
Available online at http://scik.org

J. Math. Comput. Sci. 9 (2019), No. 2, 182-193

https://doi.org/10.28919/jmcs/3932

ISSN: 1927-5307

SAMPLING THEOREM ASSOCIATED WITH Q-DIRAC SYSTEM

FATMA HIRA∗

Department of Mathematics, Faculty of Science and Arts, Hitit University, Çorum, 19040, Turkey
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Abstract. This paper deals with q−analogue of sampling theory associated with q−Dirac system. We derive

sampling representation for transform whose kernel is a solution of this q−Dirac system. As a special case, three

examples are given.
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1. Introduction

Consider the following q−Dirac system

(1.1)


−1

q
Dq−1y2 + p(x)y1 = λy1,

Dqy1 + r (x)y2 = λy2,

(1.2) k11y1 (0)+ k12y2 (0) = 0,
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(1.3) k21y1 (a)+ k22y2
(
aq−1)= 0,

where ki j (i, j = 1,2) are real numbers, λ is a complex eigenvalue parameter, y(x)=

 y1 (x)

y2 (x)

 ,

p(x) and r (x) are real-valued functions defined on [0,a] and continuous at zero and p(x),

r (x) ∈ L1
q (0,a) (see [1,2]) .

The papers in q−Dirac system are few, see [1−3] . However, sampling theories associated

with q−Dirac system do not exist as far as we know. So that we will construct a q−analogue

of sampling theorem for q−Dirac system (1.1)-(1.3), building on recent results in [1,2] . To

achieve our aim we will briefly give the spectral analysis of the problem (1.1)-(1.3). Then we

derive sampling theorem using solution. In the last section we give three examples illustrating

the obtained results.

2. Notations and Preliminaries

We state the q−notations and results which will be needed for the derivation of the sampling

theorem. Throughout this paper q is a positive number with 0 < q < 1.

A set A ⊆ R is called q-geometric if, for every x ∈ A, qx ∈ A. Let f be a real or complex-

valued function defined on a q-geometric set A. The q-difference operator is defined by

(2.1) Dq f (x) :=
f (x)− f (qx)

x(1−q)
, x 6= 0.

If 0 ∈ A, the q-derivative at zero is defined to be

(2.2) Dq f (0) := lim
n→∞

f (xqn)− f (0)
xqn , x ∈ A,

if the limit exists and does not depend on x. Also, for x ∈ A, Dq−1 is defined to be

(2.3) Dq−1 f (x) :=


f (x)− f

(
q−1x

)
x(1−q−1)

, x ∈ A\{0} ,

Dq f (0) , x = 0,

provided that Dq f (0) exists. The following relation can be verified directly from the definition

(2.4) Dq−1 f (x) =
(
Dq f

)(
xq−1) .
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A right inverse, q-integration, of the q-difference operator Dq is defined by Jackson [4] as

(2.5)
x∫

0

f (t)dqt := x(1−q)
∞

∑
n=0

qn f (xqn) , x ∈ A,

provided that the series converges. A q-analog of the fundamental theorem of calculus is given

by

(2.6) Dq

x∫
0

f (t)dqt = f (x) ,
x∫

0

Dq f (t)dqt = f (x)− lim
n→∞

f (xqn) ,

where lim
n→∞

f (xqn) can be replaced by f (0) if f is q-regular at zero, that is, if lim
n→∞

f (xqn) = f (0),

for all x ∈ A. Throughout this paper, we deal only with functions q-regular at zero.

The q-type product formula is given by

(2.7) Dq ( f g)(x) = g(x)Dq f (x)+ f (qx)Dqg(x) ,

and hence the q-integration by parts is given by

(2.8)
a∫

0

g(x)Dq f (x)dqx = ( f g)(a)− ( f g)(0)−
a∫

0

Dqg(x) f (qx)dqx,

where f and g are q-regular at zero.

For more results and properties in q-calculus, readers are referred to the recent works [5−8].

The basic trigonometric functions cos(z;q) and sin(z;q) are defined on C by

(2.9) cos(z;q) :=
∞

∑
n=0

(−1)n qn2
(z(1−q))2n

(q;q)2n
,

(2.10) sin(z;q) :=
∞

∑
n=0

(−1)n qn(n+1) (z(1−q))2n+1

(q;q)2n+1
,

and they are q-analogs of the cosine and sine functions. cos(.;q) and sin(.;q) have only real

and simple zeros {±xm}∞

m=1 and {0,±ym}∞

m=1 , respectively, where xm, ym > 0,m > 1 and

(2.11) xm = (1−q)−1 q−m+1/2+εm(1/2) if q3 <
(
1−q2)2

,

(2.12) ym = (1−q)−1 q−m+εm(−1/2) if q <
(
1−q2)2

.

Moreover, for any q ∈ (0,1) , (2.11) and (2.12) hold for sufficiently large m, cf. [5,9−11] .
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Let L2
q (0,a) be the space of all complex valued functions defined on [0,a] such that

(2.13) ‖ f‖ :=

 a∫
0

| f (x)|2 dqx

1\2

< ∞.

The space L2
q (0,a) is a separable Hilbert space with the inner product (see [12])

(2.14) 〈 f ,g〉 :=
a∫

0

f (x)g(x)dqx, f ,g ∈ L2
q (0,a) .

Let Hq be the Hilbert space

Hq :=

y(x) =

 y1 (x)

y2 (x)

 , y1 (x) ,y2 (x) ∈ L2
q (0,a)

 .

The inner product of Hq is defined by

(2.15) 〈y(.) ,z(.)〉Hq
:=

a∫
0

y> (x)z(x)dqx,

where> denotes the matrix transpose, y(x)=

 y1 (x)

y2 (x)

 , z(x)=

 z1 (x)

z2 (x)

∈Hq, yi (.) , zi (.)∈

L2
q (0,a) (i = 1,2) .

It is known [1,2] that the problem (1.1)-(1.3) has a countable number of eigenvalues {λn}∞

n=−∞

which are real and simple, and to every eigenvalue λn, there corresponds a vector-valued eigen-

function y>n (x,λn) = (yn,1 (x,λn) ,yn,2 (x,λn)) . Moreover, vector-valued eigenfunctions belong-

ing to different eigenvalues are orthogonal, i.e.,

a∫
0

y>n (x,λn)ym (x,λm)dqx

=
a∫
0

{
yn,1 (x,λn)ym,1 (x,λm)+ yn,2 (x,λn)ym,2 (x,λm)

}
dqx = 0, for λn 6= λm.

Let y1 (x,λ1) =

 y11 (x,λ1)

y12 (x,λ1)

 and y2 (x,λ2) =

 y21 (x,λ2)

y22 (x,λ2)

 be two solutions of (1.1):

hence

(2.16)

 −1
qDq−1y12 +{p(x)−λ1}y11 = 0,

Dqy11 +{r (x)−λ1}y12 = 0,
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and

(2.17)

 −1
qDq−1y22 +{p(x)−λ2}y21 = 0,

Dqy21 +{r (x)−λ2}y22 = 0.

Multiplying (2.16) by y21 and y22 and (2.17) by−y11 and−y22 respectively, and adding them

together also using the formula (2.4) we obtain

(2.18)
Dq
{

y11 (x,λ1)y22
(
xq−1,λ2

)
− y12

(
xq−1,λ1

)
y21 (x,λ2)

}
= (λ1−λ2){y11 (x,λ1)y21 (x,λ2)+ y12 (x,λ1)y22 (x,λ2)} .

Let y(x) =

 y1 (x)

y2 (x)

 , z(x) =

 z1 (x)

z2 (x)

 ∈Hq. Then the q-Wronskian of y(x) and z(x) is

defined by

(2.19) W (y,z)(x) := y1 (x)z2
(
xq−1)− z1 (x)y2

(
xq−1) .

Let us consider the next initial value problem

(2.20)

 −1
qDq−1y2 + p(x)y1 = λy1,

Dqy1 + r (x)y2 = λy2,

(2.21) y1 (0) = k12, y2 (0) =−k11.

By virtue of Theorem 1 in [1] , this problem has a unique solution φ (x,λ ) =

 φ1 (x,λ )

φ2 (x,λ )

.

It is obvious that φ (x,λ ) satisfies the boundary condition (1.2) and this function is uniformly

bounded on the subsets of the form [0,a]×Ω where Ω ⊂ C is compact. The proof is similar

to the one in the proof of Lemma 3.1 in [13] . To find the eigenvalues of the q−Dirac system

(1.1)-(1.3) we have to insert this function into the boundary condition (1.3) and find the roots

of the obtained equation. So, putting the function φ (x,λ ) into the boundary condition (1.3) we

get the following equation whose zeros are the eigenvalues of the q−Dirac system (1.1)-(1.3)

(2.22) ω (λ ) =−
{

k21φ1 (a,λ )+ k22φ2
(
aq−1,λ

)}
.

It is also known that if {φn (.)}∞

n=−∞
denotes a set of vector-valued eigenfunctions corre-

sponding {λn}∞

n=−∞
, then {φn (.)}∞

n=−∞
is a complete orthogonal set of Hq. For more details
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about how to obtain the solutions and the eigenvalues for q−Dirac system see [1,2] , similar to

the classical case of Dirac system [14] and q−Sturm-Liouville problems [15,16] .

3. The Sampling Theory

The WKS (Whittaker-Kotel’nikov-Shannon) [17−19] sampling theorem has been general-

ized in many different ways. The connection between the WKS sampling theorem and bound-

ary value problems was first observed by Weiss [20] and followed by Kramer [21] . In [22],

sampling theorem is introduced where sampling representations are derived for integral trans-

forms whose kernels are solutions of one-dimensional regular Dirac systems. In recent years,

the connection between sampling theorems and q−boundary value problems has been the fo-

cus of many research papers. In [12,23] , q−versions of the classical sampling theorem of

WKS as well as Kramer’s analytic theorem were introduced. These results were extended to

q−Sturm-Liouville problems in [13,24], singular q-Sturm-Liouville problem in [25] and the

q,ω−Hahn-Sturm-Liouville problem in [26] .

In this section, we state and prove q−analogue of sampling theorem associated with q−Dirac

system (1.1)-(1.3), inspired by the classical case [22] .

Theorem 3.1. Let f (x) =

 f1 (x)

f2 (x)

 ∈ Hq and F (λ ) be the q−type transform

(3.1) F (λ ) =

a∫
0

f> (x)φ (x,λ )dqx, λ ∈ C,

where φ (x,λ ) is the solution defined above. Then F (λ ) is an entire function that can be recon-

structed using its values at the points {λn}∞

n=−∞
by means of the sampling form

(3.2) F (λ ) =
∞

∑
n=−∞

F (λn)
ω (λ )

(λ −λn)ω ′ (λn)
,

where ω (λ ) is defined in (2.22). The series (3.2) converges absolutely on C and uniformly on

compact subsets of C.

Proof. Since φ (x,λ ) is in Hq for any λ , we have

(3.3) φ (x,λ ) =
∞

∑
n=−∞

φ̂n
φn (x)

‖φn‖2
Hq

,
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where

(3.4)
φ̂n =

a∫
0

φ> (x,λ )φn (x)dqx

=
a∫
0

{
φ1 (x,λ )φn,1 (x)+φ2 (x,λ )φn,2 (x)

}
dqx,

φ> (x,λ ) = (φ1 (x,λ ) , φ2 (x,λ )) and φ>n (x) = (φn,1 (x) , φn,2 (x)) is the vector-valued eigen-

function corresponding to the eigenvalue λn.

Since f is in Hq, it has the Fourier expansion

(3.5) f (x) =
∞

∑
n=−∞

f̂n
φn (x)

‖φn‖2
Hq

,

where

(3.6)
f̂n =

a∫
0

f> (x)φn (x)dqx

=
a∫
0

{
f1 (x)φn,1 (x)+ f2 (x)φn,2 (x)

}
dqx.

In view of Parseval’s relation and definition (3.1), we obtain

(3.7) F (λ ) =
∞

∑
n=−∞

F (λn)
φ̂n

‖φn‖2
Hq

.

Let λ ∈C, λ 6= λn and n∈N be fixed. From relation (2.18), with y11 (x) = φ1 (x,λ ) ,y12 (x) =

φ2 (x,λ ) and y21 (x) = φn,1 (x) , y22 (x) = φn,2 (x) , we obtain

(3.8)
(λ −λn)

a∫
0

{
φ1 (x,λ )φn,1 (x)+φ2 (x,λ )φn,2 (x)

}
dqx

= W (φ (.,λ ) ,φn (.))|x=a−W (φ (.,λ ) ,φn (.))|x=0 .

From (2.19) and the definition of φ (.,λ ) , we have

(3.9)
(λ −λn)

a∫
0

{
φ1 (x,λ )φn,1 (x)+φ2 (x,λ )φn,2 (x)

}
dqx

= φ1 (a,λ )φn,2
(
aq−1)−φn,1 (a)φ2

(
aq−1,λ

)
.

Assume that k22 6= 0. Since φn (.) is an eigenfunction, then it satisfies (1.3). Hence

(3.10) φn,2
(
aq−1)=−k21

k22
φn,1 (a) .
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Substituting from (3.10) in (3.9), we obtain

(3.11)

(λ −λn)
a∫
0

{
φ1 (x,λ )φn,1 (x)+φ2 (x,λ )φn,2 (x)

}
dqx

=−φn,1 (a)
{

k21

k22
φ1 (a,λ )+φ2

(
aq−1,λ

)}
=

ω (λ )φn,1 (a)
k22

provided that k22 6= 0. Similarly, we can show that

(3.12)
(λ −λn)

a∫
0

{
φ1 (x,λ )φn,1 (x)+φ2 (x,λ )φn,2 (x)

}
dqx

=
ω (λ )φn,2

(
aq−1)

k21

provided that k21 6= 0. Differentiating with respect to λ and taking the limit as λ → λn, we

obtain

(3.13)
‖φn‖2

Hq
=

a∫
0

φ>n (x)φn (x)dqx

=
ω ′ (λn)φn,1 (a)

k22
,

and

(3.14)
‖φn‖2

Hq
=

a∫
0

φ>n (x)φn (x)dqx

=
ω ′ (λn)φn,2

(
aq−1)

k21
.

From (3.4), (3.11) and (3.13), we have for k22 6= 0,

(3.15)
φ̂n

‖φn‖2
Hq

=
ω (λ )

(λ −λn)ω ′ (λn)
,

and if k21 6= 0, we use (3.4), (3.12) and (3.14) to obtain the same result. Therefore from (3.7)

and (3.15) we get (3.2) when λ is not an eigenvalue. Now we investigate the convergence of

(3.2). Using Cauchy-Schwarz inequality for λ ∈ C.

(3.16)

∞

∑
k=−∞

∣∣∣∣F (λk)
ω (λ )

(λ −λk)ω ′ (λk)

∣∣∣∣= ∞

∑
k=−∞

∣∣∣∣∣ f̂k
φ̂k

‖φk‖2
Hq

∣∣∣∣∣
≤

 ∞

∑
k=−∞

∣∣∣∣∣ f̂k

‖φk‖Hq

∣∣∣∣∣
2
1\2 ∞

∑
k=−∞

∣∣∣∣∣ φ̂k

‖φk‖Hq

∣∣∣∣∣
2
1\2

< ∞,

since f (.) , φ (.,λ ) ∈ Hq, then the two series in the right-hand side of (3.16) converge. Thus

series (3.2) converge absolutely on C. As for uniform convergence on compact subsets of C, let
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ΩM := {λ ∈ C, |λ | ≤M}M is a fixed positive number. Let λ ∈ΩM and N > 0. Define ΓN (λ )

to be

(3.17) ΓN (λ ) =

∣∣∣∣∣F (λ )−
N

∑
k=−N

F (λk)
ω (λ )

(λ −λk)ω ′ (λk)

∣∣∣∣∣ .
By Cauchy-Schwarz inequality

ΓN (λ )≤ ‖φ (.,λ )‖Hq

 N

∑
k=−N

∣∣∣ f̂k

∣∣∣2
‖φk‖2

Hq


1\2

.

Since the function φ (.,λ ) is uniformly bounded on the subsets of C, we can find a positive

constant CΩ which is independent of λ such that ‖φ (.,λ )‖Hq
≤CΩ, λ ∈ΩM. Thus

ΓN (λ )≤CΩ

 N

∑
k=−N

∣∣∣ f̂k

∣∣∣2
‖φk‖2

Hq


1\2

→ 0 as N→ ∞.

Hence (3.2) converges uniformly on compact subsets of C. Thus F (λ ) is an entire function and

the proof is complete.

4. Examples

In this section we give three examples illustrating the sampling theorem of the previous sec-

tion.

Example 4.1. Consider q−Dirac system (1.1)-(1.3) in which p(x) = 0 = r (x) :

(4.1)


−1

q
Dq−1y2 = λy1,

Dqy1 = λy2,

(4.2) y1 (0) = 0,

(4.3) y2
(
πq−1)= 0.

It is easy to see that a solution (4.1) and (4.2) is given by

φ
> (x,λ ) = (sin(λx;q) , cos(λ

√
qx;q)) .
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By substituting this solution in (4.3), we obtain ω (λ ) = cos
(

λq−1\2π;q
)
, hence, the eigen-

values are λn =
q1−n+εn(1\2)

(1−q)π
. Applying Theorem 3.1, the q−transforms

(4.4)
F (λ ) =

π∫
0

f> (x)φ (x,λ )dqx

=
π∫
0

{
f1 (x)sin(λx;q)+ f2 (x)cos

(
λ
√

qx;q
)}

dqx,

for some f1 and f2 ∈ L2
q (0,π) , then it has the sampling formula

(4.5) F (λ ) =
∞

∑
n=−∞

F (λn)
cos
(

λq−1\2π;q
)

(λ −λn)ω ′ (λn)
.

Example 4.2. Consider q−Dirac equation (4.1) together with the following boundary condi-

tions

(4.6) y2 (0) = 0,

(4.7) y1 (π) = 0.

In this case φ> (x,λ ) =
(
cos(λx;q) , −√qsin

(
λ
√

qx;q
))

. Since ω (λ ) = cos(λπ;q) , then the

eigenvalues are given by λn =
q−n+1\2+εn(1\2)

(1−q)π
. Applying Theorem 3.1 above to the q−transform

(4.8) F (λ ) =

π∫
0

{ f1 (x)cos(λx;q)− f2 (x)
√

qsin(λ
√

qx;q)}dqx,

for some f1 and f2 ∈ L2
q (0,π) , then we obtain

(4.9) F (λ ) =
∞

∑
n=−∞

F (λn)
cos(λπ;q)

(λ −λn)ω ′ (λn)
.

Example 4.3. Consider q−Dirac equation (4.1) together with the following boundary condi-

tions

(4.10) y1 (0)+ y2 (0) = 0,

(4.11) y2
(
πq−1)= 0.
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In this case

φ
> (x,λ ) = (cos(λx;q)− sin(λx;q) , −√qsin(λ

√
qx;q)− cos(λ

√
qx;q)) .

Since ω (λ ) =−√qsin
(

λq−1\2π;q
)
−cos

(
λq−1\2π;q

)
, then the eigenvalues of this problem

are the solutions of equation

(4.12)
√

qsin
(

λq−1\2
π;q
)
=−cos

(
λq−1\2

π;q
)
.

Applying Theorem 3.1 above to the q−transform

(4.13)
F (λ ) =

π∫
0
{ f1 (x)(cos(λx;q)− sin(λx;q))

− f2 (x)
(√

qsin
(
λ
√

qx;q
)
+ cos

(
λ
√

qx;q
))}

dqx,

for some f1 and f2 ∈ L2
q (0,π) , then we obtain

(4.14) F (λ ) =
∞

∑
n=−∞

F (λn)
−√qsin

(
λq−1\2π;q

)
− cos

(
λq−1\2π;q

)
(λ −λn)ω ′ (λn)

.
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