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Abstract. Acute hepatitis C virus (HCV) infection is so asymptomatic that it causes the majority of infected people 

to develop chronic hepatitis and ultimately cirrhotic hepatitis. Although some patients with AHCVI can undergo 

spontaneous clearance of the virus, most infected people still die of hepatitis C related-complications worldwide. 

This study proposed a mathematical model to investigate the transmission dynamics of acute hepatitis C virus with 

responses of cytotoxic T lymphocytes and antibodies. We established the expression for the basic reproductive 

number, 01R  and computed the sensitivity indices of 01R   pertaining to some model parameters. We found that the 

parameters for the production rate of susceptible hepatocytes,  ; infection rate,  and virus production rate,   are 

positively sensitive. Besides, the most negatively sensitive parameter is the natural death rate of hepatocytes,   

while the least negatively sensitive parameter is the natural death rate of the virus,  . We also performed numerical 

simulations, which validate the analytical results. Thus, we commend that early strategic intervention should be 

administered to a patient who is unable to clear the virus spontaneously to fight hepatitis C virus transmission by 

targeting the most sensitive model parameters. Absolutely, this will prevent disease evolution to more disastrous 

stages of infection. 

Keywords: acute HCV infection; cytotoxic T lymphocytes; antibodies; basic reproductive number; sensitivity 

analysis. 
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1      INTRODUCTION 

Hepatitis C infection is a blood borne hepatic disease caused by hepatitis C virus (HCV) initially 

identified in 1983 (Choo et al., 1989; Purcell, 1997). It was recounted by the World Health 

Organization (WHO) that about 175 million people worldwide were infected with HCV in 2015 

(WHO, 2017). HCV infection progresses in two stages, namely acute HCV infection (AHCVI) 

and chronic HCV infection (CHCVI). AHCVI lasts for six months after infection onset with high 

degree of asymptomatic state while CHCVI takes place beyond that period.  About 20% to 30% 

of people infected with AHCVI can clear the virus spontaneously (Rehermann, and Nascimbeni, 

2005), but many develop chronic liver disease, cirrhosis and hepatocellular carcinoma. To date, a 

vaccine against HCV infection does not exist and about 50% do not respond to treatment. New 

treatments are still being developed (Mayer et al., 2010).  Hepatitis C virus infection has been 

recognized as a global health problem. 

When HCV enters the human body, the immune system responds; and the essential components 

of a normal immune response to the virus are antibodies, cytokines natural killer cells and T- 

cells. People infected with HCV generally develop antibodies to react with the core protein as 

well as several nonstructural protein antigens of HCV; and thus neutralize free virus particles. 

Besides, in response to the infection, cytotoxic T lymphocytes develop to kill host infected 

hepatocytes. These immune responses are unable to fully protect the body against new infections 

and eliminate infections (Lemon and Brown, 1995), but work concurrently to combat the HCV 

transmission (Ramirez, 2014). At this juncture, we have considered only the immune responses 

antibodies and cytotoxic T lymphocytes to study the dynamics of AHCVI by mathematical 

modelling. 

Mathematical modelling has generally provided an explicit framework by which we can develop 

and communicate an understanding of transmission dynamics of an infectious disease. Thus, it 

has improved our understanding of the T-cell dynamics and the quantitative events that underlies 

the immune response to HCV. In literature, several models have been formulated to study HCV 

dynamics with immune system response (Ahmed and El-Saka, 2010; Avendano et al., 2002; 

Perelson, 2002; Ramirez, 2014). In our model, we consider the transmission dynamics of acute 

HCV with the responses of antibodies and cytotoxic T lymphocytes and possibility of patient’s 

spontaneous clearance of the virus. 
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2      MATERIALS AND METHODS 

2.1    Model Formulation 

Suitable variables and parameters are introduced to represent different populations and describe 

the population dynamics which institute the model respectively. Certain basic assumptions are 

also made to support description of the dynamics of the disease. A model flow diagram is 

employed to show clearly the transmission dynamics of acute HCV. Then a system of non-linear 

ordinary differential equations is derived. We apply the model to determine the disease free 

equilibrium point. The basic reproductive number is derived by using the next generation matrix 

method. Sensitivity analysis is done by using normalized forward sensitivity index method, 

which produced sensitivity indices of the basic reproductive numbers with reference to certain 

parameters of the model.  

2.2    Model Dynamics 

The model incorporates five classes: susceptible hepatocytes, S ; infected hepatocytes, I ; free 

hepatitis C viruses, V ; cytotoxic T lymphocytes, Z  and antibodies, W . Susceptible hepatocytes 

are produced a rate   and die naturally at a rate S and are infected by the interaction with the 

virus at a rate SV . Infected hepatocytes recover spontaneously at a rate I , die naturally at a 

rate I  and are killed by the cytotoxic T lymphocytes response at a rate IZ . Free virus is 

produced by infected hepatocytes at a rate I , die naturally at a rate V and is neutralized by 

antibodies at a rate VW . Cytotoxic T lymphocytes develop in response to viral antigen derived 

from infected cells at a rate IZ  and die naturally at a rate Z . In response to free virus, 

antibodies develop at a rate VW  and die naturally at a rate W . 

The following assumptions were considered for the formulation of the model: 

(i)      Susceptible hepatocytes are produced at a constant rate.  

(ii)      Susceptible hepatocytes are equally likely infected by the virus. 

(iii)     Susceptible and infected hepatocytes die naturally at equal constant rates. 

(iv)      Infected hepatocytes recover spontaneously at a constant rate. 

(v)      Viruses are produced by infected hepatocytes at a constant rate. 

(vi)      Viruses die naturally at a constant rate. 

(vii)  Free viruses are neutralized by antibodies at a constant rate. 

(viii)  Cytotoxic T lymphocytes are produced and die naturally at constant rates. 

(ix)        Cytotoxic T lymphocytes kill infected hepatocytes at a constant rate. 

(x)       In response to the virus, antibodies develop at a constant rate . 
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(xi)       Antibodies die naturally at a constant rate. 

(xii) The person with HCV infection can either clear the virus spontaneously or not. 

The variables and parameters are listed and briefly defined in Table 1 and Table 2 respectively 

TABLE 1: Description of state variables 

Variable Description 

)(tS  Susceptible hepatocytes  

)(tI  Infected hepatocytes  

)(tV  Hepatitis C viruses  

)(tZ  Cytotoxic T lymphocytes (CD8+
 T cells)  

)(tW  Antibodies  

Besides, for brevity of formulations and analyses, the model state variables )(tS , )(tI , )(tV , 

)(tZ  and )(tW  have simply been  represented by the symbols S , I , V , Z  and W  respectively. 

TABLE 2:  Description of parameters 

Parameter  Description 

     Infection rate 

  Production rate  of free virus by infected hepatocytes 

  Killing rate of infected hepatocytes by  cytotoxic T lymphocytes 

  Production rate of susceptible hepatocytes   

  Production rate of cytotoxic T lymphocytes in response to viral antigen 

derived from infected hepatocytes. 

  Natural death rate of hepatocytes 

  Natural death rate of  free virus 

  Natural death rate of cytotoxic T lymphocytes 

  Spontaneous recovery rate of infected hepatocytes  

  Disease-induced death rate of infected hepatocytes  

  Neutralization rate of free virus by antibodies. 

  Natural death rate of antibodies. 

  Antibodies development rate in response to free virus 
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2.3     Compartmental Diagram 

The description of acute hepatitis C virus dynamics can be summarized by a compartmental 

diagram as shown in Figure 1. 

 

FIGURE 1: Compartmental diagram for transmission dynamics of acute hepatitis C virus 

 

2.4     Equations of the Model 

From the compartmental diagram, illustrative of the transmission dynamics of acute hepatitis C 

virus, a system of five non-linear ordinary differential equations is derived. Equation  models 

the susceptible hepatocytes sub-population; , the infected hepatocytes sub-population; , 

the free hepatitis C virus population; , the cytotoxic T lymphocytes (CD8+ T cells) population 

and , the antibodies with initial conditions of the respective variables: 0)0( SS = , 0)0( II = , 

0)0( VV = , 0)0( ZZ = and 0)0( WW = . Thus, the system of equations is as follows: 

                                                          SSVI
dt

dS
 −−+=                                                              

                                                          IIIZISV
dt

dI
−−−−=                                                                            

                                                          VWVI
dt

dV
 −−=                                                                                                     

                                                          ZIZ
dt

dZ
 −=                                                                                                            
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                                                          WVW
dt

dW
 −=                                                                                                          

and 0S , 0I , 0V , 0Z  and 0W .. 

 

2.5     Basic Properties of the Model 

(i)    Positivity of Solutions 

Since the model system of equations involves modeling of populations, then all state variables 

and parameters of the model must be non-negative for all 0t . In this case, we prove that the 

state variables )(tS , )(tI , )(tV , )(tZ  and )(tW  are non-negative 0t , which is achieved by 

Theorem 1. 

Theorem 1: Suppose the initial values of the variables are: )0(S , )0(I , )0(V , )0(Z and )0(W . 

Then the solution set )}(),(),(),(),({ tWtZtVtItS  contains non-negative numerical values 0t  

Proof: 

From , we have: 

                                                               −= V
dt

dW

W

1
,                                                            

Integrating  we get: 

 −=








 t

dssV
W

W

00

))((ln   

Thus,                                  0))((exp)(
0









−= 

t

dssVtW  for 00 W                                      

Similarly, 

                                            







+− 

t

dssWtVtV
0

0 ))((exp)(   for 00 V                                                                                            

                                            0))((exp)(
0

0 







+− 

t

dssVtStS  for 00 S                                

                                    0))()((exp)(
0

0 







+++− 

t

dssZtItI  for 00 I                       

 and                                                   0)exp()( 0 − tZtZ   for  00 Z                                    
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The results , , ,  and  indicate that the set )}(),(),(),(),({ tWtZtVtItS contains 

only non-negative values 0t . Thus, we have proved Theorem 1. 

(ii)    Invariant Regions 

In this section, we determine the invariant region that contains feasible solutions of the model.  

We initially determine the invariant region for individual populations since the model system has 

heterogeneous populations. To achieve this, we assumed that the state variables and parameters 

are non-negative 0t   and used the following theorem: 

Theorem 2: All forward solutions of the model system )1( - )5(  are contained in the region 

5

+ R , WZVL  = , where                           

        ( ) NISRISL += + :, 2  

        
:{ 1

+= RVV )4(  and )5(  are satisfied}  

        :{ 1

+= RZZ )4(  and )5(  are satisfied}  

        
:{ 1

+= RWW )4(  and )5(  are satisfied}   

0t . and   is the invariant region (bounded region) for the whole model system )1( - )5( . 

Proof: 

To prove Theorem 2, we initially determine the bounded regions for individual populations. 

Liver Cells Population 

Here, we determine the bounded region for the liver cells population that contains feasible 

solutions. Let L  be the bounded region and ( ) 2, += RISL  be the solution of the population 

with non-negative initial conditions. Then, we have: 

Total hepatic cells population at time t is given by  

)()()( tItStN +=  

This implies that 

     
dt

dI

dt

dS

dt

dN
+=                                                            

Substitution of  and  into  yields: 

                                                           IIZN
dt

dN
 −−−=                                                   

From  , we have: 
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                                                                 N
dt

dN
−                                                             

Then the general solution of the differential inequality  is 

                                                   )exp()( 0 tNtN 


−






 
−+


                                                

where 0N  is the initial size of the hepatic cells population evaluated at the initial conditions 

( ) 000 = SS  and ( ) 000 = II . 

From , we deduce two cases for all 0t . 

Case 1: When 



0N , the largest value of the right hand side (RHS) of the inequality  is 

obtained at 0=t ; and the value is 0N . Hence 0)( NtN   

Case 2: When 



0N , the value  )exp(0 tN 


−







 
−  is negative and approaches zero as 

→t . So, the largest value in the RHS of the inequality  is 



. Hence 




)(tN                                

In respect of this, we deduce that 

=






 

 NNtN


,max)( 0  0t  and whatever value of 0N , 

Thus, )(tN  is bounded above. 

Hence all feasible solutions for the hepatic cells population are contained in the region. 

                                                         = NtNtNL )(:)( .                                                     

Cytotoxic T Lymphocytes Population 

From , we have: 

                                                                 −= I
dt

dZ

Z

1
 

Thus, we have: 

                                                                 − N
dt

dZ

Z

1
                                                         

Then the general solution of the differential inequality  is 

                                                         tNZtZ )(exp)( 0  − 
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where 0Z  is the initial size of the cytotoxic T lymphocytes population. 

According to , )(tZ is bounded above only if  N .Thus, we have: 

0)( ZtZ  0t   

Hence all feasible solutions for the cytotoxic T lymphocytes population are contained in the 

region. 

                                                             0)(:)( ZtZtZZ =                                                     

Hepatitis C Virus Population 

From  and , we have: 

                                                  VNVWVN
dt

dV
 −−−                                                

From , we deduce that    

                                                              VN
dt

dV
 −                                                             

 It implies that                                       + NV
dt

dV
                                                                   

Then the general solution of the differential inequality  is 

                                                 )exp()( 0 t
N

V
N

tV 







−








−+



                                           

where 0V  is the initial size of the hepatitis C virus population. 

It follows that for all 0t , we obtain: 




=








 V
N

VtV



,max)( 0 0t  and whatever value of 0V . 

Thus, )(tV  is bounded above. 

Hence all feasible solutions for the hepatitis C virus population are contained in the region. 

                                          








=








= 


V
N

VtVtVV



 ,max)(:)( 0                                         

Antibody Load 

From , we have: 

                                                                 −= V
dt

dW

W

1
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From , we deduce that 

                                                                    

VtV )(                                                                  

Substitution of  into  produces: 

                                                                − V
dt

dW

W

1
                                                        

Then the general solution of the differential inequality  is 

                                                           tVWtW )(exp)( 0  − 
                                                

where 0W  is the initial size of the antibodies  load. 

According to , )(tW is bounded above only if  N .Thus, we have: 

                                                              0)( WtW   for 0t  

Hence all feasible solutions for the antibodies load are contained in the region. 

                                                            0)(:)( WtWtWW =                                                   

From the results , ,  and , we deduce the invariant region for the whole model 

system )1( - )5(  is 

WZVL  = , where                                                                                                            

                                                            
 = NtNtNL )(:)(

,    

                                                             = VtVtVV )(:)({ ,                                                                                                                               

                                                            0)(:)( ZtZtZZ =  

 and                                           
 0)(:)( WtWtWW =

                                

Since   is positively invariant, it is appropriate to consider solutions within it. Thus, the model 

-   is epidemiologically and mathematically realistic (Hethcote, 2000) 

.  

3 RESULTS AND DISCUSSION 

In this section, we present and discuss the analytical results of the model system )1( - )5(  in order 

to get more insights into its dynamic features for better understanding of the impact of Cytotoxic 

T lymphocytes and antibodies on the transmission dynamics of acute hepatitis C virus 

 

3.1      The Disease Free Equilibrium (DFE)  

../../../SELEMAN/Desktop/MANUSCRIPTS/LUBOOBI/Package%20for%20TJST/Corrected%20version%20of%20the%20manuscript%20submitted%20to%20TJST%20on%2018-07-2018%5d.doc#_ENREF_44
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We usually obtain the equilibria of a model by setting its time derivatives equal are zero. Then 

solving the resulting system in the absence of infection yields the disease free equilibrium. Thus, 

we obtain the disease free equilibrium, 0E  of the model system -  by setting the right hand 

side of its equations equal to zero, i.e.  

0=====
dt

dW

dt

dZ

dt

dV

dt

dI

dt

dS
 

This implies that 

                                                            














=−

=−

=−−

=−−−−

=−−+

0

0

0

0

0

WVW

ZIZ

VWVI

IIIZISV

SSVI











                                       

From , we deduce: 

                                                     







== 0,0,0,0,),,,( 00000


TVISE . 

3.2     The Basic Reproductive Number 

The basic reproductive number, denoted by 01R , is well-defined as the average number of new 

infected hepatocytes instigated by an infected hepatocyte in a completely susceptible hepatocytes 

population during infection period (Dietz, 1975;  Diekmann and Heesterbeek., 1990; Van den 

Driessche and Watmough, 2002)., which can be applied as a metric to determine whether or not 

an infection will spread through the hepatic cells population. If 101 R , the HCV infection 

establishes in the population, but the virus will not spread in it if 101 R  (Nowk and May, 2000; 

Wodarz, 2005).   

Mathematically, 01R  is the spectral radius of the next generation matrix (Van den Driessche and 

Watmough, 2002)  and obtained by taking the largest (dominant) eigenvalue, (spectral radius) of 

the matrix 1−FY . Then, we have: 

                                                 

1

001 )()(
−

−
































=

j

i

j

i

X

EY

X

EF
FY , 

where 

../../../SELEMAN/Desktop/MANUSCRIPTS/LUBOOBI/New%20paper/MANUSCRIPT%203b.docx#_ENREF_102
../../../SELEMAN/Desktop/MANUSCRIPTS/LUBOOBI/New%20paper/MANUSCRIPT%203b.docx#_ENREF_102
../../../SELEMAN/Desktop/MANUSCRIPTS/LUBOOBI/New%20paper/MANUSCRIPT%203b.docx#_ENREF_102
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                                                 







=

I

SV
Fi




 ; 









+

+++
=

VWV

IIIIZ
Yi




; 

                                                 












 

=















=

0

0)( 0






j

i

X

EF
F  ;                                   

                                               






 ++
=
















=





0

0)( 0

j

i

X

EY
Y  

and                                            



















++

=−




1

0

0
1

1Y  

Then we deduce: 

                                                   



















++



=−

0

0
1








FY , 

Hence the basic reproductive number of the model system )1( - )5(  is given by 

                                                    
)(

01
++


=




R                                                                 

 

The result  clearly shows that the number of new infected hepatocytes is determined by the 

liver cells population and HCV population as all parameters instituting 01R  are derived from 

these populations. This indicates that the transmission of HCV in the hepatic cells population can 

be combated once control measures are targeted to these populations. Conversely, the immune 

system response does not determine occurrence of new infections as no parameter embedded in 

01R  is derived from it. 

In the absence of spontaneous hepatitis C viral clearance )0( = , the basic reproductive number 

01R  reduces to 02R , which is given by 

)(
02





+


=R  

where 02R  signifies the basic reproductive number derived when there is no spontaneous viral 

clearance. 
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Analytically, we have: 

+++ )()(  0102
)()(

RR =
++




+


=








 

Hence 0102 RR  . This implies that more hepatocytes are infected for a patient with AHCVI who 

is incapable of clearing the virus spontaneously. 

3.3     Sensitivity Analysis 

Sensitivity analysis in mathematical epidemiology is a systematic procedure that helps to identify 

sites in a model for possible deliberate intervention. This is typically accomplished by computing 

sensitivity indices of the basic reproductive number relating to the parameters of the model using 

the method of Chitnis et al. (2008). The sensitivity index significantly describes how influential 

each parameter is on the transmission dynamics and incidence of an infection; and it refers to as 

the relative change in a state variable subject to a parameter change (Chitnis et al., 2008).  

For our case, the sensitivity indices of basic reproductive number 01R  relating to the HCV model 

parameter were determined by using parameter values from literatures while certain parameter 

values were simply estimated. All parameter values are listed in Table . 

TABLE 3: Parameter values used to calculate the sensitivity indices of 01R . 

Parameter Value Units Source 

  02.0  day-1  

 

 

Avendano et al. (2002) 

  00003.0  virus-1day-1 

  100  cell-1day-1 

  5  day-1 

  02.0  day-1 

  100  cells day-1  

  48.0  day-1  

  00064.0  cell-1day-1  

 

Ramirez (2014) 

  2  molecule-1day-1 

  00001.0  virus-1day-1 

  2.0  day-1 

  0000003.0  cell-1day-1 

  1 day-1 Dahari et al. (2005) 
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Definition : According to Chitnis et al. (2008), the forward normalized sensitivity index of a 

variable K  that depends on a parameter L  is defined as  

    
K

L

L

K
X K

L 



=                                                              

Replacing K  by 01R
 
in equation , we obtain the expression for 01R

LX  is given by 

01

0101

R

L

L

R
X

R

Q 



=                                                            

Replacing L  by a parameter in , we obtained the sensitivity index of 01R  relating to each 

parameter. Henceforth, the sensitivity indices of 01R  relating to the parameters  ,   and   are 

given by 

5029.0
01

0101 −=



=

R

R
X

R 


 , 5000.0

01

0101 +=



=

R

R
X

R 




 

and 1305.0
01

0101 −=



=

R

R
X

R 




 

Other indices  

01R
X  , 01R

X , 01R
X  and 01R

X  , 

are determined by using the same method; and all indices are  listed in Table .  

 

TABLE 4: Numerical values of sensitivity indices of 01R  

Parameter Sensitivity index 

  5029.0−  

  5000.0−  

  5000.0+  

  5000.0+  

  5000.0+  

  3666.0−  

  1305.0−  

 

In Table , we observe that if the parameters  ,    and    are increased while others are kept 

constant, the value of 01R  increases because these parameters have positive sensitivity indices. 

This implies that the increase of 01R  
 
increases of the disease transmission whereas the decrease 
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of 01R
 
can decrease the disease transmission. Conversely, it is observed that the parameters  , 

 ,   and   increase the value of 01R  when they are decreased as they are negative. This 

implies endemicity of hepatitis C virus infection increases when the values of these parameters 

are with decreased. 

  

Besides, we observe that the most sensitive parameter is the natural death rate of hepatocytes  ; 

followed by the natural death rate of the free virus,   virus production rate  , infection rate 

 and production rate of susceptible hepatocytes  ; followed by noncytolytic recovery rate of 

infected hepatocytes    and the disease-induced death rate of infected hepatocytes  , which is 

the least sensitive parameter. 

3.4   Numerical Simulations 

In this section, we verify the analytical results of the study by performing numerical solutions of 

the model system )1( - )5(  by using the parameter values listed in Table 3. The symbols 01R  and 

02R  in the simulations legends signify the value of basic reproductive number with and without 

spontaneous viral clearance respectively. We used Maple-12 software tools to evaluate the basic 

reproductive numbers 01R  and 02R  at these parameter values and obtained 0711.7  and 1474.12  

respectively, which explicitly shows that 012 RRO  . Thus, this connotes that the hepatitis C 

virus is more epidemic in the hepatocytes population for a patient who cannot clear the virus 

spontaneously.  
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FIGURE 2: Variation of basic reproductive numbers with natural death rate of hepatocytes 
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FIGURE 3: Variation of basic reproductive numbers with virus production  rate. 

 

 

0 0.5 1 1.5 2 2.5 3 3.5

x 10
-5

0

0.5

1

1.5

2

2.5

Infection rate( )

V
a
ri

o
u

s
 v

a
lu

e
s
 o

f 
R

0
1
 a

n
d

 R
0

2

 

 

R
01

R
02

 

 FIGURE 4: Variation of basic reproductive numbers with infection  rate 
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 FIGURE 5: Variation of basic reproductive numbers with recruitment rate of susceptible hepatocytes  

Figure 2 shows simulations for the basic the reproductive number 01R  with natural death rate of 

hepatocytes  , where it is observed that 01R  decreases with increase of   and vice versa. This 

implies that the number of secondary-new- infections reduces with increase of   and increases 

with increase of  . In Figures 3 -5 , the simulations indicate the basic reproductive number 01R  

increases with the virus production rate  , the infection rate   and the recruitment rate of 
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susceptible hepatocytes  ; and vice versa. This implies that the number of secondary infections 

increases with increase of  ,   and  . Besides, we observe that in the absence of spontaneous 

HCV clearance, variations of basic reproductive number 02R  with  ,  ,   and   follows the 

same trend though 0102 RR   at any particular values of these parameters (Figures 2 , 3 , 4  and 

5  respectively). It should be noted that the parameters   and   never become zero as 

hepatocytes continuously undergo natural death and new susceptible hepatocytes are endlessly 

being produced.  

 

4      CONCLUSION 

In this paper, we have formulated a deterministic mathematical model for transmission dynamics 

of acute hepatitis C virus with responses of cytotoxic T lymphocytes and antibodies. In this case, 

we have assumed that the patient can either clear the virus spontaneously or not. From the model 

system of equations, we have determined the disease free equilibrium 0E , indicative of the state 

of no disease; and derived the basic reproductive number 01R , indicative of the number of new 

infections triggered by a single infectious hepatocyte in the completely hepatic cells population. 

We also noted that as 01R  does not incorporate parameters from the cytotoxic T lymphocytes and 

antibody populations, the immune system does not determine the occurrence of new hepatitis C 

virus infections in the hepatic cells population. Besides, we have noted that if the patient cannot 

clear the virus spontaneously hepatitis C virus is highly epidemic in the hepatic cells population, 

which may cause disastrous consequences if strategic intervention is not implemented. 

Moreover, we have performed the sensitivity analysis on the basic reproductive number relating 

to some model parameters and noted that the most sensitive parameter is the natural death rate of 

hepatocytes  ; followed by the recruitment rate of new susceptible hepatocytes  , the 

infection rate   and the virus production rate  ; and the virus natural death rate   is the least 

sensitive parameter. We executed numerical simulations of the model to verify the analytical 

result, which absolutely suggests that the disease transmission in the hepatic cells population can 

be reduced, or rather eradicated, if the most sensitive parameters are deliberately targeted for 

intervention.    
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