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Abstract. The eccentricity e(u) of a vertex u is the maximum distance from u in G. A vertex v is an eccentric

vertex of u if the distance from u to v is equal to e(u). An eccentric coloring of a graph G = (V,E) is a function

color : V −→ N such that

(i) for all u,v ∈V, (color(u) = color(v)) =⇒ d(u,v)> color(u),

(ii) for all v ∈V , color (v)≤ e(v).

The eccentric chromatic number χe ∈ N for a graph G is the least number of colors for which it is possible to

eccentrically color G by colors : V −→ {1,2, ....,χe}. In this paper, we have proved that a cycle with a chord

between vertices at any distance up to the radius of the cycle is eccentric colorable thereby making the results of

[5] particular cases. Also, here we have extended results on eccentric coloring of Lexicographic product graphs

proved earlier and found a sharp upper bound and shown its attainability.

Keywords: eccentricity of a vertex; eccentric vertex; eccentric coloring; eccentric chromatic number; lexico-

graphic product.

2010 AMS Subject Classification: 05C12, 05C15, 05C76.

∗Corresponding author

E-mail address: medha@bub.ernet.in

Received December 7, 2018
225



226 MEDHA ITAGI HUILGOL

1. INTRODUCTION

Unless mentioned otherwise for terminology and notation the reader may refer Buckley and

Harary [2] and Chartrand and Lensiak [3], new ones will be introduced as and when found

necessary. In this paper we consider simple undirected graphs without multiple edges and self

loops. The order p is the number of vertices in G and size q is the number of edges in G.

The distance d(u,v) between u and v is the length of a shortest path joining u and v. If there

exists no path between u and v then we define d(u,v) = ∞. The eccentricity e(u) of u is the

distance to a vertex farthest from u. If d(u,v) = e(u)(v 6= u), we say that v is an eccentric vertex

of u. The radius rad(G) is the minimum eccentricity of the vertices, where as the diameter

diam(G) is the maximum eccentricity. A vertex v is a central vertex if e(v) = rad(G), and the

center C(G) is the set of all central vertices. A graph G is self-centered if rad(G) = diam(G).

The join of two graphs G1 and G2, defined by Zykov [8], is denoted G1 +G2 and consists of

V1∪V2 and all edges joining V1 with V2.

Sloper [7] introduced the concept of eccentric coloring of a graph and studied the eccentric

coloring of trees. which is a generalization of the broadcast coloring studied by many [1], [4]

to name a few.

In [5] Itagi Huilgol et al. have established several bounds on the radius and the diameter of an

eccentric colorable graph and have also found eccentric coloring number explicitly for cycles

with chords between two vertices at distance two and three. In this paper, we prove that a cycle

with a chord between vertices at any distance up to the radius of the cycle is eccentric colorable

thereby making the results of [5] particular cases. In [5] Itagi Huilgol et al. have considered

the eccentric coloring of Lexicographic product of cycles with K2. Here, we extend this result

to the Lexicographic product of Cp[K3] and show that it is not possible to eccentrically color

Cp[Kn] for higher values of n .

2. SOME BASIC RESULTS

In this section we prove some results about eccentric coloring.

Lemma 1. For a complete graph Kp, the eccentric chromatic number remains unaltered after

an edge deletion, that is, χe(Kp− e
′
) = χe(Kp), for all e

′ ∈ E(Kp), p≥ 4.
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Proof. Given a complete graph Kp, p≥ 4 , we know that χe(Kp) = p, by [5]. Now any edge e
′
,

when deleted does not change its eccentric coloring as the other adjacencies are kept intact and

hence χe(Kp− e
′
) = p. Hence the result.

�

Lemma 2. A self-centered, regular graph is not eccentrically colorable if its diameter is less

than or equal to its regularity.

Proof. Let G be a self-centered graph of radius d and regularity k. If a vertex v is colored with

color say 1, then its k neighbors require k different colors. So to eccentrically color the vertices

of G we require at least k+1 colors. If d ≤ k, then the number of permissible colors is d. Hence,

it is not possible to eccentrically color G. �

Next we consider Mycieleski graph of a graph G and prove that it is not eccentrically col-

orable. For ready reference we give the definition of the Mycieleski of a graph here.

Mycielski graph: Let G be a graph with p vertices. Let these p vertices be labeled as

{u1,u2, . . . ,up}. The Mycielski graph µ(G) contains G itself as a subgraph, together with p+1

additional vertices: a vertex vi corresponding to each vertex ui of G, and an extra vertex w. Each

vertex vi is connected by an edge to w, so that these vertices form a subgraph in the form of a

star K1,p. In addition, for each edge uiu j of G, the Mycielski graph includes two edges, viu j and

uiv j. Thus, if G has p vertices and q edges, then µ(G) has 2p+1 vertices and 3q+ p edges. In

[6] Itagi Huilgol et al. have proved the following result.

Theorem 1. [6] Let G be any connected graph with V (G) = {u1,u2, . . . ,up}. Then the My-

cieleski of G, µ(G), has its distance degree sequence as follows:

dds(µ(G))(ui) = (d0,2d1,2d2+2,2d3+d4+d5+d6+. . .+deccG(ui),d4+d5+d6+. . .+deccG(ui)));

ddsµ(G)(vi) = (d0,d1 +1, p+d2, p−1−d1−d2);

ddsµ(G)(w) = (d0, p, p).

From the above result we can prove the following result.

Lemma 3. Mycieleski of a graph G is not eccentrically colorable.
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Proof. From the above result of [6] we know that µ(G) has diameter 4 and radius 2.

We can see that if eccG(ui) ≥ 4, then eccµ(G)(ui) = 4 and if eccG(ui) ≤ 3, then eccµ(G)(ui) =

eccG(ui).

Also by the structure of µ(G), it is clear that eccµ(G)(vi) = 3 and eccµ(G)(w) = eccG(w) = 2.

Now if we try to eccentrically color µ(G), for the vertex w, only possible colors are 1 and 2.

Since, w and v′is induce a star, K1,p, for optimality we assign w with color 2 and all the vertices

v′is color 1. Hence the only possible colors to be assigned to the vertices u′is are 3 and 4. With

these two colors it is impossible to color all the p vertices u′is. Hence, µ(G) is not eccentrically

colorable. �

3. ECCENTRIC COLORING OF CYCLE WITH CHORD

Here we consider the eccentric coloring of cycle with chord. In [5] Itagi Huilgol et al. have

proved that a cycles are eccentrically colorable with eccentric chromatic number 3 or 4. Also

they have proved that a cycle with a chord between vertices at distance two or three (in cycle)

is eccentrically colorable. Here we prove that a cycle with a chord between vertices at any

distance up to the radius of the cycle is eccentric colorable thereby making the results of [5]

particular cases.

Lemma 4. A cycle Cp, p≥ 9 with a chord between two vertices at distance four from each other

is eccentric colorable with χe(Cp + e) = 5.

Proof. Let cycle Cp, p≥ 9 be labeled as v1,v2,v3, ...,vp. Let e be a chord between vp−2 and v2.

Hence denote by Cp + e, the graph obtained by adding the chord e to Cp. Eccentric coloring of

Cp + e is given based on the order p as follows:

Case (i): Let p = 4m+5,m≥ 1.

Assign colors 1,2,1,3, respectively, m− times to the vertices of Cp + e sequentially in the

order starting from v1, that is, v1,v2, ...,vp−5. Now the remaining five more vertices namely,

vp−4,vp−3,vp−2,vp−1,vp are colored in the order 1,4,1,3,5, respectively. Hence, Cp + e is ec-

centrically colorable with χe(Cp + e) = 5.
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Case (ii): Let p = 4m+6,m≥ 1.

Assign colors 1,2,1,3, respectively, m− times to the vertices v1,v2, ...,vp−6 of Cp + e sequen-

tially in the order starting from v1. The remaining six vertices namely,

vp−5,vp−4,vp−3,vp−2,vp−1,vp are colored in the order 1,2,1,4,1,5 respectively. Hence, Cp+e

is eccentrically colorable with χe(Cp + e) = 5.

Case (iii): Let p = 4m+7,m≥ 1.

Assign colors 1,2,1,3, respectively, (m+1)− times to the vertices v1,v2, ...,vp−3 of Cp + e se-

quentially in the order starting from v1. The remaining three vertices namely, vp−2,vp−1,vp

are colored in the order 1,4,5 respectively. Hence, Cp + e is eccentrically colorable with

χe(Cp + e) = 5.

Case (iv): Let p = 4m+8,m≥ 1.

Assign colors 1,2,1,3, respectively, (m+1)− times to the vertices v1,v2, ...,vp−4 of Cp + e se-

quentially in the order starting from v1. The remaining four vertices namely, vp−3,vp−2,vp−1,vp

are colored in the order 1,4,1,5 respectively. Hence, Cp + e is eccentrically colorable with

χe(Cp + e) = 5. Referring to all the above cases we see that a cycle with a chord at distance

four from each other is eccentric colorable. �

Illustration: Let us consider the graphs as shown in Figure 1. In this example we consider

m = 2. We have also shown the eccentric coloring of the vertices.

Lemma 5. A cycle Cp, p≥ 9 with a chord between two vertices at distance five from each other

is eccentric colorable with χe(Cp + e) = 5.

Proof. Proof is written on similar lines to the previous one. Let cycle Cp, p ≥ 9 be labeled as

v1,v2,v3, ...,vp. Let e be a chord between vp−3 and v2. Hence denote by Cp + e, the graph

obtained by adding the chord e to Cp. Eccentric coloring of Cp + e is given based on the order

p as follows:

Case (i): Let p = 4m+5,m≥ 1.

Assign colors 1,2,1,3, respectively, m− times to the vertices of Cp + e sequentially in the
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FIGURE 1. Chord at distance 4

order starting from v1, that is, v1,v2, ...,vp−5. Now the remaining five more vertices namely,

vp−4,vp−3,vp−2,vp−1,vp are colored in the order 1,4,1,3,5, respectively. Hence, Cp + e is ec-

centrically colorable with χe(Cp + e) = 5.

Case (ii): Let p = 4m+6,m≥ 1.

Assign colors 1,2,1,3, respectively, m− times to the vertices v1,v2, ...,vp−6 of Cp + e sequen-

tially in the order starting from v1. The remaining six vertices namely,

vp−5,vp−4,vp−3,vp−2,vp−1,vp are colored in the order 1,2,1,4,1,5 respectively. Hence, Cp+e

is eccentrically colorable with χe(Cp + e) = 5.

Case (iii): Let p = 4m+7,m≥ 1.

Assign colors 1,2,1,3, respectively, m− times to the vertices v1,v2, ...,vp−7 of Cp + e sequen-

tially in the order starting from v1. The remaining seven vertices namely,

vp−6,vp−5,vp−4,vp−3,vp−2,vp−1,vp are colored in the order 1,2,1,4,1,2,5 respectively. Hence,

Cp + e is eccentrically colorable with χe(Cp + e) = 5.
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Case (iv): Let p = 4m+8,m≥ 1.

Assign colors 1,2,1,3, respectively, (m+1)− times to the vertices v1,v2, ...,vp−4 of Cp + e se-

quentially in the order starting from v1. The remaining four vertices namely, vp−3,vp−2,vp−1,vp

are colored in the order 1,4,1,5 respectively. Hence, Cp + e is eccentrically colorable with

χe(Cp + e) = 5.

Referring to all the above cases we see that a cycle with a chord at distance five from each other

is eccentric colorable. �

Illustration: Let us consider the graphs as shown in Figure 2. In this example we consider

m = 2. We have also shown the eccentric coloring of the vertices.

FIGURE 2. Chord at distance 5

Remark 1. A cycle Cp, p ≥ 9 with a chord e between two vertices at distance i,1 ≤ i ≤ b p
2c,

from each other is eccentric colorable, as the eccentric coloring is achieved based on the order

p similar to the two previous lemmas. Since the chord divides the cycle into two smaller cycles,

whose lengths are i+1 and p− (i+1)+2 = p− i+1. Depending on the value of i and the four

cases of order of Cp, that is, p, we can show the eccentric colorability of Cp + e.

4. ECCENTRIC COLORING OF LEXICOGRAPHIC PRODUCTS

In this section we consider the eccentric coloring of lexicographic product of class of graphs.

First, we recollect the definition of lexicographic product as follows:

Given two graphs G and H, the lexicographic product G[H] has its vertex set
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{(g,h) : g ∈ V (G),h ∈ V (H)} and two vertices (g,h),(g
′
,h
′
) are adjacent if and only if either

[g,g
′
] is an edge of G or g = g

′
and [h,h

′
] is edge of H.

FIGURE 3. Lexicographic product C4[K2]

As mentioned earlier we give an extension of the result proved in [5], in the following theo-

rem. The proof runs similarly, except for the additional case.

Theorem 6. For any even integer p≥ 16,Cp[K3] is eccentric colorable.

Proof. Let a cycle Cp be labeled as v1,v2,v3, ...vp, where p(≥ 16) is an even integer and Cp[K3]

be the lexicographic product of Cp and K3. Let Si denote the set of vertices of K3 replaced in

place of vi.

Case(i): p = 8n+8, n≥ 1.

In this case, let V (Cp[K3]) = A∪B∪C∪D be the partition of V (Cp[K3]), where

A = {∪S2k−1/1≤ k ≤ p/2},

B = {∪S4k−2/1≤ k ≤ p/4},

C = {∪S8k−2/1≤ k ≤ p/8},

D = {∪S8k/1≤ k ≤ p/8}.

The eccentric coloring of Cp[K3] is given as follows:

The three vertices in each S2k−1,1≤ k≤ p/2, are colored with color 1. Among the three vertices

in each S4k−2,1 ≤ k ≤ p/4 in B, one vertex is colored with color 2 and the other two vertices

are colored with color 3 and color 4. Among three vertices in each S8k−2,1≤ k≤ p/8 in C, one

vertex is colored with color 4 and the other two vertices are colored with color 5 and color 6.

Among the three vertices in each S8k,1≤ k ≤ p/8 in D, one vertex is colored with color 5 and
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the other two vertices are colored with color 6 and color 7.

Hence, in this case the eccentric coloring number is 7.

Case(ii): p = 8n+10,n≥ 1.

In this case, let V (Cp[K3]) = A∪B∪C∪D∪E be the partition of V (Cp[K3]), where

A = {∪S2k−1/1≤ k ≤ p/2},

B = {∪S4k−2/1≤ k ≤ p−2/4},

C = {∪S8k−4/1≤ k ≤ p−2/8},

D = {∪S8k/1≤ k ≤ p−2/8},

E = {Sp}.

The eccentric coloring of Cp[K3] is given as follows:

The three vertices in each S2k−1,1≤ k≤ p/2, are colored with color 1. Among the three vertices

in each S4k−2,1≤ k≤ p−2/4 in B, one vertex is colored with color 2 and the other two vertices

are colored with color 3 and color 4. Among three vertices in each S8k−4/1≤ k≤ p−2/8 in C,

one vertex is colored with color 4 and the other two vertices are colored with color 5 and color

6. Among the three vertices in each S8k,1≤ k ≤ p−2/8 in D, one vertex is colored with color

5 and the other two vertices are colored with color 6 and color 7. Among the three vertices in

E, one vertex is colored with color 7 and the other two are colored with color 8 and color 9.

Hence, in this case the eccentric coloring number is 9.

Case(iii): p = 8n+12,n≥ 1.

In this case, let V (Cp[K3]) = A∪B∪C∪D∪E be the partition of V (Cp[K3]), where

A = {∪S2k−1/1≤ k ≤ p/2},

B = {∪S4k−2/1≤ k ≤ p/4},

C = {∪S8k−4/1≤ k ≤ p−4/8},

D = {∪S8k/1≤ k ≤ p−4/8},

E = {Sp}.

The eccentric coloring of Cp[K3] is given as follows:

The three vertices in each S2k−1,1≤ k≤ p/2, are colored with color 1. Among the three vertices
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in each S4k−2,1 ≤ k ≤ p/4 in B, one vertex is colored with color 2 and the other two vertices

are colored with color 3 and color 4. Among three vertices in each S8k−4/1≤ k≤ p−4/8 in C,

one vertex is colored with color 4 and the other two vertices are colored with color 5 and color

6. Among the three vertices in each S8k,1≤ k ≤ p−4/8 in D, one vertex is colored with color

5 and the other two vertices are colored with color 6 and color 7. Among the three vertices in E,

one vertex is colored with color 7 and the other two vertices are colored with color 8 and color

9.

Hence, in this case the eccentric coloring number is 9.

Case(iv): p = 8n+14,n≥ 1.

In this case, let V (Cp[K3]) = A∪B∪C∪D∪E be the partition of V (Cp[K3]), where

A = {∪S2k−1/1≤ k ≤ p/2},

B = {∪S4k−2/1≤ k ≤ p−2/4},

C = {∪S8k−4/1≤ k ≤ p+2/8},

D = {∪S8k/1≤ k ≤ p−6/8},

E = {Sp}.

The eccentric coloring of Cp[K3] is given as follows:

The three vertices in each S2k−1,1≤ k≤ p/2, are colored with color 1. Among the three vertices

in each S4k−2,1≤ k≤ p−2/4 in B, one vertex is colored with color 2 and the other two vertices

are colored with color 3 and color 4. Among three vertices in each S8k−4/1≤ k≤ p+2/8 in C,

one vertex is colored with color 4 and the other two vertices are colored with color 5 and color

6. Among the three vertices in each S8k,1≤ k ≤ p−6/8 in D, one vertex is colored with color

5 and the other two vertices are colored with color 6 and color 7. Among the three vertices in E,

one vertex is colored with color 7 and the other two vertices are colored with color 8 and color

9.

Hence, in this case the eccentric coloring number is 9.

�
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Illustration: For example, let us consider C16[K3], C18[K3], C20[K3] ,C22[K3] as shown in

Figure 4 and Figure 5.

FIGURE 4. Lexicographic product C16[K3],C18[K3]

For p = 8n+8 = 16, V (Cp[K3]) = A∪B∪C∪D be the partition of V (Cp[K3]), where

A = {∪S2k−1/1≤ k ≤ p/2}= {S1,S3,S5,S7,S9,S11,S13,S15},

B = {∪S4k−2/1≤ k ≤ p/4}= {S2,S6,S10,S14},

C = {∪S8k−2/1≤ k ≤ p/8}= {S4,S12},
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FIGURE 5. Lexicographic product C20[K3],C22[K3]

D = {∪S8k/1≤ k ≤ p/8}= {S8,S16}.

For p = 8n+10 = 18,V (Cp[K3]) = A∪B∪C∪D∪E be the partition of V (Cp[K3]), where

A = {∪S2k−1/1≤ k ≤ p/2}= {S1,S3,S5,S7,S9,S11,S13,S15,S17},

B = {∪S4k−2/1≤ k ≤ p−2/4}= {S2,S6,S10,S14},

C = {∪S8k−4/1≤ k ≤ p−2/8}= {S4,S12},

D = {∪S8k/1≤ k ≤ p−2/8}= {S8,S16},

E = {Sp}= {S18}.
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For p = 8n+12 = 20, V (Cp[K3]) = A∪B∪C∪D∪E be the partition of V (Cp[K3]), where

A = {∪S2k−1/1≤ k ≤ p/2}= {S1,S3,S5,S7,S9,S11,S13,S15,S17,S19},

B = {∪S4k−2/1≤ k ≤ p/4}= {S2,S6,S10,S14,S18},

C = {∪S8k−4/1≤ k ≤ p−4/8}= {S4,S12},

D = {∪S8k/1≤ k ≤ p−4/8}= {S8,S16},

E = {Sp}= {S20}.

For p = 8n+14 = 22,V (Cp[K3]) = A∪B∪C∪D∪E be the partition of V (Cp[K3]), where

A = {∪S2k−1/1≤ k ≤ p/2}= {S1,S3,S5,S7,S9,S11,S13,S15,S17,S19,S21},

B = {∪S4k−2/1≤ k ≤ p−2/4}= {S2,S6,S10,S14,S18},

C = {∪S8k−4/1≤ k ≤ p+2/8}= {S4,S12,S20},

D = {∪S8k/1≤ k ≤ p−6/8}= {S8,S16},

E = {Sp}= {S22}.

Note: We can see that χe(Cp[K2]) = χe(Cp[K3]) since Cp[K2] or Cp[K3] are self-centered

graphs of radius p/2, since p is even, χe(Cp[K2]) or χe(Cp[K3]) cannot exceed p/2−1. But in

eccentric coloring of Cp[K2] and Cp[K3], we have used all possible p/2−1 colors. Hence it is

not possible to eccentrically color Cp[Kn] or any higher value of n.

Theorem 7. The Lexicographic product Cp[Kn] for p ≥ 16, even and n positive integer is ec-

centrically colorable if and only if n≤ 3.

Proof. Proof follows from the above Note and Theorem 4.1 of [5]. �
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