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Abstract. In this paper, we introduce Geraghty-Berinde type contraction maps for a pair of maps in partial metric

spaces and prove the existence of common fixed points in which the pair is weakly compatible and restricting the

completeness of X to its subspace. Also, we extend the same for two pairs of maps. We provide examples in

support of our results.
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1. Introduction

The development of fixed point theory is based on the generalization of contraction conditions

in one direction or/and generalization of ambient space of the operator under consideration on

the other. Banach contraction principle plays an important role in solving nonlinear equations,
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and it is one the most useful result in fixed point theory. In 1994, Matthews [18] introduced the

notion of a partial metric in which the concept of self distance need not be equal to zero.

2. Preliminaries

The Banach fixed point theorem in the context of partial metric spaces due to Matthews [18]

is the following:

Theorem 2.1. [18] Let (X , p) be a complete partial metric space, and let T : X → X be a

mapping such that there exists k ∈ [0,1), satisfying p(T x,Ty) ≤ kp(x,y) for all x,y ∈ X . Then

T has a unique fixed point in X .

In 1996, Neill [21] defined the notion of the dualistic partial metric, later Oltra and Valero

[20] proved Banach fixed point theorem on complete dualistic partial metric spaces. Further,

Valero [22] established a fixed point theorem using a nonlinear contractive condition instead of

a Banach contraction condition. The notation of almost contractions was introduced by Berinde

([9], [10]) as a generalization of contraction maps. For further works in this direction, we refer

([8], [11], [12], [13]). In 2012, Altun and Acar [2] characterized this concept in the context of

partial metric spaces and proved some fixed point results. For more works on fixed point results

and common fixed point results in partial metric spaces, we refer ([1]-[6]).

In 1973, Geraghty [17] proved a fixed point theorem, generalizing Banach contraction

principle. Several authors proved later various results using Geraghty-type conditions.

Recently, Dukić, Kadelburg and Radenović [14] proved a fixed point theorem using Geraghty-

type contraction in partial metric spaces as follows.

We denote F= {β : [0,∞)→ [0,1)/β (tn)→ 1 as n→ ∞⇒ tn→ 0 as n→ ∞}.

Theorem 2.2. [14] Let (X ,d) be a complete partial metric space and let T : X → X be a

selfmapping. Suppose that there exists F ∈ β such that p(T x,Ty)≤ β (p(x,y))p(x,y) holds for

all x,y ∈ X . Then T has a unique fixed point u ∈ X and for each x ∈ X the Picard sequence

{T nx} converges to u when n→ ∞.

Definition 2.1. [18] Let X be a nonempty set. A mapping p : X ×X → R+, R+ = [0,∞) is said

to be a partial metric, if it satisfies the following conditions:

For any x,y,z ∈ X
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(P1) x = y⇔ p(x,x) = p(x,y) = p(y,y),

(P2) p(x,x)≤ p(x,y), p(y,y)≤ p(x,y),

(P3) p(x,y) = p(y,x),

(P4) p(x,y)≤ p(x,z)+ p(z,y)− p(z,z). The pair (X , p) is called a partial metric space.

If p is a partial metric on X , then the functions ps, pw : X×X → R+, R+ = [0,∞) defined by

ps(x,y) = 2p(x,y)− p(x,x)− p(y,y) and pw(x,y) = p(x,y)−min{p(x,x), p(y,y)} are ordinary

metrics on X .

Example 2.1. [18] Consider X = [0,∞) with p(x,y) =max{x,y}. Then (X , p) is a partial metric

space. It is clear that p is not a (usual) metric.

Note that in this case, ps(x,y) = |x− y|.

Example 2.2. [15] Let X = {[a,b] : a,b ∈ R,a ≤ b} and define p([a,b], [c,d]) = max{b,d}−

min{a,c}. Then (X , p) is a partial metric space.

Each partial metric p on X generates τ0 topology τp on X , which has a base the family of

open p-balls {Bp(x,ε) : x ∈ X ,ε > 0}, where Bp(x,ε) = {y ∈ X/p(x,y) < p(x,x)+ ε} for all

x ∈ X and ε > 0.

Clearly, a limit of a sequence in a partial metric space need not be unique. Moreover, the

function p need not be continuous.

Example 2.3. [19] Consider X = [0,∞) with p(x,y) = max{x,y}. For {xn}= {1},

p(xn,x) = x = p(x,x) for each x≥ 1.

Definition 2.2. [18] Let (X , p) be a partial metric space. A sequence {xn} is converges to x if

and only if p(x,x) = lim
n→∞

p(x,xn).

Definition 2.3. [18] Let (X , p) be a partial metric space. A sequence {xn} is said to be a Cauchy

sequence if lim
n,m→∞

p(xn,xm) exists and is finite.

Definition 2.4. [18] A partial metric space (X , p) is said to be complete if every Cauchy

sequence {xn} in X converges with respect to τp, to a point x∈X , such that p(x,x)= lim
n,m→∞

p(xn,xm).

The following lemmas in a partial metric space are useful in proving our main results.

Lemma 2.1.[18] Let (X , p) be a partial metric space. Then the sequence {xn} is a Cauchy

sequence in X if and only if it is a Cauchy sequence in the metric space (X , ps).

Lemma 2.2. [18] A partial metric space (X , p) is complete if and only if the metric space
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(X , ps) is complete. Moreover, lim
n→∞

ps(x,xn) = 0⇔ p(x,x) = lim
n→∞

p(x,xn) = lim
n,m→∞

p(xn,xm).

Definition 2.5. [16] Let X be a nonempty set. Let f : X → X and g : X → X be two

selfmaps. If f x = gx implies that f gx = g f x for x in X , then we say that the pair ( f ,g) is weakly

compatible.

The following theorem is due to Dinarvand [19].

Theorem 2.3. [19] Let (X , p) be a complete partial metric space and let T : X→X be a selfmap.

Suppose that there exist β ∈ F and L≥ 0 such that

p(T x,Ty)≤ β (M(x,y))M(x,y)+LN(x,y) holds for all x,y ∈ X , where

M(x,y) = max{p(x,y), p(x,T x), p(y,Ty), 1
2 [p(x,Ty)+ p(y,T x)]} and

N(x,y) = min{pw(x,T x), pw(y,Ty), pw(x,Ty), pw(y,T x)}.

Then T has a unique fixed point u ∈ X . Moreover, P(u,u) = 0.

In the following, we introduce Geraghty-Berinde type contraction map for a pair of maps.

Definition 2.6. Let (X , p) be a partial metric space, and let f and g be selfmaps of X . If there

exist β ∈ F and L≥ 0 such that

p( f x, f y)≤ β (M(x,y))M(x,y)+LN(x,y) (2.1)

for all x,y ∈ X , where M(x,y) = max{p(gx,gy), p(gx, f x), p(gy, f y), 1
2 [p(gx, f y)+ p(gy, f x)]}

and N(x,y) = min{pw(gx, f x), pw(gx, f y), pw(gy, f x)},

then we call the pair ( f ,g) is a Geraghty-Berinde type contraction maps.

If L = 0 in (2.1) then we say that the pair ( f ,g) is a generalized Geraghty type contraction

maps.

Example 2.4. Let X = [0,1]. We define p(x,y) = max{x,y} for all x,y ∈ X . Then (X , p) is a

partial metric space. We define selfmaps f , g : X → X by f (x) = x2

2 , g(x) = x2 and

β (t) =

 0 if t = 0
1

1+t if t > 0
with L≥ 0.

Then clearly the pair ( f ,g) is a Geraghty-Berinde type contraction map.

The following proposition is useful to prove our main results.

Proposition 2.1.[7] Let (X , ps) be a metric space with lim
n→∞

ps(yn,yn+1) = 0. Assume that {y2n}

is a Cauchy sequence in (X , ps) then {yn} is also Cauchy in (X , ps).

In Section 3, we extend Theorem 2.3 to a pair of maps in which we prove the existence of

common fixed points of Geraghty-Berinde type contraction maps in which the pair is weakly
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compatible in partial metric spaces and by restricting the completeness of X (Theorem 3.1).

Also, we extend the same for two pairs of selfmaps. In Section 4, we draw some corollaries

from our main results and provide examples in support of our results.

3. Main results

Theorem 3.1. Let (X , p) be a partial metric space and let the pair ( f ,g) be Geraghty-Berinde

type contraction maps. If f (X) ⊆ g(X), the pair ( f ,g) is weakly compatible and g(X) is a

complete subspace of X then f and g have a unique common fixed point in X.

Proof. Let x0 be arbitrary point in X . Since f (X)⊆ g(X) there exists x1 ∈ X such that

f x0 = gx1 = y0 (say).

In general we have there exists xn ∈ X satisfying f xn = gxn+1 = yn (say),n = 0,1,2, . . . .

Case (i): Assume that p(yn,yn+1)> 0 for some n.

We show that p(yn,yn+1)≤ p(yn−1,yn),n = 1,2,3, . . . .

We consider

p(yn,yn+1) = p( f xn, f xn+1)

≤ β (M(xn,xn+1))M(xn,xn+1)+LN(xn,xn+1) (3.1)

Since 1
2 [p(yn−1,yn+1)+ p(yn,yn)]≤ 1

2 [p(yn−1,yn)+ p(yn,yn+1)]≤max{p(yn−1,yn), p(yn,yn+1)}

Now

M(xn,xn+1) = max{p(gxn,gxn+1), p(gxn, f xn), p(gxn+1, f xn+1),

1
2 [p(gxn, f xn+1)+ p(gxn+1, f xn)]}

= max{p(yn−1,yn), p(yn−1,yn), p(yn,yn+1),
1
2 [p(yn−1,yn+1)+ p(yn,yn)]}

Therefore M(xn,xn+1) = max{p(yn−1,yn), p(yn,yn+1)} and

N(xn,xn+1) = min{pw(gxn, f xn), pw(gxn, f xn+1), pw(gxn+1, f xn)}

= min{pw(yn−1,yn), pw(yn−1,yn+1), pw(yn,yn)}.

As pw(yn,yn) = 0, it follows that N(xn,xn+1) = 0.

If M(xn,xn+1) = p(yn,yn+1) then from (3.1), we have

p(yn,yn+1)≤ β (p(yn,yn+1))p(yn,yn+1)< p(yn,yn+1),

which is a contradiction.

Hence, M(xn,xn+1) = p(yn−1,yn).
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Therefore from (3.1), we obtain

p(yn,yn+1)≤ β (p(yn−1,yn))p(yn−1,yn)< p(yn−1,yn).

Hence, {p(yn,yn+1)} is a decreasing sequence of nonnegative reals and bounded below by 0.

So, there exists r ≥ 0 such that lim
n→∞

p(yn,yn+1) = r. (3.2)

We claim that r = 0. On the contrary suppose r > 0.

On letting n→ ∞ in (3.1), and using (3.2), we get

r ≤ β (r)r < r,

a contradiction.

Hence, lim
n→∞

p(yn,yn+1) = 0. (3.3)

Thus from (P2), we get that lim
n→∞

p(yn,yn) = 0. (3.4)

By the definition of ps, (3.3) and (3.4), we get lim
n→∞

ps(yn,yn+1) = 0. (3.5)

Next, we prove that {yn} is Cauchy in (X , ps). On the contrary suppose that {yn} is not Cauchy.

There exist ε > 0 and monotone increasing sequence of natural numbers {mk} and {nk} such

that nk > mk with

ps(ymk ,ynk)≥ ε and ps(ymk ,ynk−1)< ε. (3.6)

Now we prove that (i) lim
k→∞

p(ymk ,ynk) =
ε

2 .

Since ε ≤ ps(ymk ,ynk) for all k, we have

ε ≤ liminf
k→∞

ps(ymk ,ynk). (3.7)

Now for each positive integer k, by the triangular inequality, we get

ps(ymk ,ynk)≤ ps(ymk ,ynk−1)+ ps(ynk−1,ynk)

On taking limit superior as k→ ∞, from (3.5) and (3.6), we have

limsup
k→∞

ps(ymk ,ynk)≤ ε. (3.8)

Hence, from (3.7) and (3.8), we get lim
k→∞

ps(ymk ,ynk) exists and lim
k→∞

ps(ymk ,ynk) = ε .

Hence, from the definition of ps and (3.4), we have lim
k→∞

p(ymk ,ynk) =
ε

2 .

In similar way, it is easy to see that

(ii) lim
k→∞

p(ynk+1,ymk) =
ε

2 ; (iii) lim
k→∞

p(ynk ,ymk−1) =
ε

2 and

(iv) lim
k→∞

p(ymk−1,ynk+1) =
ε

2 .

We now consider

p(ynk+1,ymk) = p( f xnk+1, f xmk)
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≤ β (M(xnk+1,xmk))M(xnk+1,xmk)+LN(xnk+1,xmk), (3.9)

where

M(xnk+1,xmk) = max{p(gxnk+1,gxmk), p(gxnk+1, f xnk+1), p(gxmk , f xmk),

1
2 [p(gxnk+1, f xmk)+ p(gxmk , f xnk+1)]}

= max{p(ynk ,ymk−1), p(ynk ,ynk+1), p(ymk−1,ymk),

1
2 [p(ynk ,ymk)+ p(ymk−1,ynk+1)]}

On letting k→ ∞ and using (3.3), (i), (ii), (iii) and (iv), we get

lim
k→∞

M(xnk+1,xmk) = max{ ε

2 ,0,0,
1
2 [

ε

2 +
ε

2 ]}=
ε

2 and

N(xnk+1,xmk) = min{pw(gxnk+1, f xnk+1), pw(gxnk+1, f xmk), pw(gxmk , f xnk+1)}

= min{pw(ynk ,ynk+1), pw(ynk ,ymk), pw(ymk−1,ynk+1)}.

On letting k→ ∞ and using (3.3), (3.4), (i) and (iv), it follows that N(xnk+1,xmk) = 0.

On letting k→ ∞ in (3.9), we obtain
ε

2 ≤ β ( ε

2)
ε

2 < ε

2 ,

a contradiction.

Hence, {yn} is a Cauchy sequence in (X , ps).

Case (ii): Assume that yn = yn+1 for some n.

If p(yn+1,yn+2)> 0. We have

M(xn+1,xn+2) = max{p(gxn+1,gxn+2), p(gxn+1, f xn+1), p(gxn+2, f xn+2),

1
2 [p(gxn+1, f xn+2)+ p(gxn+2, f xn+1)]}

= max{p(yn,yn+1), p(yn,yn+1), p(yn+1,yn+2),

1
2 [p(yn,yn+2)+ p(yn+1,yn+1)]}

However, p(yn,yn+1) = p(yn+1,yn+1)≤ p(yn+1,yn+2), from (P2) and
1
2 [p(yn+1,yn+1)+ p(yn,yn+2)]≤ 1

2 [p(yn,yn+1)+ p(yn+1,yn+2)]≤ p(yn+1,yn+2),

M(xn+1,xn+2) = p(yn+1,yn+2) and N(xn+1,xn+2) = 0.

From the inequality (2.1), we have

p(yn+1,yn+2) = p( f xn+1, f xn+2)

≤ β (M(xn+1,xn+2))M(xn+1,xn+2)+LN(xn+1,xn+2)

= β (p(yn+1,yn+2))p(yn+1,yn+2)< p(yn+1,yn+2),

which is a contradiction.



COMMON FIXED POINTS OF GERAGHTY-BERINDE TYPE CONTRACTION MAPS... 153

Hence, yn+1 = yn+2.

Continuing in this way, we can conclude that yn = yn+k for all k ≥ 0.

Thus, {yn} is a Cauchy sequence in (X , ps).

From the Lemma 2.1, it follows that {yn} is a Cauchy sequence in (X , p).

Therefore lim
n,m→∞

p(yn,ym) = 0. (3.10)

Suppose g(X) is complete.

Since yn = f xn = gxn+1, it follows that {yn} ⊆ g(X) is a Cauchy sequence in the complete

metric space (g(X), ps), it follows that {yn} converges in (g(X), ps).

Thus, lim
n→∞

ps(yn,u) = 0 for some u ∈ g(X). i.e., lim
n→∞

yn = u = gt ∈ g(X) for some t ∈ X .

Since {yn} is a Cauchy sequence in X and yn→ u, it follows that yn+1→ u as n→ ∞.

From the Lemma 2.2, we have

p(u,u) = lim
n→∞

p(yn+1,u) = lim
n→∞

p(yn,u) = lim
n,m→∞

p(yn,ym).

From (3.10), we have

p(u,u) = lim
n→∞

p(yn+1,u) = lim
n→∞

p(yn,u) = lim
n,m→∞

p(yn,ym) = 0.

We now show that f t = u.

Suppose p( f t,u)> 0.

We now consider

p( f t,yn+1) = p( f t, f xn+1)≤ β (M(t,xn+1))M(t,xn+1)+LN(t,xn+1) (3.11)

where

M(t,xn+1) = max{p(gt,gxn+1), p(gt, f t), p(gxn+1, f xn+1),

1
2 [p(gt, f xn+1)+ p(gxn+1, f t)]}

= max{p(u,yn), p(u, f t), p(yn,yn+1),
1
2 [p(u,yn+1)+ p(yn, f t)]}.

On letting n→ ∞, we get

lim
n→∞

M(t,xn+1) = max{0, p(u, f t),0, 1
2(p(u, f t))}= p(u, f t) and

N(t,xn+1) = min{pw(gt, f t), pw(gt, f xn+1), pw(gxn+1, f t)}

= min{pw(u, f t), pw(u,yn+1), pw(yn, f t)}.

On letting n→ ∞, we get lim
n→∞

N(t,xn+1) = min{p(u, f t),0, p(u, f t)}= 0.

On letting n→ ∞ in (3.11), we obtain

p( f t,u)≤ β (p( f t,u))p( f t,u)< p( f t,u),
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a contradiction.

Hence, f t = gt = u.

Since the pair ( f ,g) is weakly compatible and f t = gt = u, we have f u = gu

We now prove that f u = u.

On the contrary, suppose that p( f u,u)> 0. From the inequality (2.1), we have

p( f u,yn+1) = p( f u, f xn+1)≤ β (M(u,xn+1))M(u,xn+1)+LN(u,xn+1) (3.12)

where

M(u,xn+1) = max{p(gu,gxn+1), p(gu, f u), p(gxn+1, f xn+1),

1
2 [p(gu, f xn+1)+ p(gxn+1, f u)]}

= max{p( f u,yn), p( f u, f u), p(yn,yn+1),
1
2 [p( f u,yn+1)+ p(yn, f u)]}.

On letting n→ ∞, we get

lim
n→∞

M(u,xn+1) = max{p( f u,u), p( f u, f u),0, 1
2 [p(u, f t)+ p(u, f u)]}= p( f u,u) and

N(u,xn+1) = min{pw(gu, f u), pw(gu, f xn+1), pw(gxn+1, f u)}

= min{pw( f u, f u), pw( f u,yn+1), pw(yn, f u)}

On letting n→ ∞, we get lim
n→∞

N(u,xn+1) = min{0, p(u, f u), p(u, f u)}= 0.

On letting n→ ∞ in (3.12), we obtain

p( f u,u)≤ β (p( f u,u))p( f u,u)< p( f u,u),

a contradiction. Hence, f u = gu = u. Therefore u is a common fixed point of f and g.

Uniqueness of a common fixed point follows from the inequality (2.1).

Proposition 3.2. Let (X , p) be a partial metric space, and let A,B,S and T be selfmaps of X.

Assume that there exist β ∈ F and L≥ 0 such that

p(Ax,By)≤ β (M(x,y))M(x,y)+LN(x,y) (3.13)

holds for all x,y∈X , where M(x,y)=max{p(Sx,Ty), p(Sx,Ax), p(Ty,By), 1
2 [p(Sx,By)+ p(Ty,Ax)]}

and N = min{pw(Sx,Ax), pw(Ty,By), pw(Sx,By), pw(Ty,Ax)}. Then the following hold.

(i) If A(X)⊆ T (X) and the pair (B,T ) is weakly compatible, and if z is a common fixed point

of A and S then z is a common fixed point of A,B,S and T and it is unique.

(ii) If B(X)⊆ S(X) and the pair (A,S) is weakly compatible, and if z is a common fixed point

of B and T then z is a common fixed point of A,B,S and T and it is unique.

Proof. First, we assume that (i) holds. Let z be a common fixed point of A and S.
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Then Az = Sz = z.

Since A(X)⊆ T (X), there exists u ∈ X such that Tu = z.

Az = Sz = Tu = z.

We now prove that Tu = Bu. Suppose that Tu 6= Bu.

From the inequality (3.13), we have

p(Tu,Bu) = p(Az,Bu)

≤ β (M(z,u))M(z,u)

= β (max{p(Sz,Tu), p(Sz,Az), p(Tu,Bu), 1
2 [p(Sz,Bu)+ p(Tu,Az)]})

max{p(Sz,Tu), p(Sz,Az), p(Tu,Bu), 1
2 [p(Sz,Bu)+ p(Tu,Az)]}

+Lmin{pw(Sz,Az), pw(Tu,Bu), pw(Sz,Bu), pw(Tu,Az)}

= β (p(Tu,Bu))p(Tu,Bu)< p(Tu,Bu),

which is a contradiction.

Hence, Bu = Tu = z.

Since the pair (B,T ) is weakly compatible, it follows that BTu = T Bu i.e, Bz = T z.

Suppose Bz 6= z.

From the inequality (3.13), we have

p(z,Bz) = p(Az,Bz)

≤ β (M(z,z))M(z,z)

= β (max{p(Sz,T z), p(Sz,Az), p(T z,Bz), 1
2 [p(Sz,Bz)+ p(T z,Az)]})

max{p(Sz,T z), p(Sz,Az), p(T z,Bz), 1
2 [p(Sz,Bz)+ p(T z,Az)]}

+Lmin{pw(Sz,Az), pw(T z,Bz), pw(Sz,Bz), pw(T z,Az)}

= β (p(z,Bz))p(z,Bz)< p(z,Bz),

which is a contradiction.

Thus, Bz = T z = z. Hence, Az = Bz = Sz = T z = z. Hence, z is a common fixed point of

A,B,S and T . Let z′ be another common fixed point of A,B,S and T .

From the inequality (3.13), we have

p(z,z′) = p(Az,Bz′)

≤ β (M(z,z′))M(z,z′)

= β (max{p(Sz,T z′), p(Sz,Az), p(T z′,Bz′), 1
2 [p(Sz,Bz′)+ p(T z′,Az)]})
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max{p(Sz,T z′), p(Sz,Az), p(T z′,Bz′), 1
2 [p(Sz,Bz′)+ p(T z′,Az)]}

+Lmin{pw(Sz,Az), pw(T z′,Bz′), pw(Sz,Bz′), pw(T z′,Az)}

= β (p(z,z′))p(z,z′)< p(z,z′),

which is a contradiction.

Hence, z = z′. Thus z is a unique common fixed point of A,B,S and T .

The proof of (ii) is similar to (i) and hence is omitted.

Theorem 3.3. Let A,B,S and T be selfmaps of a partial metric space (X , p) and satisfy

A(X)⊆ T (X),B(X)⊆ S(X) and the inequality (3.13). If the pairs (A,S) and (B,T ) are weakly

compatible and S(X) or T (X) is a complete subspace of X then A,B,S and T have a unique

common fixed point in X.

Proof. Let x0 ∈ X arbitrary point in X .

Since A(X)⊆ T (X) and B(X)⊆ S(X), there exist sequences of {xn} and {yn} in X , such that

y2n = Ax2n = T x2n+1 and

y2n+1 = Bx2n+1 = Sx2n+2 for n = 0,1,2, . . . .

Assume that yn = yn+1 for some n.

Case (i): n even. We write n = 2m,m = 1,2,3, . . . .

Now we consider

p(yn+1,yn+2) = p(y2m+1,y2m+2)

= p(Ax2m+2,Bx2m+1)

≤ β (M(x2m+2,x2m+1))M(x2m+2,x2m+1)+LN(x2m+2,x2m+1), (3.14)

where

M(x2m+2,x2m+1) = max{p(Sx2m+2,T x2m+1), p(Sx2m+2,Ax2m+2), p(T x2m+1,Bx2m+1),

1
2 [p(Sx2m+2,Bx2m+1)+ p(T x2m+1,Ax2m+2)]}

= max{p(y2m+1,y2m), p(y2m+1,y2m+2), p(y2m,y2m+1),

1
2 [p(y2m+1,y2m+1)+ p(y2m,y2m+2)]}

= max{p(y2m+1,y2m), p(y2m+1,y2m+2)}= p(y2m+1,y2m+2) and

N(x2m+2,x2m+1) = min{pw(Sx2m+2,Ax2m+2), pw(T x2m+1,Bx2m+1), pw(Sx2m+2,Bx2m+1),

pw(T x2m+1,Ax2m+2)}

= min{pw(y2m+1,y2m+2), pw(y2m,y2m+1), pw(y2m,y2m+1),
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pw(y2m,y2m+2)}= 0 as y2m = y2m+1 and pw(y2m,y2m) = 0.

From the inequality (3.14), we have

p(y2m+1,y2m+2)≤ β (p(y2m+1,y2m+2))p(y2m+1,y2m+2)

< p(y2m+1,y2m+2),

a contradiction if p(y2m+1,y2m+2) 6= 0.

Therefore, p(y2m+1,y2m+2) = 0 which implies that y2m+2 = y2m+1 = y2m.

In general, we have y2m+k = y2m for k = 0,1,2, . . . .

Case (ii): n odd. We write n = 2m+1 for some m = 1,2,3 . . . .

We consider

p(yn+1,yn+2) = p(y2m+2,y2m+3)

= p(Ax2m+2,Bx2m+3)

≤ β (M(x2m+2,x2m+3))M(x2m+2,x2m+3)+LN(x2m+2,x2m+3), (3.15)

where

M(x2m+2,x2m+3) = max{p(Sx2m+2,T x2m+3), p(Sx2m+2,Ax2m+2), p(T x2m+3,Bx2m+3),

1
2 [p(Sx2m+2,Bx2m+3)+ p(T x2m+3,Ax2m+2)]}

= max{p(y2m+1,y2m+2), p(y2m+1,y2m+2), p(y2m+2,y2m+3),

1
2 [p(y2m+1,y2m+3)+ p(y2m+1,y2m+2)]}

= max{p(y2m+1,y2m+2), p(y2m+2,y2m+3)}= p(y2m+2,y2m+3) and

N(x2m+2,x2m+3) = min{pw(Sx2m+2,Ax2m+2), pw(T x2m+3,Bx2m+3), pw(Sx2m+2,Bx2m+3),

pw(T x2m+3,Ax2m+2)}

= min{pw(y2m+1,y2m+2), pw(y2m+2,y2m+3), pw(y2m+1,y2m+3),

pw(y2m+2,y2m+2)}= 0 as pw(y2m+2,y2m+2) = 0.

From the inequality (3.15), we have

p(y2m+2,y2m+3)≤ β (p(y2m+2,y2m+3))p(y2m+2,y2m+3)< p(y2m+2,y2m+3),

a contradiction if p(y2m+2,y2m+3)> 0.

Therefore, p(y2m+2,y2m+3) = 0 which implies that y2m+3 = y2m+2 = y2m+1.

In general, we have y2m+k = y2m+1 for k = 1,2,3, . . . .

From Case (i) and Case (ii), we have yn+k = yn for k = 0,1,2, . . . . Hence, {yn+k} is a constant

sequence and hence {yn} is Cauchy.
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Now we assume that yn 6= yn+1 for all n = 1,2,3, . . . .

If n is odd, then we write n = 2m+1 for some m = 1,2,3, . . . .

We now consider

p(yn,yn+1) = p(y2m+1,y2m+2)

= p(Ax2m+2,Bx2m+1)

≤ β (M(x2m+2,x2m+1))M(x2m+2,x2m+1)+LN(x2m+2,x2m+1) (3.16)

where

M(x2m+2,x2m+1) = max{p(Sx2m+2,T x2m+1), p(Sx2m+2,Ax2m+2), p(T x2m+1,Bx2m+1),

1
2 [p(Sx2m+2,Bx2m+1)+ p(T x2m+1,Ax2m+2)]}

= max{p(y2m+1,y2m), p(y2m+1,y2m+2), p(y2m,y2m+1),

1
2 [p(y2m+1,y2m+1)+ p(y2m,y2m+2)]}

= max{p(y2m+1,y2m), p(y2m+1,y2m+2)} and

N(x2m+2,x2m+1) = min{pw(Sx2m+2,Ax2m+2), pw(T x2m+1,Bx2m+1), pw(Sx2m+2,Bx2m+1),

pw(T x2m+1,Ax2m+2)}

= min{pw(y2m+1,y2m+2), pw(y2m,y2m+1), pw(y2m+1,y2m+1),

pw(y2m,y2m+2)}= 0.

If p(y2m+1,y2m+2) is maximum then from (3.16), we have

p(y2m+1,y2m+2)≤ β (p(y2m+1,y2m+2))p(y2m+1,y2m+2)

< p(y2m+1,y2m+2),

a contradiction.

Hence p(y2m,y2m+1) is maximum.

Therefore

p(y2m+1,y2m+2)≤ β (p(y2m,y2m+1))p(y2m,y2m+1)< p(y2m,y2m+1) (3.17)

Similarly we can show that p(yn−1,yn)≤ p(yn−2,yn−1) for n≥ 1.

Thus, we have p(yn,yn+1)≤ p(yn−1,yn) for all n = 1,2,3, . . . .

Therefore {p(yn,yn+1)} is a decreasing sequence of nonnegative real numbers and hence

converges to real r ≥ 0(say).

Suppose r > 0.

On letting n→ ∞ in (3.17), we get
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r ≤ β (r)r < r,

a contradiction.

Hence, r = 0. Thus, p(yn,yn+1)→ 0 as n→ ∞.

On the similar lines, if n is even, it follows that p(yn,yn+1)→ 0 as n→ ∞.

Therefore lim
n→∞

p(yn,yn+1) = 0. (3.18)

Therefore from (P2), we get that lim
n→∞

p(yn,yn) = 0 and lim
n→∞

p(yn+1,yn+1) = 0. (3.19)

By the definition of ps, using (3.18) and (3.19), we get that lim
n→∞

ps(yn,yn+1) = 0. (3.20)

Now, we prove that {y2n} is a Cauchy sequence in (X , ps).

On the contrary, suppose that {y2n} is not Cauchy. Then there exist an ε > 0 and monotone

sequences of natural numbers {2mk} and {2nk}such that 2nk > 2mk > k, with

ps(y2mk ,y2nk)≥ ε and ps(y2mk ,y2nk−2)< ε (3.21)

Now we prove that (i) lim
k→∞

p(y2mk ,y2nk) =
ε

2 .

Since ε ≤ ps(y2mk ,y2nk) for all k, we have

ε ≤ liminf
k→∞

ps(y2mk ,y2nk). (3.22)

Now for each positive integer k, by the triangular inequality, we get

ps(y2mk ,y2nk)≤ ps(y2mk ,y2nk−2)+ ps(y2nk−2,y2nk−1)+ ps(y2nk−1,y2nk)

On taking limit superior as k→ ∞ and using (3.19) and (3.20), we have

limsup
k→∞

ps(y2mk ,y2nk)≤ ε. (3.23)

Hence from (3.22) and (3.23), we get lim
k→∞

ps(y2mk ,y2nk) exists and lim
k→∞

ps(y2mk ,y2nk) = ε .

Hence, from the definition of ps and (3.19), we have lim
k→∞

p(y2mk ,y2nk) =
ε

2 .

In similar way, it is easy to see that

(ii) lim
k→∞

p(y2nk+1,y2mk) =
ε

2 ; (iii) lim
k→∞

p(y2nk ,y2mk−1) =
ε

2 and

(iv) lim
k→∞

p(y2mk−1,y2nk+1) =
ε

2 .

From the inequality (3.13), we have

p(y2mk ,y2nk+1) = p(Ax2mk ,Bx2nk+1)

≤ β (M(x2mk ,x2nk+1))M(x2mk ,x2nk+1)+LN(x2mk ,x2nk+1), (3.24)

where

M(x2mk ,x2nk+1) = max{p(Sx2mk ,T x2nk+1), p(Sx2mk ,Ax2mk), p(T x2nk+1,Bx2nk+1),

1
2 [p(Sx2mk ,Bx2nk+1)+ p(T x2nk+1,Ax2mk)]}
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= max{p(y2mk−1,y2nk), p(y2mk−1,y2mk), p(y2nk ,y2nk+1),

1
2 [p(y2mk−1,y2nk+1)+ p(y2nk ,y2mk)]} and

N(x2mk ,x2nk+1) = min{pw(Sx2mk ,Ax2mk), pw(T x2nk+1,Bx2nk+1), pw(Sx2mk ,Bx2nk+1),

pw(T x2nk+1,Ax2mk)}

= min{pw(y2mk−1,y2mk), pw(y2nk ,y2nk+1), pw(y2mk−1,y2nk+1), pw(y2nk ,y2mk)}

Now, by the definition of pw and using (3.19), (i), (ii), (iii), and (iv), we have

lim
k→∞

M(x2mk ,x2nk+1) = max{ ε

2 ,0,0,
1
2 [

ε

2 +
ε

2 ]}=
ε

2

and lim
k→∞

N(x2mk ,x2nk+1) = min{0,0, ε

2 ,
ε

2}= 0.

Hence, on letting k→ ∞ in (3.24), we get ε

2 ≤ β ( ε

2)
ε

2 < ε

2 , which is a contradiction.

Therefore {y2n} is Cauchy. Thus by Proposition 2.1, we have {yn} is a Cauchy sequence in

(X , ps).

Therefore lim
n,m→∞

ps(yn,ym) = 0.

Now, from Lemma 2.1, it follows that {yn} is a Cauchy sequence in (X , p).

Suppose T (X) is complete.

Since y2n = Ax2n = T x2n+1, it follows that {y2n} ⊆ T (X) is a Cauchy sequence in the complete

metric space (T (X), ps), it follows that {y2n} converges in (T (X), ps), and {y2n} converges to

u(say) in T (X).

Thus, lim
n→∞

ps(y2n,u) = 0 for some u ∈ T (X). i.e., y2n→ u = Tt ∈ T (X) for some t ∈ X .

Since {yn} is Cauchy in X and y2n→ u, it follows that y2n+1→ u as n→ ∞.

From Lemma 2.2, we get

p(u,u) = lim
n→∞

p(y2n+1,u) = lim
n→∞

p(y2n,u) = lim
n,m→∞

p(y2n,y2m) = 0. (3.25)

Now, we consider

p(Ax2n,Bt)≤ β (M(x2n, t))M(x2n, t)+LN(x2n, t), (3.26)

where

M(x2n, t) = max{p(Sx2n,Tt), p(Sx2n,Ax2n), p(Tt,Bt), 1
2 [p(Sx2n,Bt)+ p(Tt,Ax2n)]} and

N(x2n, t) = min{pw(Sx2n,Ax2n), pw(Tt,Bt), pw(Sx2n,Bt), pw(Tt,Ax2n)}. (3.27)

On letting n→ ∞ in (3.27), using (3.18), (3.25) and lim
n→∞

Sx2n = lim
n→∞

Ax2n = u, we get

lim
n→∞

M(x2n, t) = max{0,0, p(u,Bt), 1
2 [p(u,Bt)+0]}= p(u,Bt) and

lim
n→∞

N(x2n, t) = min{pw(u,u), pw(u,Bt), pw(u,Bt), pw(u,u)}= 0 as pw(u,u) = 0.
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Letting n→ ∞ in (3.26), we obtain

p(u,Bt)≤ β (p(u,Bt))p(u,Bt)< p(u,Bt),

a contradiction.

Hence Bt = Tt = u.

Since the pair (B,T ) is weakly compatible, it follows that Bu = BTt = T Bt = Tu.

Suppose p(u,Bu) 6= 0. By the inequality (3.13), we have

p(Ax2n,Bu)≤ β (M(x2n,u))M(x2n,u)+LN(x2n,u), (3.28)

where

M(x2n,u) = max{p(Sx2n,Tu), p(Sx2n,Ax2n), p(Tu,Bu), 1
2 [p(Sx2n,Bu)+ p(Tu,Ax2n)]} and

N(x2n,u) = min{pw(Sx2n,Ax2n), pw(Tu,Bu), pw(Sx2n,Bu), pw(Tu,Ax2n)}. (3.29)

On letting n→ ∞ in (3.29), using (3.18), (3.25) and lim
n→∞

Sx2n = lim
n→∞

Ax2n = u, we get

lim
n→∞

M(x2n,u) = max{p(u,Bu),0, p(Bu,Bu), 1
2 [p(u,Bu)+ p(Bu,u)]}= p(u,Bu) and

lim
n→∞

N(x2n,u) = min{pw(u,u), pw(Bu,Bu), pw(u,Bu), pw(Bu,u)}= 0 as pw(u,u) = 0.

Letting n→ ∞ in (3.28), we obtain

p(u,Bu)≤ β (p(u,Bu))p(u,Bu)< p(u,Bu),

a contradiction.

Therefore p(u,Bu) = 0 implies that Bu = Tu = u. Thus, u is a common fixed point of B and T .

By Proposition 3.2, we get that u is a unique common fixed point of A,B,S and T .

In a similar way, under the assumption that S(X) is complete, we obtain the existence of

common fixed point of A,B,S and T .

4. Corollaries and examples

In this section, we draw some corollaries from the main results of Section 3 and provide

examples in support of our results.

By choosing f = T and g, the identity map of X in Theorem 3.1, we have the following.

Corollary 4.1(Theorem 3, [19]). Let (X , p) be a complete partial metric space and let

T : X → X be a selfmapping. Suppose that there exist β ∈ F and L≥ 0 such that

p(T x,Ty)≤ β (M(x,y))M(x,y)+LN(x,y)

holds for all x,y ∈ X, where M(x,y) = max{p(x,y), p(x,T x), p(y,Ty), 1
2 [p(x,Ty)+ p(y,T x)]}
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and N = min{pw(x,T x), pw(y,Ty), pw(x,Ty), pw(y,T x)}.

Then T has a unique fixed point u ∈ X. Moreover, p(u,u) = 0.

If L = 0 in (2.1), then we have the following corollary due to Theorem 3.1.

Corollary 4.2. Let (X , p) be a partial metric space and let the pair ( f ,g) be generalized

Geraghty type contraction maps. If f (X)⊆ g(X), the pair ( f ,g) is weakly compatible and g(X)

is a complete subspace of X then f and g have a unique common fixed point in X.

The following is an example in support of Theorem 3.1, in which we show the importance of

L.

Example 4.1. Let X = [0,1] . We define p(x,y) =

 0 if x = y

max{x,y} if x 6= y,
for all x,y ∈ X .

Then (X , p) is a partial metric space. We define selfmaps f , g on X by

f (x) =

 x
20 if 0≤ x≤ 1

2
1
4 if 1

2 < x≤ 1,
g(x) =

 x
2 if 0≤ x≤ 1

2
1
40 if 1

2 < x≤ 1,
and β (t) =

 0 if t = 0
e
−t
10

1+t if t > 0.
Then clearly f (X)⊆ g(X). Without loss of generality, we assume that x≥ y.

We verify that the pair ( f ,g) is a Geraghty-Berinde type contraction maps. i.e., we show that

f , g satisfy the inequality (2.1).

Case (i): x,y ∈ [0, 1
2 ].

p( f x, f y) = x
20 ; p(gx,gy) = x

2 ; p(gx, f x) = x
2 ;

p(gy, f y) = y
2 ; p(gx, f y) = x

2 ; p(gy, f x) = max{ y
2 ,

x
20} ≤

x
2 .

Here 1
2 [p(gx, f y)+ p(gy, f x)]≤ x

2 . Therefore M(x,y) = x
2 .

pw(gx, f x) = x
2 ; pw(gx, f y) = x

2 ; pw(gy, f x) = max{ y
2 ,

x
20}.

We consider

p( f x, f y) = x
20 ≤

e−
x

20
1+ x

2

x
2 +3min{ x

2 ,
x
2 ,max{ y

2 ,
x

20}}

= β (M(x,y))M(x,y)+LN(x,y) with L = 3.

Case (ii): x,y ∈ (1
2 ,1].

p( f x, f y) = 1
4 ; p(gx,gy) = 1

40 ; p(gx, f x) = 1
4 ; p(gy, f y) = 1

4 ; 1
2 [p(gx, f y)+ p(gy, f x)] = 1

4 .

pw(gx, f x) = 1
4 ; pw(gx, f y) = 1

4 ; pw(gy, f x) = 1
4 .

Therefore M(x,y) = 1
4 and N(x,y) = 1

4 .

We consider

p( f x, f y) = 1
4 ≤

e−
1
40

1+ 1
4

1
4 +3(1

4)
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= β (1
4)

1
4 +3(1

4)

= β (M(x,y))M(x,y)+3min{pw(gx, f x), pw(gx, f y), pw(gy, f x)}

= β (M(x,y))M(x,y)+LN(x,y) with L = 3.

Case (iii): x ∈ (1
2 ,1],y ∈ [0, 1

2 ].

p( f x, f y) = 1
4 ; p(gx,gy) = max{ 1

40 ,
y
2} ≤

1
4 ; p(gx, f x) = 1

4 , p(gy, f y) = y
2 ,

1
2 [p(gx, f y)+ p(gy, f x)] = 1

2 [
1
40 +

1
4 ] =

11
80 . pw(gx, f x) = 1

4 ; pw(gx, f y) = 1
40 ; pw(gy, f x) = 1

4 .

Therefore M(x,y) = 1
4 and N(x,y) = 1

40 .

We consider

p( f x, f y) = 1
4 ≤

e−
1
40

1+ 1
4

1
4 +3min{1

4 ,
1

40 ,
1
4}

= β (M(x,y))M(x,y)+LN(x,y) with L = 3.

From all the above cases, we have f and g satisfy the inequality (2.1) with L = 3.

Therefore f and g satisfy all the hypotheses of Theorem 3.1 and 0 is the unique common

fixed point of f and g.

If L = 0 in the inequality (2.1) then the inequality (2.1) fails to hold, which shows the

importance of L in the inequality (2.1).

For, by choosing x = 1, y = 2
3 . We have

p( f x, f y) = 1
4 � β (1

4)
1
4 = β (M(1, 2

3))M(1, 2
3) for any β ∈ F.

The following is an example in support of Corollary 4.2.

Example 4.2 Let X = [0,1]. We define p(x,y) = max{x,y} for all x,y ∈ X . Then (X , p) is a

partial metric space. We define selfmaps f , g on X by

f (x) =


0 if x = 0
x
2 if 0 < x < 1

2
1
3 if 1

2 ≤ x≤ 1,

g(x) = x(5−x)
4 if 0≤ x≤ 1, and β (t) =

 0 if t = 0
e
−t
2

1+t if t > 0.

Then clearly f (X)⊆ g(X). Without loss of generality, we assume that x≥ y.

We verify that the pair ( f ,g) is a generalized Geraghty type contraction maps. i.e., we show

that f , g satisfy the inequality (2.1) with L = 0.

Case (i): x = y = 0.

In this case, trivially holds the inequality (2.1) with L = 0.

Case (ii): x,y ∈ (0, 1
2).

p( f x, f y) = x
2 ; p(gx,gy) = x(5−x)

4 ; p(gx, f x) = x(5−x)
4 ;
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p(gy, f y) = y(5−y)
4 ; p(gx, f y) = x(5−x)

4 ; p(gy, f x) = max{ y(5−y)
4 , x

2} ≤
x(5−x)

4 .

Here 1
2 [p(gx, f y)+ p(gy, f x)]≤ x(5−x)

4 . Therefore M(x,y) = x(5−x)
4 .

We consider

p( f x, f y) = x
2 ≤

e−
x(5−x)

8

1+ x(5−x)
4

x(5−x)
4 = β (x(5−x)

4 )x(5−x)
4 = β (M(x,y))M(x,y).

Case (iii): x,y ∈ [1
2 ,1].

p( f x, f y) = 1
3 ; p(gx,gy) = x(5−x)

4 ; p(gx, f x) = x(5−x)
4 ;

p(gy, f y) = y(5−y)
4 ; p(gx, f y) = x(5−x)

4 ; p(gy, f x) = y(5−y)
4 ≤ x(5−x)

4 .

Here 1
2 [p(gx, f y)+ p(gy, f x)]≤ x(5−x)

4 . Therefore M(x,y) = x(5−x)
4 .

We consider

p( f x, f y) = 1
3 ≤

e−
x(5−x)

8

1+ x(5−x)
4

x(5−x)
4 = β (x(5−x)

4 )x(5−x)
4 = β (M(x,y))M(x,y).

Case (iv): x ∈ (0, 1
2),y = 0.

p( f x, f y) = x
2 ; p(gx,gy) = x(5−x)

4 ; p(gx, f x) = x(5−x)
4 ; p(gy, f y) = 0; p(gx, f y) = x(5−x)

4 ;

p(gy, f x) = x
2 ≤

x(5−x)
4 . Here 1

2 [p(gx, f y)+ p(gy, f x)]≤ x(5−x)
4 . Therefore M(x,y) = x(5−x)

4 .

We consider

p( f x, f y) = x
2 ≤

e−
x(5−x)

8

1+ x(5−x)
4

x(5−x)
4 = β (x(5−x)

4 )x(5−x)
4 = β (M(x,y))M(x,y).

Case (v): x ∈ [1
2 ,1],y = 0.

p( f x, f y) = 1
3 ; p(gx,gy) = x(5−x)

4 ; p(gx, f x) = x(5−x)
4 ;

p(gy, f y) = 0; p(gx, f y) = x(5−x)
4 ; p(gy, f x) = 1

3 ≤
x(5−x)

4 .

Here 1
2 [p(gx, f y)+ p(gy, f x)]≤ x(5−x)

4 . Therefore M(x,y) = x(5−x)
4 .

We consider

p( f x, f y) = 1
3 ≤

e−
x(5−x)

8

1+ x(5−x)
4

x(5−x)
4 = β (x(5−x)

4 )x(5−x)
4 = β (M(x,y))M(x,y).

Case (vi): x ∈ [1
2 ,1],y ∈ (0, 1

2).

If x ∈ [1
2 ,

2
3 ], then p( f x, f y) = 1

3 ; p(gx,gy) = x(5−x)
4 ; p(gx, f x) = x(5−x)

4 ;

p(gy, f y) = y(5−y)
4 ; p(gx, f y) = x(5−x)

4 ; p(gy, f x) = max{ y(5−y)
4 , 1

3} ≤
x(5−x)

4 .

Here 1
2 [p(gx, f y)+ p(gy, f x)]≤ x(5−x)

4 . Therefore M(x,y) = x(5−x)
4 .

We consider

p( f x, f y) = 1
3 ≤

e−
x(5−x)

8

1+ x(5−x)
4

x(5−x)
4 = β (x(5−x)

4 )x(5−x)
4 = β (M(x,y))M(x,y).

From all the above cases, we have f and g satisfy the inequality (2.1) with L = 0.
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Therefore f and g satisfy all the hypotheses of Corollary 4.2 and 0 is the unique common

fixed point of f and g.

Here we observe that f and g fail to satisfy the generalized Geraghty type contraction

condition with respect to the metric d(x,y) = 2|x− y|.

For, by choosing x = 1
2 , y = 0. We have

2
3 = 2|13 −0|= d( f (1

2), f (0))� β ( 9
16)

9
16 = β (M(1

2 ,0))M(1
2 ,0) for any β ∈ F.

The following is an example in support of Theorem 3.3.

Example 4.3. Let X = [0,1] . We define p(x,y) = max{x,y} for all x,y ∈ X . Then (X , p) is a

partial metric space. We define selfmaps A,B,S and T on X by

A(x) = x
6 , B(x) =

 0 if x 6= 1
2

1
8 if x = 1

2 ,
S(x) =

 x
2 if 0≤ x < 1

2
1
4 if 1

2 ≤ x≤ 1,
T (x) =

 x
3 if 0≤ x < 1

2
1
6 if 1

2 ≤ x≤ 1

and β (t) =

 0 if t = 0
1

1+t if t > 0
with L≥ 0.

Clearly A, B, S and T satisfy all the hypotheses of Theorem 3.3 and 0 is the unique common

fixed point.
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