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Abstract: Cardiac conduction system (CCS) describes the mode of transmission of ionic current through the cardiac 

myocytes. An unperturbed conduction system is required for the integrity of blood flow and for the prevention of 

cardiac events. In keeping with the CCS as an electrical system, this paper treated the ionic current as an electrical 

circuit flow with nodal and conducting structures. This is not novel. What may be unique and appealing is the graph 

theoretic method by which the work is couched. As electric current is a directed flow, directed graph (digraph) theory 

was used in the conduction system schematics, which in turn aided the resulting matrix analysis. Make no mistake, 

this work does not model the electrical behaviour of the components of the CCS. In a bid to have an insight into the 

patho-physiology inherent in the system, the concept of efficiency (of the CCS) was discussed using the nodal and 

conducting structures. Reasonable clues suggest that undue resistance to flow may be culpable in cardiac events. 
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1. Introduction 

The cardio-vascular system, consisting of the heart and the vasculature, is specialized in the 

circulation of blood about the entire body. Circulation ensures that essential nutriments and 

therapeutic substances are delivered to various parts of the body. The heart is a special blood pump. 

The filling and ejection of blood in and out of its chambers are better explained by the systolic and 
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diastolic components of blood pressure. In order to play the invaluable role of circulating blood, 

the heart must be electrically activated. The (human) heart requires a power source for its electrical 

energy needs. The cardiac conduction system (CCS) encompasses all processes that induce a 

‘spark’ for the cell membranes to begin to change the flow of ions, giving effect to cardiac action 

potential (AP).  

Electrical charge on cells, including the myocytes, is induced by ions rather than electrons [1]. The 

prominent ions that saturate the myocytes are the sodium ion (Na+), calcium ion (Ca2+), potassium 

ion (K+). The presence of these ions enables the heart to create electrical impulses. The route the 

impulses take are controlled as they are caused to travel via specialised conduction nodes and 

pathways. The conduction system consists of five elements [2, 3, 4]: the sino-atrial node (SAN), 

the atrio-ventricular node (AVN), the bundle of His, the left and right bundle branches, the Purkinje 

fibres, all of which are linked by the conduction pathways. Electrical flow in the system is 

characterized by a source-sink process. The sequence of the conduction system is described as 

follows: The pacemaker cells of the SAN initiate electrical impulses that spread out through the 

atria by a sequence of cell to cell depolarization. (Unlike atrial and ventricular cells, pacemaker 

cells in the SAN have no resting phase; they have pacemaker potential that induces depolarization 

automaticity at the end of each action potential.) The right atrium is depolarized and electrical 

activity exits the right atrium through Bachman’s Bundle and the AVN. The left atrium starts 

depolarizing at the entry of Bachman’s Bundle on the left atrial septum. The signal travels all over 

the atrium terminating on the left lateral wall, and propagation reaches to the lateral wall from both 

the posterior and anterior walls. (There are no excitable cells on the lateral wall to transmit the 

electrical activity forward. Therefore, signal ends and left atrial depolarization is complete.)  Rapid 

activation through Bachman’s Bundle precedes the activation of the AVN. After depolarization of 

the atria, the electrical activity passes through the AVN. The slow conducting node 

cardiomyocytes of the AVN delay the impulses at atrioventricular (AV) junction. This delay is 

induced in order to give time for full contraction of the atrial chambers so that blood can be pumped 

across the AV valves preceding ventricular contraction [3]. After the AV delay, the impulse is 

transmitted to the ventricular bundle branches through the AV (His) bundle. The ventricular bundle 

branches split into left and right subdivisions on each side of the ventricular septum and terminate 

into a network of Purkinje fibres. Then electrical impulses are transferred from the Purkinje fibre 

network to activate the papillary muscles near the apex of the ventricles. This induces the 
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ventricular depolarization from apex to base, maximizing cardiac output. As the electrical signal 

gets to the base it runs out of excitable tissue. This completes a single cardiac cycle.  

Refractoriness prevents a single heart beat from continually triggering myocardial cells to 

depolarize over and over. Individual cell gets refractory to exterior stimulus during phases 1-3 of 

the action potential. Under physiological condition, the cardiac cells do not respond to electrical 

activity until it reaches the quiescent period in phase 4 of the action potential. Thus, a single heart 

beat is stopped from repeatedly propagating. Cardiac myocytes are connected end to end to another 

by intercalated disk, with adjoining gap junction. The gap junctions provide low resistance to 

action potentials which spread between abutting myocytes.  

In what follows, the CCS is given a mathematical outlook. Graph theory has been used enormously 

in various situations, including flow networks [6, 7, 8, 9, 10]. In Waterman [11] the graphical 

representation of RNA (a linear polymer of nucleotides found in the cytoplasm of a cell) 

primary/secondary network is developed. Kim et al [12] applied graph partitioning for the analysis 

of RNA modularity. It has been used widely as a mathematical tool in brain network analysis [13, 

14, 15]. Keijo [16] provided a piece on graph theory worthy of reading. In this paper the pattern 

of CCS is described by means of mathematical graph theory. 

 

2. Some relevant network terminologies  

A few pertinent definitions and lingoes, among other things that are of interest to this work are 

presented below. More of the lingoes may also be seen as required in this work.  

Definition 1. In network parlance, a graph G = (V, E  ) is a pair of sets (V, E) where V is the set 

of vertices (or nodes) and E is the set of edges (or arcs) between pairs of nodes ( see Keijo [16]) .  

A finite directed graph (digraph), G, consists of a set of vertices or nodes, V (G); 

 

                   V(G) = {v1, v2,…,vn},                                                                                        (1)                                                                                    

 

together with an edge set, ( ) ( ) ( )G G G  V V . If vl and vm are two vertices connected by an edge 

(vl,vm), then two vertices vl and vm are end vertices of the edge (vl,vm). In a digraph the elements of 

E are ordered pairs. Thus the arcs (vl,vm) and (vm, vl) are in opposite directions. 
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Definition 2. The degree of the node v, written as d(v), is the number of edges connecting the 

node with all other nodes, with v as an end node.  

 

(Note, as an appendage to the above definition, that a loop counts twice and parallel edges give 

separate contributions.) 

 

Definition 3. A walk on the graph G = (V, E ) is a trail if any edge is traversed at most once. 

 

Definition 4. A trail is a path if any vertex is visited at most once except possibly the initial and 

terminal vertices when they are the same; a closed path is a circuit. 

 

If there are no loops and there is at most one path between any two given vertices of the graph G, 

then G is said to be circuitless. The proof of this may be found in Keijo [16]. 

 

Definition 5. The out-degree of the node vl is the number of arcs leaving it (denoted d+(vl)) and 

the in-degree of vl is the number of arcs going into it (denoted d−(vl)). 

 

Definition 6. A directed graph with at least one directed circuit is said to be cyclic. It is acyclic 

otherwise 

 

Definition 7. The adjacency matrix of a directed graph G is number of arcs that come out of 

vertex vi and go into vertex vj. That is to say that if D = (dij) is the adjacency matrix of G, then 

 

           dij  = number of arcs that come out of vertex vi and go into vertex vj.                        (2)      

                                                                                                                         

2.1 The cardiac network  

Electrical current is a directed flow. We therefore represent the cardiac conduction network by a 

directed graph (digraph), G = (V, E). The diagram (Fig. 1) below is the CCS. Fig.2 is extracted 

from Fig. 1. It is used for the node-edge analysis of the CCS. 
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                    Fig.1 Electrical conduction system of the heart [17] 

 

 

                   

                                                                       

                                              Fig.2 Node-edge schematic of the CCS 

 

In Fig. 2 the arcs (edges) and the nodes are represented by ei (i = 1, 2, …,7) and vi (i = 1, 2 ,…, 7) 

respectively. The SAN is denoted v1; the AVN is denoted v2; the point of bifurcation of the bundle 

of His is denoted v3; the left bundle branch is denoted by v5; the right bundle branch is denoted by 

v6. Each of the bundle branches has attachment to the Purkinje fibres, and these fibres have 

infinitely many minute branches and nodes. Since electrical current is a directed flow, arrow heads 

were used to indicate flow direction, as shown. 

 

2.1.1 Adjacency matrix of CCS 

 There are some salient assumptions to be made before the construction of the adjacency matrix, 

and other matrices of the CCS: (i).The arc connecting each node set is rectifiable. 

(ii).There are infinitely many in-degree nodes vi that satisfy ( ) 0
i

d v− =  (see definition (2.5)). (iii).For 

any arc ej issuing from the Purkinje fibre and any infinitely large number of nodes v∞, 

file:///C:/Users/DR%20NZEREM%20F/AppData/Roaming/Microsoft/Word/Fig.1%20https:/en.wikipedia.org/wiki/Electrical_conduction_system_of_the_heart%20%5b17%5d
file:///C:/Users/DR%20NZEREM%20F/AppData/Roaming/Microsoft/Word/Fig.1%20https:/en.wikipedia.org/wiki/Electrical_conduction_system_of_the_heart%20%5b17%5d
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                   ( ) 0d v−
 =                                                                                                                 (3) 

 

The adjacency matrix of the CCS is now constructed using Fig. 2 and definition (2.7) or equation 

(2). The require matrix is 

                                  

 

1      2        3         4         5          6   

1

2

3

4

5

6

                

0 0 0 0 0 0

3 0 0 0 0 0

0 0 0 0 01

0 0 0 0 01

0 0 0 0 01

0 0 0 0 01

      v v v v v v

v

v

v
A

v

v

v

 
 
 
 

=  
 
 
 
 

                                                                                                (4) 

                

In the above table each vi on the row indicates the initial vertex (node) of an arc ej while each vj on 

the column indicates the terminal vertex of the arc. The node v1 corresponds to the SAN. The SAN 

recruits autonomous impulse that is essential for cardiac action potential. It acts as a source [22], 

and since it has a zero in-degree, it cannot be a sink. It is readily seen from Fig. 2 that, for the 

SAN, 

 

            d−(v1) = 0    and     d+(v1) ≅ 3 .                                                                                  (5) 

 

For any isolated node vk, 

     

             d
+(vk) = 0    and     d−(v8) = 0 .                                                                                  (6) 

 

Thus, each vk is not on the conduction system. There are infinitely many such nodes that are not 

on the CCS. Therefore, the minimum degree of the CCS is zero, i.e. δ(GCCS) = 0. 

 

2.1.2 The incidence matrices 

The flow pattern of the CCS may be described by means of the incident matrix. If B = (bij) is the 

all-vertex incidence matrix, then the matrix elements are obtained from the definition 
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1 if  is the initial vertex of 

 = -1 if  is the terminal vertex of 

0      otherwise.

i j

i jj

v e

b v ei







   .                                                                      (7) 

 

Thus, 

                 

     

1 2 3 4 5 6 7

1

2

3

4

5

6

                          

0 0 0 01 1 1

0 0 01 1 1 1

0 0 0 01 1 1

0 0 0 0 01 1

0 0 0 0 0 01

0 0 0 0 0 0 1

i j

e e e e e e e

v

v

v
b

v

v

v

 
 
− − − 
 −

=  
− 

 −
 
 −

                                                                      (8)                                                          

 

                    

As mentioned earlier, there are infinitely many in-degree nodes vk   that satisfy ( ) 0rd v
−

= .  The 

zero row may be removed from the all-vertex incidence matrix, as was done here, without any loss 

to details.  

 

2.2 Circuit matrix of GCCS 

A circuit matrix may be generated from the SAN-AVN intermodal pathways (see Fig.2) as shown 

in Fig.3 below. 

 

                                               

                                        Fig.3 SAN-AVN intermodal pathways 
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Give each of the circuits D1 and D2 an arbitrary orientation so as to define the circuit matrix. The 

circuit matrix is D = (dij), where 

 

 

              

1 if  the arc e is in the circuit D and they in the same direction
j i

-1 if  the arc e is in the circuit D and they are in the opposite
j i

     direction

 

0    otherwise

 

=i jd











                (9)      

The matrix is shown below 

 

 

                             e1    e2        e3 

                  
1

2

1 1 0

0 1 1
i j

D
d

D

− 
=  

− 
 .                                                                                  (10)    

 

3. Electrical Conductivity of Tissues 

A frequently occurring problem in bioelectric theory is the calculation of the potential distribution, 

Φ(V), all through a volume conductor. The calculation of the scalar potential, Φ, is crucial to 

cardiac pacing and defibrillation. Plonsey [26] assumed Φ to be quasi-static since it frequently 

changes slowly enough in bioelectric problems. Under such consideration, capacitive and 

inductive effects are ignored. In considering electrical current through volume conductors flow is 

better explained as a gradient of continuous distribution rather than a specific pathway [27]. In the 

quasi-static assumption under consideration, the continuity equation states that the divergence,∇•, 

of the current density, J (A/m2), is equal to the applied or endogenous source of electrical current, 

S (A/m3) 

 

                 ∇•J = S.                                                                                                              (11)                                                                                                                                  
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In the absence of source in any region, S is zero. In such case amounting to no divergence of J the 

law of conservation of current is often invoked in analysing electrical circuits. The property of a 

volume conductor requires a linear relationship between the current density and the electric field, 

E (V/m), in line with Ohm’s Law, 

 

                 J = σE ,                                                                                                            (12)                                                                                                                                  

 

where σ is the electrical conductivity (S/m). The quantity σE is often denoted as the return current. 

It is necessary to avoid accumulation of charges as a result of the source current. The electric field 

and the gradient, ∇, of the potential are related by 

 

                 E= –∇Φ.                                                                                                         (13) 

Thus, 

 

                J = -σ∇Φ .                                                                                                       (14)                                                                                                                                                                                                                            

. 

A general volume conductor may describe a region of volume, Ω, which has conductivity, σ, and 

permittivity, ε, in which there exists a source current, IVol , where the subscript signifies per-unit 

volume. The solution to a volume conductor problem involves finding expressions for the electric, 

E, and potential, Φ , fields everywhere within the prescribed volume, Ω, and/or on one of the 

bounded surfaces, i .  The current sources, IVol, derive from bio-excitable cells experiencing an 

activation process. In cardiac tissue activation can be considered as the process in which cells 

undergo rapid depolarization. Here the movement of ions across the cell membrane lead to 

inactivation of electrical charges and a drop in potential. The depolarization process causes a 

propagation of excitation waves to move through the myocardium. This work does not treat the 

volume conductor problem, but garners the essentials of conductors since the cardiac tissues are 

reckoned as one.  

 

3.1 CCS resistive network 

This section will dwell on the CCS as an analogue to electrical network. Fig. 4 below is a schematic 

of the CCS resistive network consisting of seven resistors, R1, R2, R3, …, R7. 
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                                                               Fig. 4 CCS resistive network 

 

The topology* of the CCS shows to wit: 

(i) The resistors R1, R2, R3, corresponding to the arcs e1, e2, e3 within the SAN and AVN, as 

shown in Figs. 2 and 4, and excised as Fig. 5 below are in parallel arrangement.  

 

 

                      

                             

                               Fig. 5 Schematic of SAN-AVN resistors in parallel. 

 

(ii) e4, e5, e6 together with v3 is a claw (a star topology with 3 edges) with source point of e5 

and e6 at v3, as shown in Fig.6 below. The proximal resistors along each of the bifurcating 

arcs are R5 and R6.  

 

                            

                            Fig.6 Resistor arrangement of His Bundle branch 
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(iii) The resistor R5 is in series arrangement with R7. 

 

(* Topology here treats neither the physical layout of components in a circuit, nor their positions 

on a circuit diagram; it only treats the connections that exist between the components.) From 

known simple circuit law, resistors in parallel arrangement have same voltage rating, and resistors 

in series arrangement have same current rating. Therefore, R1, R2, R3 are isopotential; R5, R7 have 

same current. 

 

In the connected digraph GCCS circulation is define as a function 

 

                   h: F → R                                                                                                            (15) 

 

 which fulfils the conservation condition at each vertex (see Bondy and Murty [20]): 

 

                       ( ) ( ),h v h v v
+ −

=  V                                                                                           (16) 

 

Since GCCS is an electrical network, the above equation describes a circulation of currents in GCCS. 

Therefore, one may write a matrix representation of the form 

 

                     Hh = 0                                                                                                                  (17) 

         

where H is the n ×m incidence matrix of GCCS and 0 the n × 1 zero-vector.  

 

3.2 Topological constraints  

Each network may be characterized by a set of network constraints. Two types of network 

constraints that apply are the branch constraints, also called branch (edge) equations or element 

equations and the non-element based topological constraints, arising from Kirchhoff’s Current 

Law (KCL) and Voltage Law (KVL). In a resistive electrical network each wire has a specific 

resistance. In the cardiac network each of the arcs is seen as a virtual wire. Therefore, it has a 

specific resistance. To that effect, Ohm’s law will bring to bear on the network. By this law, the 
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voltage drop V between the ends of each wire is given by the equation V=IR, where I is the current 

in the wire and R its resistance. If a function on the arc set F of the graph GCCS := GCCS (vl, vm) is 

both an (vl, vm)-flow and a tension, then it is called a current flow in GCCS from vl to vm. 

 

Consider one node in which branch currents x1, . . . ,xn enter. By Kirchhoff’s current law (KCL), 

the sum of all branch current entering a node equals zero. Thus, 

 

                   x1 + · · · + xn = 0.                                                                                             (18) 

 

Similarly, by Kirchhoff’s voltage law (KVL) 

 

                  u1 + · · · + un = 0.                                                                                              (19)   

 

where ui  represent the voltage drop  in the circuit. In a multi-nodal and multi-circuit structure, as 

considered presently, the equations for the network are to be derived. To do this, the KCL and the 

KVL are to be applied together with Ohm’s law.  

 

3.2 Voltage drop across resistive edges 

Since each of the arcs (edges) of the cardiac network is seen as a wire with some Ohmic resistance, 

the voltage drop, u1, u2,…,u7 may be calculated. Assume there is a voltage source r0, and there are 

resistances R1, …,R7. The voltage drop, ui, across each of the resistances is measured across each 

corresponding arc, ei as:  

 

                  u1= v1-v2                          u5 = v3-v4 

                  u2 = v1-v2                   u6 = v3-v5                                                                                                             (20) 

                  u3 = v1-v2                            u7 = v4-v6 

                  u4 = v2-v3 

                   

 The vector form gives      
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1

1

2

2

3

3

4

4

5

5

6

6

7

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

0 1 1 0 0 0

0 0 1 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

u
v

u
v

u
v

u
v

u
v

u
v

u

−   
    −     
    −
    

= −     
    −
    

−     
    −  

                                                                                  (21)       

                        

Take v2 as the reference (ground) node. Therefore the incidence matrix of B reduces to the matrix 

C = cij, given by 

 

                  

1

1

 
5 72 3 4 6

3

4

5

6

                     

0 0 0 01 1 1

0 0 0 01 1 1

            0 0 0 0 01 1

0 0 0 0 0 01

0 0 0 0 0 0 1

   

ij

v

v

v

v

v

e e e e e e e

c

−

= −

−

−

 
 
 
 
 
 

                                                                   (21 b)                                                

 

Since v2 is the reference (grounded) node we have, from (21) 

 

                

1

2 1

3 3

4 4

5 5

6 6

7

0 0 0 01

0 0 0 01

0 0 0 01

0 0 0 01

0 0 01 1

0 0 01 1

0 0 01 1

u

u v

u v

u v

u v

u v

u

   
  

   
   
   
 = −  
    −      

−    
  
 − 

,                                                                                         (22) 

 

which is denoted  in vector form by  

 

                 u = Dv.                                                                                                              (23) 

 

The matrix D encodes network’s connectivity. 
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Use Ohm’s Law to relate the voltage drop across each resistor to current. We now use provision 

of Ohm’s law to seek the current “I,” noting that “I = V/R”. (Note that this equation is a version of 

J = σE, equation (12).) Therefore, at each of the resistors Ohm’s Law gives,                                                                                                  

  

                             xj = uj/Rj,      j = 1, . . . , 7.                                                                         (24) 

 

The matrix-vector form is 

 

            

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

1/ 0 0 0 0 0 0

0 1/ 0 0 0 0 0

0 0 1/ 0 0 0 0

0 0 0 1/ 0 0 0

0 0 0 0 1/ 0 0

0 0 0 0 0 1/ 0

0 0 0 0 0 0 1/

x R u

x R u

x R u

x R u

x R u

x R u

x R u

    
   
   
   
   

=    
   
   
   
   

    

.                                                            (25) 

 

Denote the above matrix equation as 

 

                                  x = Ku .                                                                                               (26) 

 

In the above, K depicts the physics of the network. The application of KCL yields the matrix-

vector product: 

 

         

1

2

3

4

5

6

7
0

1 1 1 0 0 0 0 0

0 0 0 1 1 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0

x

x

x

x

x

x

x

    
    
    
    

=    
    
    

    
    

−

−

−

−

   .                                                                   (27)                                             

 

The above has the form 

 

                         DTx = 0.                                                                                                        (28) 
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(Observe that DT = C) 

 

Insert (x = Ku) for x into (28) above to get 

 

                           DTKu = 0.                                                                                                   (29) 

Take the existence of a constant voltage source, r0,  at which the network is at equilibrium, into 

account, such that 

 

                 u = r – Dv.                                                                                                            (30) 

Then 

 

               DTKu = DTK(r – Dv). 

Thus, 

 

                  DTKDv = f,                                                                                                          (31) 

 

where f = DTKr. The vector f denotes the vector of current sources. It is a representation of the 

network's stimuli. 

 

3.2.1 System of equations for vi 

 This section seeks the potential at each node of the system. 

 

First compute DTK: 
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Next is the matrix (DTK)D. Now compute: 

 

 

(DTK)D 
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 .              (33) 

 

(DTK)D is a symmetric matrix whose inverse, when applied to f, furnishes the vector of 

potentials vi, if Ri are known. 
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Next, evaluate the vector f: 

 

=f ( )

0

0 1
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D K r .                    (34) 

Apply (DTK)D to f 
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               (35) 

                                               

If each of the quantities R1, R2, … , R7 is known, then v1,v3, …, v6 may be determined. 

 

Suppose, for instance, that all resistors have the same (?) value, R Ohms.  If we clear 1/R terms, 

the above equation becomes 
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 .                                                                                            (36) 

 

Now it is easy to solve for vi. (The thought of assuming that all resistors have the same value is, 

however perceivable, physiologically untenable. Therefore, the system of equations derivable from 

the above matrix equation would only furnish ideal nodal potentials.) 
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Certainly, the potential at v1, v2, …, v7 depend on two factors- the voltage source, r0, and the relative 

strength of the resistors. The potentials must decay with distance from the voltage source.  

  

3.3 GCCS Centrality and efficiency 

The centrality concept is a measure the importance of nodes in a graph network. Here our graph is 

the GCCS whose nodes are not interconnected. Centrality may be from the standpoint of the impact 

of a node on other nodes.  Following [18], let v* be the node with highest degree centrality in G.  

Let : ( , )X Y Z=  be the |Y| node connected graph that maximizes the quantity (with y* being the 

node with highest degree centrality in X): 

 

           
1

( *) ( )

Y

D D j

j

R C y C y
=

 = −  ,                                                                                     (37) 

 

where CD(.) is the centrality degree of a given node. Therefore, the degree centralization of the 

graph G is  
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                                                                              (38) 

Q is maximized when the graph X contains one central node to which all other nodes are connected. 

For any graph G, 

 

             

 
1

2

( *) ( )

( )
3 2

V

D D i

i
D

C v C v

C G
V V
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−

=
− +
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                                                                                (39) 

 

Degree centrality is the most widely used measure of centrality. It uses the degree of a node to 

explain the importance of the node in a given network. In the brain network it is said to measure 

the impact of the brain region on other adjacent brain regions [15]. In the CCS network analysis, 

the degree centrality of a cardiac nodal cell shall measure the influence of the nodal cell on other 

nodal cells. In the CCS we have, for the SAN, 
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                  d+(v1) = 0    and     d−(v1) = 3, 

. 

and for the AVN, 

 

                   
2 2

( ) 3 and ( ) 1d v d v
+ −

= = .                                                                      (40)  

 

The HIS bundle has 

                     

                    
3 3

( ) 1 and ( ) 2d v d v
+ −

= = .                                                                     (41)              

 

3.3.1 The SAN is most central  

The niggardly in-degree of the SAN, d+(v1) = 0  may not be construed as a lesser degree of 

importance. In conduction system the out-degree is of immense importance. An out-degree node 

acts as a source while an in-degree node acts as a sink. In CCS architecture, a sink remains 

quiescent until the transmission of impulse from an abutting source. By the conservation law, each 

sink is also a source. However the SAN is never a sink, save when seen as a sink to itself as it is 

the first to absorb the self-generated impulse. In physiological state it generates and transmits the 

current required to activate all quiescent cells. Analogous to the closeness centrality measure of a 

brain region [23], the closeness centrality of a CCS node will measure the indirect impact of a 

node on other nodes. In fine, the closeness centrality of the SAN is accentuated by its impulse-

generation which other CCS components utilize. There are some salient points about the SAN: 

       (i). It has a large out-degree in order to mitigate the impact of the enormous ionic current it 

generates, being a voltage source, and also to drive the atria. 

       (ii). In the CCS network it has no need for an in-degree since, in virtue of its automaticity, it 

has no resting phase; only quiescent cells have such needs. 

         (iii) It is so generous to the AVN: The SAN, with its niggardly in-degree, d+(v1) = 0, 

bequeaths three out-degree arcs to the AVN. Therefore, it hands to it (AVN) a substantial amount 

of impulse that guarantee less degree of gap-junctional resistance in the vicinity of the abutting 

cell. 
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The global efficiency and local efficiency of the CCS are, in the main, linked to the nodal 

efficiency. The former is a measure of the ability of all the conducting facilities to maintain the 

integrity of the ionic current. Local efficiency is a measure of the ability of fault tolerance in a 

prescribed vicinity on the network (see Achard and Bullmore [19]). The CCS global efficiency is 

tenable in physiological states. Such states are only evinced by cardio-vascular parameters which 

are not discussed here. 

 

3.4 When local efficiency is wanting 

The physics of the CCS will be more of the analytic concern here, though without prejudice to the 

biology. The malfunctioning of a node indicates that local efficiency is compromised. Individual 

nodes must be locally efficient in order to maintain the integrity of the CCS. If the SAN 

malfunctions, it may be unable to control the heart rate (60-100bpm). Weak impulse transmission 

to the AVN may follow. At times it is within context to surmise that high pathway (edge) resistance 

may be implicated. Take a look at the SAN (v1)- AVN (v2) pathways consisting of R1, R2, R3 in 

parallel. A single unreciprocated equivalent resistor representing the three resistors is 
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The use of Ohm’s law gives 
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Observe that 
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From (44) above, the current supply, I , to AVN gets infinitely large as resistance, R123 weakens 

progressively, and current supply, I, plummets as resistance, R123 increases progressively. Each of 

these cases diminishes local efficiency. As R123 weakens, current supply to the AVN becomes 

excessive and incommodious. On the other hand, a progressive increase in R123 leads to a drip or 

sluggish supply of current to the AVN. Therefore, the SAN may not transmit generated impulse 

within physiological time constraint (sinoatrial conduction time (SACT)).This is a mark of 

sinoatrial dysfunction (SND). In turn, SND may induce the development of re-entrant circuits 

which may be prodromal to atrial fibrillation [24, 25]. 

 

In the event of SAN failure, the AVN becomes the ectopic pacemaker of the heart. The cells of the 

AV node are called the secondary pacemaker, normally discharging at about 40-60 bpm [25].  

AVN efficiency may be impaired when partial or complete block in the transmission of electrical 

impulses from the atria to the ventricles, known as heart bloc, occurs. This is an ominous case of 

very high resistant e4 pathway. The next in the cardiac electrical conducting system is the Bundle 

of His, consisting of the left and right branches. This bundle, together with the Purkinje fibres fire 

spontaneous action potential at a rate of 30-40 beats per minute [25]. Each of them has its peculiar 

patho-physiological event(s) to which pathway resistances are liable.  

 

4. Summary and discussion  

 

The cardiac conduction system is the electrical conduction system of the heart which transmits 

electrical signals generated typically by the sinoatrial node to induce contraction of the heart 

muscle. It is a virtual electric circuit whose conduction pathways have the similitude of electric 

cables with resistances. The use of graph theory in analysing networks, which include the CCS, is 

a judicious mathematical enterprise. Since electrical flow is a directed flow, any representative 

graph must be a directed graph (digragh). In dealing with the CCS, the nodes and arcs which 

https://www.verywellhealth.com/sinus-bradycardia-1746253
https://en.wikipedia.org/wiki/Bundle_of_His
https://en.wikipedia.org/wiki/Bundle_of_His
https://en.wikipedia.org/wiki/Purkinje_fibres
file://///wiki/Heart
file://///wiki/Sinoatrial_node
file://///wiki/Heart_muscle
file://///wiki/Heart_muscle
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characterise graphs were defined. The nodes are essentially the ionic current sources and sinks, to 

wit SAN, AVN, Bundle of His, Purkinje fibres. There are infinite nodes of zero degree as well. 

The arcs (edges) are the conduction pathways already described. The graph theoretic approach 

made the matrix method of analysis an endearing tool. The concept of centrality showed that the 

SAN is the epicentre of the CCS, all else being equal. The concept of (local) efficiency explained 

the deleterious effects of nodal and/or edge dysfunction.  

 

It is agreed that the CCS describes cardiac electrical system involving ionic current; it is a fact that 

the conduction mechanism drives blood flow. Some salient questions are: (From the nodal point 

of view) (i) Are the CCS nodes actually similar to electrical nodes? (ii) If yes, then what problems 

do electrical nodes pose? (iii) Are those problems tractable? From the arc point of view (i) Can the 

material component of the arc(s) of each segment of the CCS be ascertained? (ii) Is the resistivity 

of each arc measurable (iii) What are the endogenous and exogenous factors that possibly affect 

the resistivity of the arcs? 

 

Answers to these questions can guide suggestions/actions that may provide solutions to many 

cardiovascular events due to poor conduction system. It seems worthwhile to take a more than 

cursory look at the Bundle of His branches. If we do, we conjecture nature’s endowment to 

humankind: the claw topology gives the following benefits: 

 

(i) The breakdown of one connection may not affect the benefits which beneficiary cardiac 

components derive from the other connection. Thus, one bundle branch may keep the 

system alive in the event of malfunctionality of a sister branch, though it may not be 

maximally efficient.  

 

(ii) Prosthetic intermodal pathways may be introduced along any axis of a bundle branch 

with minimal deleteriousness in exigent situations. This presupposes a clear knowledge 

of the conductivity/resistivity of both the failing and prosthetic pathways. 
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(iii) Claws are believed to work well under heavy loading [28]. Thus neither series nor 

parallel arrangement may be a better impulse driver of the quiescent cells along the 

bundle branches.  

However, we should not lose sight of the fact that the nodal point is a single point of failure for 

the sub-circuit. 
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