On letting n — oo, we get ]11i_r>£10N(t,xn+1) = min{p(u, f1),0, p(u, ft)} =0.
On letting n — o0 in (3.11), we obtain

p(ft,u) < B(p(f1,u))p(f1,u) < p(f1,u),
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a contradiction.
Hence, ft = gt = u.
Since the pair (f,g) is weakly compatible and ft = gr = u, we have fu = gu
We now prove that fu = u.
On the contrary, suppose that p(fu,u) > 0. From the inequality (2.1), we have
Ut ynet) = PUF, Fnst) < BM(t %0 1)IM (X1 + LNt %51 (3.12)
where
M (u,xp41) = max{p(gu,gxn11), p(8, fu), P(&Xn+1, fXnt1),
3[p(gu, fxni1) + p(gxns, fu)]}
= max{p(fu,yn), p(fit, fit), POy Y1) 3 [P(fit, s 1) + p (s 1))}

On letting n — oo, we get

Tim M (u,xy1) = max{p(fu,u), p(fu. fu),0,5(p(u, ft) + p(u, fu)]} = p(fu,u) and
N(u,xp11) = min{p" (gu, fu), p" (gu, fxns1), p" (8%n+1, fu) }
= min{p"'(fu, fu), p" (fu;Yn+1), p" (Yn, fu) }
On letting n — oo, we get ,}EEON(”=XH+1) =min{O0, p(u, fu), p(u, fu)} = 0.
On letting n — o0 in (3.12), we obtain
p(fusu) < B(p(fu,u)plfu,u) < p(fu,u),
a contradiction. Hence, fu = gu = u. Therefore u is a common fixed point of f and g.
Uniqueness of a common fixed point follows from the inequality (2.1).
Proposition 3.2. Let (X, p) be a partial metric space, and let A,B,S and T be selfmaps of X.
Assume that there exist B € § and L > 0 such that
p(Ax,By) < B(M(x,y))M (x,y) +LN(x,y) (3.13)
holds for all x,y € X, where M(x,y) = max{p(Sx, Ty), p(Sx,Ax), p(Ty, By), 3[p(Sx, By) + p(Ty,Ax)]}
and N = min{p" (Sx,Ax), p*(Ty,By), p* (Sx,By), p* (Ty,Ax)}. Then the following hold.
(i) IfA(X) C T(X) and the pair (B,T) is weakly compatible, and if 7 is a common fixed point
of A and S then z is a common fixed point of A,B,S and T and it is unique.
(ii) If B(X) C S(X) and the pair (A,S) is weakly compatible, and if 7 is a common fixed point
of Band T then z is a common fixed point of A,B,S and T and it is unique.

Proof. First, we assume that (i) holds. Let z be a common fixed point of A and S.
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Then Az =Sz =1z.
Since A(X) C T(X), there exists u € X such that Tu = z.
Az=87=Tu=z.
We now prove that Tu = Bu. Suppose that Tu # Bu.
From the inequality (3.13), we have
p(Tu,Bu) = p(Az,Bu)
< B(M(z,u))M(z.u)
= B(max{p(Sz,Tu), p(Sz,Az), p(Tu, Bu), 5[p(Sz, Bu) + p(Tu,Az)]})
max{p(Sz, Tu), p(Sz,Az), p(Tu,Bu), 5[p(Sz, Bu) + p(Tu,Az)]}
+ Lmin{p"(Sz,Az), p"”(Tu,Bu), p" (Sz,Bu), p* (Tu,Az)}
= B(p(Tu,Bu))p(Tu,Bu) < p(Tu,Bu),
which is a contradiction.
Hence, Bu=Tu = z.
Since the pair (B, T) is weakly compatible, it follows that BTu = TBu i.e, Bz =Tz.
Suppose Bz # z.
From the inequality (3.13), we have
p(z,Bz) = p(Az, Bz)
< B(M(z,2))M(z,2)
= B(max{p(Sz,Tz),p(Sz,Az), p(Tz, Bz), 5[P(Sz, Bz) + p(Tz,Az)]})
max{p(8z,Tz), p(Sz,Az), p(Tz,Bz), 5 [p(Sz,Bz) + p(Tz,Az)]}
+Lmin{p" (8z,Az2), p" (T2, Bz), p* (Sz, Bz), p" (T2, Az) }
= B(p(z,B2))p(z,Bz) < p(z,Bz),

which is a contradiction.

155

Thus, Bz = Tz = z. Hence, Az = Bz = Sz = Tz = z. Hence, z is a common fixed point of

A,B,S and T. Let 7 be another common fixed point of A,B,S and T.
From the inequality (3.13), we have
p(z,7) = p(Az,BY)
< BM(z,2))M(z,7)
= B(max{p(Sz,T7'), p(Sz,Az), p(TZ,B), 5 [p(Sz,BZ) + p(TZ,Az)]})
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max{p(Sz,T7), p(Sz,Az),p(TZ ,BZ), %[p(Sz,Bz’) +p(T7,A2)]}
+Lmin{p" (Sz,Az),p"(T<,BZ), p"(Sz,B7), p"(T7 ,Az) }
=B(p(2,2)p(z,7) < p(z,2),
which is a contradiction.
Hence, z = 7. Thus z is a unique common fixed point of A, B,S and T.

The proof of (ii) is similar to (i) and hence is omitted.

Theorem 3.3. Let A, B, S and T be selfmaps of a partial metric space (X, p) and satisfy

A(X) CT(X),B(X) C S(X) and the inequality (3.13). If the pairs (A,S) and (B,T) are weakly
compatible and S(X) or T(X) is a complete subspace of X then A,B,S and T have a unique
common fixed point in X.

Proof. Let xo € X arbitrary point in X.

Since A(X) C T(X) and B(X) C S(X), there exist sequences of {x,} and {y,} in X, such that
yon = Ax2y, = Txp, 41 and

Yont+1 = Bxppi1 = Sxopio forn=0,1,2,....

Assume that y,, = y,,.1 for some n.

Case (i): neven. We write n =2m,m =1,2.3,....

Now we consider

POVnt1,Yn42) = PV2ms1:Y2m+2)

P(Axomi2, BXom+1)
< BM (x2m12,%2m+1) )M (X2m 12, X2m+1) + LN (X2m 42, X2m41), (3.14)
where
M (xom+2,%0m+1) = max{ p(Sx2m+2, TXam+1), P(SXom+2,A%2m12), P(TX2m+1, BXom+1),
5[p(Sx2m 2, Bxom 1) + p(TXom 1 1,A%0m 12)]}
= max{p(Yam+1,Y2m)s P(V2m+1,Y2m+2): P(Y2m Y2m+1),
5P O2ms1,y2m41) + P(vam, Yom12)]}
= max{p(y2m+1,Y2m)s PV2m+1,Y2m+2)} = P(Y2m+1,Y2m+2) and
N(xom+2,X2m+1) = min{ p" (Sxomi2,Axom12), P (T Xom+1, BXom+1), P* (SXam+2, BXom+1),
PV (Txoms1,AX2m42) }

= min{ p"' (yam+1,Y2m+2), P V2ms Y2m+1), P (V2ms Yam+1),
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P" (Vom,y2m+2)} = 0.as you = Yam+1 and p*' (yam, yam) = 0.
From the inequality (3.14), we have
PO2mt1,Y2m+2) < B(P(Vam+1,Y2m+2)) P(Vam+1,Y2m+2)
< p(Vamt1,Y2m+2),
a contradiction if p(yom+1,V2m+2) # 0.
Therefore, p(yam+1,Y2m+2) = 0 which implies that yy,,12 = Yom+1 = Yom-
In general, we have vy, = yo,, fork=0,1,2,....
Case (ii): n odd. We write n =2m+ 1 forsome m = 1,2,3....
We consider
POnt1,Yn42) = P(Yom+2, Yom+3)
= p(Axami2, BXom3)
< B(M (x2m+2,X2m+3) )M (Xom+2,X2m1:3) + LN (Xom 42, Xom+3), (3.15)
where
M (X212, %0m+3) = max{ p(Sx2m12, TxX2m+3), P(SXom12,A%m12), P(TX2m+3, BX2m13),
[P (Sx2ms2, Bxoams3) + p(Txoms3,Axom42)] }
= max{p(Vam+1,¥2m+2)s P(V2m+1:Y2m+2)s P(V2m+2, Yom+3)
3P 1,Y2m13) + PO2me 1, Y2m12)]}
= max{p(Vam+1,Y2m+2), P(Vom+2:Y2m+3)} = P(Yom+2,Y2m+3) and
N (x2m12,%2m+3) = min{ p" (Sxom 2, Axom+2), P (Txom+3, Bxom3), P" (SXom-+2, BXom +3),
P" (Txom+3,A%2m12)
= min{p" (yam+1,Y2m+2), 2" (Vom+2,Y2m+3), P (V2m+1,Y2m+3 ),
P" (Yam12,Y2m+2)} = 0 as p" (yamr2,y2m+2) = 0.
From the inequality (3.15), we have
Pom+2,Y2m+3) < B(P(Vam+2:Y2m+3))P(Vom+2,Yom+3) < P(Y2m+25Y2m43),
a contradiction if p(yam+2,Y2m+3) > 0.
Therefore, p(yam+2,V2m+3) = 0 which implies that y2,,+3 = Yam+2 = Yom+1-
In general, we have yy,,, 11 = yomy1 fork=1,2,3,....
From Case (i) and Case (ii), we have y,,x =y, for k =0,1,2,.... Hence, {y,«} is a constant

sequence and hence {y,} is Cauchy.
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Now we assume that y, # y,+| foralln=1,2,3,....
If n is odd, then we write n = 2m+ 1 for some m = 1,2,3,....
We now consider
PnsYnt1) = PV2am+1,Y2m+2)
= p(Axom+2, Bxom+1)
< BM (x2m+25%2m+1) )M (Xom+2, X2m+1) + LN (X242, X2m+1) (3.16)
where
M (xom+2,%0m+1) = max{ p(Sxam+2, TXom+1), P(SXam+2,A%2m+2), P(TX2m+1, BXam+1),
5[P(Sxams2, Bxomi1) + P(TXom 11, Axom12)]}
= max{p(yom+1,Y2m), PV2m+1,Y2m+2) P(V2m: Yam+1),
sPGamttsyam1) + Pam Yomi2)]}
= max{p(yom+1,y2m), P(Yom+1,Y2m+2)} and
N(xX2m+2,Xom+1) = min{p" (Sx2m+2,Ax2m+2), P (TXom+1, BX2m+1), P (SXom+2, BXom41),
P (Txoms1,Ax2m+2) }
= min{p" (yam+1,Y2m+2), P (V2m: Y2m+1): P (V215 Y2m41),
P (yam>y2m+2)} = 0.
If p(Y2m+1,Y2m+2) is maximum then from (3.16), we have
PO2m+1:Y2m+2) < B(PV2m+1:Y2m+2)) P(Vom+15Yam+2)

< p(Vomt1,Y2m+2);5

a contradiction.
Hence p(yom,Yom+1) is maximum.
Therefore
pam+1,Y2m42) < BPV2ms yam+1))P2m, Yam+1) < P(Y2ms Yam+1) (3.17)
Similarly we can show that p(y,—1,vn) < p(¥yn—2,yn—1) forn > 1.
Thus, we have p(yu,Yn11) < p(Yn—1,yn) foralln=1,2,3,....
Therefore {p(yn,yn+1)} is a decreasing sequence of nonnegative real numbers and hence
converges to real r > O(say).
Suppose r > 0.

On letting n — o0 in (3.17), we get
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r<B(ryr<r,
a contradiction.
Hence, r = 0. Thus, p(y,Vn+1) — 0 as n — co.

On the similar lines, if n is even, it follows that p(y,,y,+1) — 0 as n — .

Therefore lim p(y,,y,+1) = 0. (3.18)
n—yoo
Therefore from (P2), we get that lim p(y,,y,) = 0and lim p(y,+1,yn+1) = 0. (3.19)
n—oo n—soo
By the definition of p*, using (3.18) and (3.19), we get that lim p*(y,,y,+1) = 0. (3.20)
n—yoo

Now, we prove that {y,,} is a Cauchy sequence in (X, p*).
On the contrary, suppose that {y,,} is not Cauchy. Then there exist an € > 0 and monotone
sequences of natural numbers {2my; } and {2n; }such that 2n; > 2my > k, with

P (Vo Yam,) = € and p*(yam,, yon,—2) < € (3.21)
Now we prove that (i) klgrolo P(Vomg>Yom) = 5.
Since € < p*(yom,,y2n, ) for all k, we have

€ < liminf p* (yaum,, y2n,)- (3.22)
Now for each positive integer k, by the triangular inequality, we get
P’ O2meYon) < P (Vamy> Yane—2) + P (V2mg—2, Yome—1) + P° (Vane—1,Y2m;.)

On taking limit superior as k — oo and using (3.19) and (3.20), we have

limsup p* (yam, Y2, ) < €. (3.23)

k—ro0

Hence from (3.22) and (3.23), we get klim P (Yomy»yan, ) exists and klim P°(Vomy s Yon,) = €.
—»00 —ro0

€

2

Hence, from the definition of p® and (3.19), we have klim P(Vamg,Yon,) =
—>00

In similar way, it is easy to see that

(id) i p(yamer s y2m) = 55 (i) lim p(yang, yame—1) = § and

(iv) ,}ggp(yzmk—l S Vomt1) = 5
From the inequality (3.13), we have
PV2my>Yam+1) = P(AX2my, Bxon 1 1)
< B(M (x2m s %20, 41) )M (X2 X2, 1) + LN (X2, s X200, 41) 5 (3.24)
where
M (X2 X2m+1) = max{ p(Sxamy, Txon+1), P(SX2my, AxX2my ) s P(T X241, BX2y11),

2 [P(Sxoms Bxone+1) + P(TXon41,A%0m, )] }
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= max{p(yam—1,Y2n), PV2me—1:Y2m )s P(V2n, Yame+1),
2P O2me—15Yome+1) + P(2me, y2m, )] } and
N (X2 s %o +1) = min{ p* (Sxomy s Axomy ) s P (TX2m 41, BXon 1), P (SX2my s BXon+1),
PV (Txon+1,A%m,) }

= min{p"” (yame—1.Y2m, ), P V2 Yom+1), P V2m—15Y2m,41), P (V2 Yoy ) }
Now, by the definition of p" and using (3.19), (i), (ii), (iii), and (iv), we have
I}L{loM(xzmk,xz,,kH) =max{%,0,0,3[5+ 5]} =%
and kIEEON(xzm"’XZ”kH) =min{0,0,5,5} =0.
Hence, on letting k — oo in (3.24), we get § < B(5)5 < §, which is a contradiction.
Therefore {y,,} is Cauchy. Thus by Proposition 2.1, we have {y,} is a Cauchy sequence in
(X, pY).
Therefore n}}glm P’y ym) = 0.
Now, from Lemma 2.1, it follows that {y, } is a Cauchy sequence in (X, p).
Suppose T (X) is complete.
Since yp, = Axo, = Txp4 1, it follows that {y,,} C T(X) is a Cauchy sequence in the complete
metric space (T (X), p*), it follows that {y,,} converges in (7'(X), p*), and {y,,} converges to
u(say) in T'(X).
Thus, nli_r}olops(yzn,u) =0 for some u € T(X). i.e., yo, >u=Tt € T(X) for some 7 € X.
Since {y,} is Cauchy in X and y,, — u, it follows that y,,,; | — u as n — oo.

From Lemma 2.2, we get

p(u,u) = lim p(yopi1,u) = lim p(you,u) = lim p(y2,,yom) = 0. (3.25)
n—yoo n—yoo n,m—oo
Now, we consider
P(Axpn, Bt) < B(M(xp,1))M (x2p,t) + LN (x2p,1), (3.26)
where

M (xpp,t) = max{p(Sx,,Tt), p(Sxzn,Ax2,), p(Tt,Bt), %[p(szn,Bt) + p(Tt,Axy,)]} and
N(x24,t) = min{ p" (Sxz,,Ax2), p* (Tt,Bt), p" (Sxzn, Bt ), p" (Tt,Ax2,) }. (3.27)
On letting n — oo in (3.27), using (3.18), (3.25) and nli_r>rolon2n = ,}i_{rc}osz” = u, we get
r}i_r&M(xzn,t) = max{0,0, p(u,Bt), 5[p(u,Bt) + 0]} = p(u,Bt) and

’}i_r>£10N(xzn,t) = min{p" (u,u), p"(u,Bt), p" (u,Bt), p* (u,u)} =0 as p"(u,u) = 0.
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Letting n — oo in (3.26), we obtain
p(u,Bt) < B(p(u,Bt))p(u,Bt) < p(u,Bt),
a contradiction.
Hence Bt =Tt = u.
Since the pair (B, T) is weakly compatible, it follows that Bu = BTt = TBt = Tu.
Suppose p(u, Bu) # 0. By the inequality (3.13), we have
p(Axpn, Bu) < B(M(x2,u))M (x2,,u) + LN (x2,,u), (3.28)

where
M (x2,u) = max{p(Sxon, Tu), p(Sxan, Ax2n), p(Tu,Bu), 3 [p(Sxon, Bu) + p(Tu,Ax5,)]} and
N (x2,,u) = min{ p" (Sxp,,Ax2y,), p*' (Tu,Bu), p* (Sxp,, Bu), p* (Tu,Axz,) }. (3.29)
On letting n — o0 in (3.29), using (3.18), (3.25) and nli_r&szn = ,}i_IEOAxZ” = u, we get
r}grgoM(xzn,u) = max{p(u,Bu),0, p(Bu,Bu), % [p(u, Bu) + p(Bu,u)|} = p(u,Bu) and
,}i_r&N(xz”’ u) = min{p" (u,u), p* (Bu,Bu), p"(u,Bu), p”(Bu,u)} = 0 as p"(u,u) = 0.
Letting n — oo in (3.28), we obtain
p(u,Bu) < B(p(u, Bu))p(u, Bu) < p(u, Bu),
a contradiction.
Therefore p(u, Bu) = 0 implies that Bu = Tu = u. Thus, u is a common fixed point of B and 7.
By Proposition 3.2, we get that u is a unique common fixed point of A,B,S and T'.

In a similar way, under the assumption that S(X) is complete, we obtain the existence of

common fixed point of A,B,S and T'.
4. Corollaries and examples

In this section, we draw some corollaries from the main results of Section 3 and provide
examples in support of our results.

By choosing f =T and g, the identity map of X in Theorem 3.1, we have the following.
Corollary 4.1(Theorem 3, [19]). Let (X, p) be a complete partial metric space and let
T : X — X be a selfmapping. Suppose that there exist B € § and L > 0 such that
p(Tx,Ty) < B(M(x,y))M(x,y) +LN(x,y)
holds for all x,y € X, where M(x,y) = max{p(x,y),p(x,Tx),p(y,Ty), %[p(x, Ty)+ p(y,Tx)]}
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and N = min{p" (x,Tx), p" (v, Ty), p" (x,Ty), p" (v, Tx)}.
Then T has a unique fixed point u € X. Moreover, p(u,u) = 0.

If L=01n (2.1), then we have the following corollary due to Theorem 3.1.
Corollary 4.2. Let (X, p) be a partial metric space and let the pair (f,g) be generalized
Geraghty type contraction maps. If f(X) C g(X), the pair (f,g) is weakly compatible and g(X)
is a complete subspace of X then f and g have a unique common fixed point in X.

The following is an example in support of Theorem 3.1, in which we show the importance of

L.

0 ifx=
Example 4.1. Let X = [0,1] . We define p(x,y) = Y for all x,y €X.
max{x,y} ifx#y,

Then (X, p) is a partial metric space. We define selfmaps f, g on X by

s ifo<x<3 2 ifo<x<} . 0 ifr=0
T2V e, *7 0 it caen, MPOTE o
4 2 - 40 2 - 1+2 )

Then clearly f(X) C g(X). Without loss of generality, we assume that x > y.

We verify that the pair (f,g) is a Geraghty-Berinde type contraction maps. i.e., we show that

f, g satisfy the inequality (2.1).

Case (i): x,y € [0,3].

p(fx. fy) = 55:p(gx,8y) = 5:p(gx, fx) = 3
p(gy.fy) = 3:p(gx, fy) = 5:p(gy, fx) = max{3, 5}

Here 4 >p(gx, fy) + p(gy, fx)] < 3. Therefore M(x,y)

IN

X
3-
X
2

p"(gx, fx) = 3:p"(gx, fy) = 5:P" (Y, fx) = max{3, 35 }.

We consider

(fx fy) % eH_ §+3min{2a2amax{zazo}}
B(M(x,y))M(x,y)+LN(x,y) with L = 3.

ror] S

Case (ii): x,y € (1,1].
p(fx, fy) = ,p(gx gy) = 105 p(gx fx) = 3:p(&v fy) = 3:51p(ex, fy) + pey, fx)] = §
P (gx, fx) = 5" (gx, fy) = (gy, fx) =7
Therefore M (x y) 1 Land N (x y)

‘We consider

p(fx fy) =3 < g +3(3)
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)+ 3min{p"(gx, x), p* (gx, fy), " (&y, fx)}
)+ LN(x,y) with L =3.

= =

Case (iii): x € (% 1],y € [0,3].

p(fx, fy) = 1:p(gx,gy) = max{g5,3} < 1:p(gx, fx) = 1, p(gy. fy) = %
11 1.
50 P

%[p(gx,fy) +p(gy, )] = 3la5+3] = 5. P (g% fx) =
Therefore M (x,y) = 411 and N(x,y) = 7.

P (gx, fy) = 25:P" (g0, fx) = 1.

‘We consider

p(fx,fy) =3 < §77 4 +3min{y, 45,3}
(M(x,y))M(x,y) +LN(x,y) with L = 3.

=

From all the above cases, we have f and g satisfy the inequality (2.1) with L = 3.

Therefore f and g satisfy all the hypotheses of Theorem 3.1 and O is the unique common
fixed point of f and g.

If L = 0 in the inequality (2.1) then the inequality (2.1) fails to hold, which shows the
importance of L in the inequality (2.1).

For, by choosing x=1,y= % We have

p(fx,fy) =3 £ B(3);=BM(1,5)M(1,3) forany B € §.

The following is an example in support of Corollary 4.2.

Example 4.2 Let X = [0,1]. We define p(x,y) = max{x,y} for all x,y € X. Then (X,p) is a

partial metric space. We define selfmaps f, g on X by

0 ifx=0
o 0 ifr=0
fO =3 % ifo<x<l g0 ="if0<x<1,and B(r) = 4
Lifl<x< i B0
3 2 =4=D0

Then clearly f(X) C g(X). Without loss of generality, we assume that x > y.
We verify that the pair (f,g) is a generalized Geraghty type contraction maps. i.e., we show
that f, g satisfy the inequality (2.1) with L = 0.
Case (i): x=y=0.
In this case, trivially holds the inequality (2.1) with L = 0.
Case (ii): x,y € (0, 3).
pFx, fy) = §:p(gx.gy) = L plex, fx) = 5,
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P&y fy) =22 plex, fy) = 252 pgy, fx) = max {22 4} < X524,
Here 1 5lp(ex, fy) + p(gy, fx)] < (4 %) Therefore M(x,y) = (54_x).
We consider .
p(fr.fy) =3 < ;f(sjff) B = B = B(M(x, )M (x, ).
Case (iii): x,y € [5, 1].
p(fx, fy) = l;p(gx gy) =1 ;p(gx fx)= x(54_ %

pley, fy) = 2520 p(ax, fy) = 25 p(ey, fx) = 7
Here 3 [p(gx, fy) +p(gy, fx)] < ( %) Therefore M(x,y) = 2.

‘We consider
x(5—x)

PUPR ) = § < i " = BT T = BM ()M (x.).
Case (iv): x € (0, %),y:()‘
PUfx.fy) = 3:p(gngy) = 57 plg fx) = ),p(gy,fy) 0; p(gx, fy) = 227
plgy, fx) = 3 < 7. Here J[p(gx, fy>+p<gy,fx>1 < X2 Therefore M(x,y) =272,

We consider

P f3) = 3 < S S50 = B0 B (a ()M (1),
Case (v): x € [5,1],y =0.
p(f.fy) = §:p(gx.gy) = "7 plex, frx) = X5
p(gy, fv) = 03 p(gx, fy) = 5 2 play, fx) = § <G
Here 4 5p(gx, fy) + p(gy, fx)] < (4 ) Therefore M(x,y) ===
We consider

P fy) =5 < Coig O = BOUP) ) = B(M(x, )M (x.y).

Case (vi): x € [1,1],y ( )

Ly
Ifxe [2,3] then p(f_x fy) (gx gy) (5 x). (gx fx) _ 57)();

4
pey.fy) =2 plgx, fy) = s );p<gy,fx> max {2220 1}y < XG0
Here §[p(gx, fy) plgy, fx)] < ( %) | Therefore M(x,y) = (Sfx).
We consider
x(Sfx)
PUFE ) = 5 = o O = BOEPSE = B(M (. y)M ().

From all the above cases, we have f and g satisfy the inequality (2.1) with L = 0.
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Therefore f and g satisfy all the hypotheses of Corollary 4.2 and O is the unique common
fixed point of f and g.

Here we observe that f and g fail to satisfy the generalized Geraghty type contraction
condition with respect to the metric d(x,y) = 2|x —y|.

For, by choosing x = %, y =0. We have
225~ 0= d(£(2),£(0)) £ B(55) % = B(M(L,0)M(L,0) for any B € .

The following is an example in support of Theorem 3.3.
Example 4.3. Let X = [0, 1] . We define p(x,y) = max{x,y} for all x,y € X. Then (X,p) is a

partial metric space. We define selfmaps A,B,S and T on X by

; 0 ifx+#% 2 ifo<x<i 2 ifo<x<i
AW =5BwW=4 T sw={ 7 T =4 0
3 lf.XZE7 i 1f§§x§1, 6 1f§§x§l
0 ifr=0
and B(¢) = with L > 0.
s ifr>0

1+
Clearly A, B, S and T satisfy all the hypotheses of Theorem 3.3 and O is the unique common

fixed point.
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