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Abstract. In this paper, we study the existence of positive solutions to second order nonlinear differential

equations with Neumann boundary conditions, our nonlinearity f(t, u) may be singular at u = 0 and

our proof relies on a nonlinear alternative of Leray-Schauder type, together with a truncation technique.

Some examples will be given.
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1. Introduction

In this paper, we establish the existence of positive solutions for the second order

Neumann boundary value problem −u′′ + a(t)u = f(t, u), 0 ≤ t ≤ 1,

u′(0) = 0, u′(1) = 0,
(1)

where a : [0, 1] → (0,∞) is continuous and nonlinearity f : [0, 1] × (0,∞) → (0,∞). In

particular, the nonlinearity may have a repulsive singularity at u = 0, which means that

lim
u→0

f(t, u) = +∞, uniformly in t.
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Electrostatic or gravitational forces are the most important examples of singular interac-

tions.

Due to a wide range of applications in physics and engineering, second order Neumann

boundary value problems have been extensively investigated by numerous researchers in

recent years. For a small sample of such work, we refer the reader to [1–6,9,10,12,13,16]

and the references therein. Here we mention the following results: if a(t) = M > 0,

in [13], Jiang and Liu obtain the existence of one positive solution of (1) when f is

either superlinear or sublinear, and in [12] Sun and Li gave some existence results for at

least two positive solutions to (1) under weaker conditions than [13]. In the above two

papers, existence results were obtained by using Krasnoselskii’s fixed point theorem on

compression and expansion of cones [7]. Besides fixed point theorems in cone, the method

of upper and lower solutions [10] is also used in the literature [1, 3, 9].

The aim of this paper is to study the existence of solutions of problem (1) by using

alternative of Leray-Schauder type, which was used in [11] to deal with periodic singular

problems. It is proved that such a problem has at least one positive solutions under

reasonable conditions (See Theorem 3.1). The paper is organized as follows. In section 2,

some preliminary results will be given, including a famous nonlinear alternative of Leray-

Schauder type. In section 3, we will state and prove the main results, some illustrating

examples will be given.

2. Preliminaries

Let u(t) and v(t) be the solutions of the following homogeneous equations

−u′′ + a(t)u = 0, 0 ≤ t ≤ 1,

satisfying the initial conditions

u(0) = 1, u′(0) = 0, v(0) = 0, v′(0) = 1.
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Lemma 2.1 [8] Suppose that h : [0, 1]→ [0,∞) is continuous, then problem −u′′ + a(t)u = h(t), 0 ≤ t ≤ 1,

u′(0) = 0, u′(1) = 0,

has a unique solution u ∈ C2[0, 1] given by the formula

u(t) =

∫ 1

0

G(t, s)h(s)ds,

where

G(t, s) =


u(t)v′(1)−v(t)u′(1)

u′(1)
u(s), 0 ≤ s ≤ t ≤ 1,

u(s)v′(1)−v(s)u′(1)
u′(1)

u(t), 0 ≤ t ≤ s ≤ 1,

is the Green’s function.

Remark 2.2 [13] If a(t) = M > 0, then the Green’s function G(t, s) of the boundary

value problem (1) has the form

G(t, s) =


cosh

√
M(1−t) cosh

√
Ms√

M sinh
√
M

, 0 ≤ s ≤ t ≤ 1,

cosh
√
M(1−s) cosh

√
Mt√

M sinh
√
M

, 0 ≤ t ≤ s ≤ 1,

where

coshx =
ex + e−x

2
, sinhx =

ex − e−x

2
.

Lemma 2.3 [8] Suppose a, h : [0, 1] → (0,+∞) are continuous functions. Then the

Green’s function G(t, s) of problem (1) is positive, i.e., G(t, s) > 0, t, s ∈ [0, 1].

We denote

A = min
0≤s,t≤1

G(t, s), B = max
0≤s,t≤1

G(t, s), σ = A/B.

Thus B > A > 0 and 0 < σ < 1. When a(t) = M > 0, a direct calculation shows that

A =
1√

M sinh
√
M
, B =

cosh2
√
M√

M sinh
√
M
, σ =

1

cosh2
√
M

< 1.

In order to prove the main result of this paper, we need the following nonlinear al-

ternative of Leray-Schauder, which can be found in [15] or [17], and has been used by

M.Meehan, D.O’Regan in [14,18].
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Theorem 2.4 Assume Ω is a relatively compact subset of a convex set E in a normed

space X. Let T : Ω → E be a compact map with 0 ∈ Ω. Then one of the following two

conclusions holds:

(i) T has at least one fixed point in Ω.

(ii) There exist u ∈ ∂Ω and 0 < λ < 1 such that u = λTu.

3. Main results

In this section, we state and prove the main results of this paper. Let ‖ · ‖ denote the

supremum norm of C[0, 1].

Theorem 3.1 Suppose that there exists a constant r > 0 such that

(H1) There exists a continuous function φr � 0 such that f(t, u) ≥ φr(t) for all (t, u) ∈

[0, 1]× (0, r].

where the notation φr � 0 means that φr ≥ 0 for all t ∈ [0, 1] and φr > 0 for t in

a subset of positive measure.

(H2) there exist continuous nonnegative function p(u), q(u) such that

f(t, u) ≤ p(u) + q(u) for all (t, u) ∈ [0, 1]× (0,∞),

p(u) > 0 is nonincreasing and q(u)/p(u) is nondecreasing in u ∈ (0,∞).

(H3)
r

p(σr){1+ q(r)
p(r)}

> g∗, here g∗ = sup
0≤t≤1

∫ 1

0
G(t, s)ds.

where σ and G(t, s) are given as in Section 2.

Then boundary value problem (1) has at least one solution u with 0 <‖ u ‖< r.

proof Since (H3) holds, we can choose n0 ∈ {1, 2, · · · } such that

g∗p(σr)

{
1 +

q(r)

p(r)

}
+

1

n0

< r.

Let N0 = {n0, n0 + 1, · · · }. Consider the family of equation −u′′ + a(t)u = λfn(t, u(t)) + a(t)
n
,

u′(0) = 0, u′(1) = 0.
(2)
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where λ ∈ [0, 1], n ∈ N0 and

fn(t, u) =

 f(t, u), if u ≥ 1/n,

f(t, 1
n
), if u ≤ 1/n.

Problem (2) is equivalent to the following fixed point problem

u(t) = λ

∫ 2π

0

G(t, s)fn(s, u(s))ds+
1

n
= λTnu(t) +

1

n
,(3)

where Tn is defined by

(Tnu)(t) =

∫ 1

0

G(t, s)fn(s, u(s))ds,

and we used the fact∫ 1

0

G(t, s)a(s)ds ≡ 1. (see Lemma 2.1 with h = a)

We claim that any fixed point u of (3) for any λ ∈ [0, 1] must satisfy ‖u‖ 6= r. Otherwise

assume that u is a fixed point of (3) for some λ ∈ [0, 1] such that ‖u‖ = r. Note that

fn(t, x) ≥ φr(t) for 0 < u ≤ r. It is to see that

u(t)− 1

n
= λ

∫ 1

0

G(t, s) [fn(s, u(s))] ds

≥λA
∫ 1

0

[fn(s, u(s))] ds

≥λA
B

max
t∈[0,1]

∫ 1

0

G(t, s)fn(s, u(s))ds

= σ

∥∥∥∥u− 1

n

∥∥∥∥ .
Hence for t ∈ [0, 1], we have u(t) ≥ 1/n and

u(t) ≥ σ

∥∥∥∥u− 1

n

∥∥∥∥+
1

n
≥σ

(
‖u‖ − 1

n

)
+

1

n

= σ

(
r − 1

n

)
+

1

n

≥σr.
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Thus we have from condition (H2), for all t ∈ [0, 1],

u(t) = λ

∫ 1

0

G(t, s)fn(s, u(s))ds+
1

n

≤
∫ 1

0

G(t, s)f(s, u(s))ds+
1

n

≤
∫ 1

0

G(t, s)p(u(s))

{
1 +

q(u(s))

p(u(s))

}
ds+

1

n

≤ p(σr)
{

1 +
q(r)

p(r)

}∫ 1

0

G(t, s)ds+
1

n

≤ p(σr)
{

1 +
q(r)

p(r)

}
g∗ +

1

n0

.

Therefore,

r = ‖u‖ ≤ p(σr)

{
1 +

q(r)

p(r)

}
g∗ +

1

n0

.

This is a contradiction to the choice of n0 and the claim is proved.

From this claim, the Leray-Schauder alternative principle guarantees that −u′′ + a(t)u = fn(t, u(t)) + a(t)
n
,

u′(0) = 0, u′(1) = 0,
(4)

has a periodic solution un with ‖un‖ < r. Since un(t) ≥ 1
n
> 0 for all t ∈ [0, 1] and un is

actually a positive periodic solution of (4).

Next we claim that these solutions un have a uniform positive lower bound, i.e., there

exists a constant δ > 0, independent of n ∈ N0, such that

min
t∈[0,1]

un(t) ≥ δ(5)

for all n ∈ N0. To see this , let ur(t) be the unique solution to the problem −u′′ + a(t)u = φr(t), 0 ≤ t ≤ 1,

u′(0) = 0, u′(1) = 0.

then ur(t) =
∫ 1

0
G(t, s)φr(t)ds ≥ A‖φr‖1 > 0, here ‖.‖1 denotes the usual L1− norm over

(0, 1).
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So, we have

un(t) =

∫ 1

0

G(t, s)fn(s, u(s))ds+
1

n

=

∫ 1

0

G(t, s)f(s, u(s))ds+
1

n

≥
∫ 1

0

G(t, s)φr(t)ds+
1

n

≥A‖φr‖1 := δ > 0.

In order to pass the solution un of the truncations problems (2) to that of the original

problem (1), we need the following fact:

‖u′n‖ ≤ H(6)

for some constant H > 0, and for all n ≥ n0. To show this, first integrate the first

equation in (4) from 0 to 1, we obtain∫ 1

0

a(t)un(t)dt =

∫ 1

0

[
fn(t, un(t)) +

a(t)

n

]
dt.

Then

‖u′n‖= max
0≤t≤1

|u′n| = max
0≤t≤1

∣∣∣∣∫ t

0

u′′n(s)ds

∣∣∣∣
= max

0≤t≤1

∣∣∣∣∫ t

0

fn(s, un(s)) +
a(s)

n
− a(s)un(s)

∣∣∣∣ ds
≤
∫ t

0

[
fn(s, un(s)) +

a(s)

n

]
ds+

∫ 1

0

a(s)un(s)ds

≤ 2

∫ 1

0

a(s)un(s)ds < 2r‖a‖1 := H.

Now ‖un‖ < r and (6) show that {un}n∈N0 is a bounded and equi-contioous family on

[0, 1]. The Arzela-Ascoli Theorem guarantees that {un}n∈N0 has a subsequence {uni
}i∈N ,

converging uniformly on [0, 1] to a function u ∈ C[0, 1]. From ‖un‖ < r and (5), u satisfies

δ ≤ u(t) ≤ r for all t. Moreover uni
satisfies the integral equation

uni
(t) =

∫ 1

0

G(t, s)f(s, uni
(s))ds+

1

ni
.
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Let i→∞, we arrive at

un(t) =

∫ 1

0

G(t, s)f(s, un(s))ds,

where the uniform continuity of f(t, u) on [0, 1]× [δ, r] is used. Therefore, u is a positive

solution of (1).

Finally it is not difficult to show that ‖u‖ < r, by noting that if ‖u‖ = r, an argument

similar to the proof of the first claim will yield a contradiction.

Corollary 3.2 Assume that there exist continuous functions d, d̂ and λ > 0 such that

0 ≤ d̂(t)u−λ ≤ f(t, u) ≤ d(t)u−λ for all u > 0 and t ∈ [0, 1]. Then problem (1) has at least

one positive solution.

proof We will apply Theorem 3.1, (H1) and (H2) are satisfied if we take

φr(t) = d̂(t)r−λ, q(u) = 0, p(u) = d(t)u−λ.

The existence condition (H3) become

σλrλ+1 > sup
0≤t≤1

∫ 1

0

G(t, s)d(s)ds(7)

for some r > 0. Since λ > 0 and u(t) > 0, we can choose r > 0 large enough such that (7)

is satisfied.

Corollary 3.3 Let the nonlinearity in (1) be

f(t, u) = b(t)u−α + µc(t)uβ, 0 ≤ t ≤ 1,

where α > 0, β ≥ 0, b(t), c(t) ∈ C[0, 1] are non-negative functions and b(t) > 0 for all t,

and µ is a positive parameter. Then

(i) if β < 1, then (1) has at least one positive solution for each µ > 0,

(ii) if β ≥ 1, then (1) has at least one positive solution for each 0 < µ < µ1, where µ1

is some positive constant.

proof We will apply Theorem 3.1. To this end, notice assumption (H1) is fulfilled if

φr(t) = µr−α min
0≤t≤1

b(t). If we take

p(u) = b0u
−α, q(u) = µc0u

β,
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where

b0 = max
0≤t≤1

b(t) > 0, c0 = max
0≤t≤1

c(t) > 0,

then (H2) is satisfied.

Now the existence condition (H3) become

u <
σαrα+1 − g∗b0
g∗c0rα+β

.

for some r > 0, so (1) has at least one positive periodic solution for

0 < µ < µ1 := sup
r>0

σαrα+1 − g∗b0
g∗c0rα+β

Note that µ1 =∞ if β < 1 and µ1 <∞ if β ≥ 1. We have the desired results.
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