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Abstract: In many areas of research/ production, a lot of factors are combined to obtain a desired product. To be 

able to analyze which factors (or combinations of factors and at what level) are significant, the experiment has to be 

replicated. For economic or practical reasons, it may not be feasible to perform the experiment more than once 

therefore unreplicated factorial designs are often employed. This is especially true in the field of Medicine, 

Pharmacy and Industrial production units. The traditional method of analysis of variance (ANOVA) cannot be 

employed in unreplicated factorial designs, therefore many methods have been proposed in literature. In this paper, a 

new method of analyzing unreplicated factorial designs is proposed and was compared with some of the existing 

methods. The four existing methods considered were: Lenth, Berk and Picard, Juan and Pena, and Dong. The 

comparison was performed using Monte Carlo simulation method. The criteria used in evaluating the performances 

of the methods are Power and Individual Error Rate (IER). Using these criteria of evaluation, the results showed that 

on overall performance, Dong method is the best among the four existing methods considered and was closely 

followed by Berk and Picard, Lenth, then Juan and Pena methods in that order. It was also found that not only is the 

proposed method simpler to compute, it competed favourably with Dong and even performed better than all the 

others when IER is used for assessment. 

Keywords: experiment; factorial; replication; significant effects; power; Individual Error Rate (IER).  
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1. INTRODUCTION 

Experimentation is one of the most common activities that people engage in. It covers a wide 

range of applications from household work like food preparation to technological innovation in 

material, science, agriculture, engineering etc. Experiments are conducted in order to understand 

and/or improve a system. Experimentation allows an investigator to find out what happens to 

output or response when the settings of the input variables in the system are purposely altered 

(Hohn (1984) and Danohue (1984)). Statistical design of experiments was developed in 1930 by 

Fisher at the Rothamsted Agricultural Experiment Station, London England and it has come to 

play a vital role in many industries and organizations in terms of improving process efficiency, 

higher quality and reducing process variability and cost of production. Another important use of 

design of experiment is in screening which effects are significant from a host of effects. 

Design of experiments involves definition of size and number of experimental units, the 

manner in which treatments are allocated to the units, how experimental units are grouped and the 

type of grouping that is to be adopted.  It is based on the principles adopted in the experimental 

design that the validity, interpretation and accuracy of the results obtained are ensured. 

 

1.1 Factorial Experiments 

The common designs used in experimentation are the Complete Random Design (CRD), 

Randomized Complete Block Design (RCBD), Lattice design and Youden square design. Any of 

these designs may be considered for either simple or factorial treatment structure.  On many 

occasions, the magnitude of the changes in the level of one factor depends in one way or the other 

on the levels of other factors but this factor cannot be discovered unless different combinations of 

levels of factors are tested. 

A factorial experiment written as FK is an experiment where more than one treatment is 

considered at a time and each treatment has more than one level. For an FK experiment, it involves 

k factors each at F levels.  Factorial experiments are widely used in applications screening 

experiments where the effect of several factors on a response variable needs to be studied. A 

special class of these designs is the 2k factorial designs, where k factors are involved, each at only 

two levels. 

A full factorial experiment is obtained where all possible combinations of the factors 

effects are run in a single experiment while a fractional factorial experiment is obtained when a 
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part or fraction of all the combinations are considered or run. A very simple way of calculating 

effect estimates in 2k factorial design is the technique devised by Yates (Reynar 1967) and it is 

called Yates’ algorithm or Yates’ method. It is also used in determining the sum of squares for the 

treatment effects. The procedure can sometimes be done manually if the value of k is not large 

(Montgomery 2005). 

It has been pointed out that in the regression model representation of the 2k factorial 

experiment, the regression coefficients are exactly one-half the effect estimates. For example in a 

22 factorial design, the regression model is given as 

y=β0+β1Xi1+β2Xi2+β12Xi1Xi2+ei,  i=1,2,3,4;               (1) 

where the estimates of the model parameters are as follows; 

The regression model coefficients are exactly one half the factor estimates. 

   

1.2 Unreplicated Designs  

Replication is the allocation of treatment to a number of units that are representations of the 

population.  Replication enables us to estimate the experimental error as well as increase the 

power to detect important effects by decreasing the variance of the treatment effect estimates. 

When there is no estimate for experimental error, the higher order interactions are often sacrificed 

for the estimate of error term, which are then used for computing the required statistics in testing 

for the significance of the design factors. 

Unreplicated factorial designs are frequently used in industrial experiments in order to cut costs 

or due to some operational or economic reasons.  Sometimes, it is only possible to run a single 

replicate of a FK design because of constraint on resources and time.  In such cases, replication is 

sacrificed for run size and this can present serious difficulties in the analysis of such design. 

In unreplicated designs, there is no estimate for experimental error, so the higher order 

interactions are often sacrificed for the estimate of error term, which are then used for computing 

the required statistics in testing for the significance of the design factors.  In the initial stage of 

developing an industrial process and improving a product design or a manufacturing process, 

experimental studies based on factorial designs are often used to determine which factors among a 

number of possibilities can affect the process. As factorial designs require a number of runs that 

grows exponentially with the number of factors to be analyzed, the replicated fully factorial 
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designs are not applicable when the experiment is expensive and the number of factors is large. To 

decrease the number of runs, unreplicated factorial designs are often used. These designs and other 

orthogonal arrays have proven useful in a screening to isolate preponderant factors. Because 

experimenters always consider as many factors as possible in a screening experiment, unreplicated 

fractional designs usually are saturated.  

In full factorial designs, or in high-resolution designs, the higher order interactions can be 

assumed to be not active, and the squared mean of their estimates can be used to estimate the error 

variance. However, for saturated designs, although we can estimate all n effects (including the 

overall mean) with no observations, there are no degrees of freedom left to estimate the error 

variance. Consequently, we can no longer use standard ANOVA (F-tests or t-tests) to identify the 

active effects. Hence, the analysis of unreplicated factorial designs presents a challenge.  

 

1.3 Statistical Models for Analyzing Unreplicated Factorial Designs 

For simplicity, the full 2k factorial is considered, although similar results are equally 

applicable to a 2(k−p) fractional factorial design. For the analysis of 2k unreplicated factorial 

designs, let n = 2k denote the number of experimental runs and let  be the design matrix for a 

2k factorial experimental design, where x0 = (1, ..., 1)’ and xj = (±1, ..., ±1) , j = 1, ..., n − 1, are pair 

wise orthogonal. The usual statistical linear model is  

                                        (2) 

where, Y = (y1 , y2, ..., yn )’ is the vector of observations or responses (possibly transformed to fit 

model assumptions), and βn×1 is a vector of unknown parameters. Finally, ε = (1,…..,n)’ is the 

vector of random error terms. The typical assumptions for the errors are: 

(a) i, i = 1, ..., n, are independent normal random variables with expectation zero. 

(b) εi have common variance σ 2. 

It is easy to derive that in the orthogonal case under assumptions (a) and (b), the estimate of β is 

 

which is the best linear unbiased estimate for βi , and 𝛽̂𝑖 ~𝑁(𝛽𝑖, 𝜎2(𝑋1𝑋)−1) with Cov(βi, βi) = 0 

for every i ≠ j.  
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 Further details of this derivation are in Wu and Hamada (2000). This model is typically used 

in the identification of “active” location effects; that is, finding a subset of factors or interactions 

that have important effects on the mean response. 

A variety of methods have been proposed to accomplish this. Daniel (1959) suggested that 

the absolute values of the (n − 1) independent effects be graphed on a half-normal plot. 

Significance is declared by noticing if some of the points on the plot deviate from a straight line. 

The interpretation of the resulting plot is subjective. 

Some existing methods of identification of significant effect in unreplicated designs 

and the proposed method were discussed in section two while data simulation and empirical 

comparison of the methods were given in section three and section four was on discussions of 

results and conclusion.  

2. PRELIMINARIES 

In an unreplicated experimental design, the error sum of squares cannot be obtained as the 

model fits the data perfectly and no degrees of freedom are available to calculate the error sum of 

squares.  In the absence of error sum of squares, hypothesis tests to identify significant factors 

cannot be conducted using the conventional ANOVA techniques (Angelopoulus et al, 2012). 

A number of methods of analyzing information obtained from unreplicated 2k designs are 

available. These include pooling higher order interactions, using the normal probability plot of 

effects or including center point replicates in the design .Local effects have been discussed over 

many years and their detection in both replicated and unreplicated experiments can be found in 

many texts like; Box, Hunter and Hunter (1978) Box and Meyer (1986), Dean and Voss (1999), 

Ankerman and Dean (2003) and Montgomery (2009).  

The first acceptable solution for the analysis of unreplicated designs is the normal or 

half-normal probability plot proposed by Daniel (1959). His method consists of drawing in normal 

or half-normal probability paper the estimates of the effects on the graph, the estimates 

corresponding to inactive columns (the majority) form an approximately straight line and the 

significant effects appear at a distance as outliers in a regression line.  

Though the method is superior in performance to Lenth and Step-Down Lenth methods 

(Ibraheem et al 2006), the main disadvantage of graphical methods is that their interpretation is 

subjective. Even when all effects are noise, the plotted points, due to randomness, will not lie 
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perfectly on a straight line. An idea of the extent of non-linearity to be expected may be obtained 

by looking at the forty pages of plots of pure noise given in Daniel (1976, pp. 84-123). 

The Lenth’s method (1989) is one of the most popular techniques used in analyzing 

unreplicated 2k experiments. Lenth proposed a quick and easy way of identifying location effects. 

It was classified among the best procedures examined in simulation studies by Hamada and 

Balakrishnan (1998). Haaland and O’Connell (1995) found that the Lenth’s method provides the 

best overall performance among several robust methods. Haaland and O’Connell based their 

conclusion on an extensive evaluation of the powers of the tests to identify active effects for 16-run 

designs. 

 An extensive comparison study of various methods - Daniel (1959), Zahn (1975), Seheult 

and Tukey (1982), Box and Meyer (1986),  was given by Hamada and Balakrishnan (1998) under 

the usual statistical model and they indicated that Lenth’s method has a comparative power to 

Zahn, Box and Meyer, Berk and Picard, Juan and Pena. 

Berk and Picard (1991) also compared their method to those of Zahn (1975, version S), 

Voss (1988) and Lenth (1989). Their result showed that the performance of these procedures are 

almost close when they are calibrated to have the same error rates under the null case (cited: 

Aboukalam and Al-Shiha 2001). Aboukalam and Al-Shiha (2001) proposed a robust estimator 

based on extensive simulation study. The proposed method provides a redescending M-estimator 

for scale based on the cos-function. The critical values for the proposed estimator were empirically 

computed and fitted with tabulated values of t-distribution for different sample sizes. The 

proposed method was found to be simple and more powerful than Lenth method. Frequently, only 

experienced analysts can judge whether an apparent deviation from the linearity is significant or 

not. Hence, there is a problem of non-uniqueness of interpretation for a half-normal plot. The idea 

of Birnbaum (1959) and Zahn (1975a) to solve this problem is to get an estimate of  (or ) , and 

then use this estimate as the denominator of a test-statistic. As earlier mentioned, the difficulty of 

using standard ANOVA (F-tests or t-tests) to test the significance of contrasts in unreplicated 

factorial designs consists in getting an independent estimate of  (or ).  

After obtaining an estimate 𝜏̂𝑖 of τ, we can use the following test statistics  𝑡 =  
|𝛽̂𝑖|

𝜏̂
 to test the 

significance of contrasts. The critical region of the test is then t > tdf, 1-α. 

 

2.1 Methods for identifying Active Location Effects 
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Identification and selection of a method for analyzing unreplicated factorial design are not 

simple tasks. There is no single method for analyzing unreplicated factorial designs that performs 

well for various configurations and size of active effects. Various methods have been proposed in 

the past 30 years for identifying active location effects in unreplicated factorial designs. Among all 

these location identification methods, four were chosen for our simulation based on their 

performance in Hamada and Balakrishnan (1998) and on their theoretical structure. The Lenth 

method, Berk and Picard method and Box and Meyer method test the individual effects directly. 

Lenth method standardizes the contrasts by the estimated pseudo standard error (PSE). The 

method from Berk and Picard (1991) approximates an error mean square by pooling a fixed 

number of the smallest sums of squares of estimated location effects. Juan and Pena (1992), though 

similar to Lenth’s (1989), uses an iterative procedure. Dong(1993) also similar to Lenth (1989) 

except that it uses the mean instead of the median. In a study by Costa and Pereira (2007), it was 

observed that most of the methods work well under the effects sparsity principle. Though the 

principle is generally true, it does not always work in practice since prior knowledge on number 

and magnitude of active effects or whether abnormalities (outliers) exist in the data set is 

unknown.    

 

2.1.1 Lenth’s Method 

Lenth (1989) proposed a quick and easy analysis for identifying location effects. It is 

classified among the best procedures examined in the simulation studies by Hamada and 

Balakrishnan (1998). Lenth (1989) considered a robust estimator of the contrast standard error 

 based on the argument that if all effects are inactive, the normality of the independent random 

errors implies that  N(0,2), i = 1,….., n-1. The “pseudo standard error” (PSE) is defined as 

follows: 

PSE = = 1.5𝑚𝑒𝑑𝑖𝑎𝑛{|𝛽̂𝑖|<2.5𝑠0}|𝛽̂𝑖| where 𝑠0 = 1.5𝑚𝑒𝑑𝑖𝑎𝑛(𝑖=1,2……𝑛−1)|𝛽̂𝑖| 

In Lenth’s method, the robust standard error estimate is calculated by trimming those 

effects that are large. Then active effects can be identified as those that are “large” among all 

standardized effects. The natural approach is to divide each effect by PSE and compare the 

standardized statistics against critical values from a reference distribution, for which Lenth (1989) 

recommended tα,d where d = (n − 1)/3. For example, t0.975;d is suggested to control marginal error 
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(the average type 1 error rate of the n − 1 individual contrasts) for  with 95% confidence while 

t;d,  = (1 + 0.951/(n−1)/2 is used to control simultaneous marginal error with 95% confidence. 

Those two critical values are based on comparing the empirical distribution of PSE to chi-squared 

distributions. 

 

Berk and Picard’s Method: BP (1991) 

Berk and Picard (1991) proposed an ANOVA-based method using a trimmed mean square 

error (TMSE). Similar to Lenth’s method, they also considered a robust scale estimator used for 

significance test. The TMSE is formed by pooling a fixed number h of the smallest contrast sum of 

squares into a pseudo-error term assuming they correspond to inactive effects. Effects with larger 

sums of squares are then tested using the ratio of their sums of square (SS) to the TMSE: 

. 

where SS(1) is the ith smallest contrast mean square, and h is the fixed number for pooling. Berk 

and Picard (1991) suggested that 60% of the smallest mean squares be reserved for construction of 

TMSE. That is to say, in a 24 design, 60% of 15 = 9 smallest mean squares are pooled to construct 

the TMSE. 

Berk and Picard (1991) obtained critical values based on a numerical study. The critical 

values given in Table 1 of their paper were computed for samples of sizes N = 8, 12, 16, 20, 32. 

Berk and Picard’s method controls individual error rate (IER) exactly at 0.05.  

2.1.2 Juan and Pena: JP (1992) 

Juan and Pena (1992) suggested a different estimator IMAD0 for . It is similar to Lenth ’s 

(1989) PSE except that the calculation is iterative. Their study showed that the estimator based on 

the inter-quartile range df, behaves poorly and IMAD0 has better MSE than PSE when more than 

25% of the effects are active. It also showed that using the trimmed median is generally better than 

the trimmed mean when more than 20% of the effects are active. Their testing procedure can be 

written as follows: 

1)  Compute IMAD0 using the following iterative procedure: 

 (a).  Compute MAD0, beginning with all contrasts 

        𝑀𝐴𝐷0 = 𝑚𝑒𝑑𝑖𝑎𝑛1≤𝑖≤𝑛(|𝛽̂𝑖|) 
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  (b).  Take those values that satisfy  

      |𝛽̂| ≤ 𝑤𝑀𝐴𝐷0 where w is a previously determined constant and must be greater than 

2. 

 (c). With those values 𝛽̂𝑖 is recomputed. If the IMAD0 stops changing, the last IMAD0 is    

               the IMAD0; otherwise, repeat steps (b)-(c). 

2)       Identify active contrasts: If  
|𝛽̂𝑖|

𝑀𝐴𝐷0
 ≥  𝑤𝑐 

 the contrast  𝛽̂𝑖 is considered active. If w = 3.5 is chosen, they recommended wc = 4, 4.4 and 4.8 

for the 8-, 16- and 32-run designs at level 0.05, respectively. 

 

2.1.3 Dong (1993) 

Similar to Lenth (1989), Dong (1993) considered an estimator for  , the adaptive standard 

error (ASE) based on the trimmed mean of squared contrasts rather than the trimmed median of the 

unsigned contrasts: 

 ASE = √
1

𝑚𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒|𝛽̂𝑖|≤2.5𝑠0

∑ 𝛽̂𝑖
2  

 where minactive is the number of inactive contrasts declared by |𝛽̂𝑖| ≤ 2.5𝑠0  and s0 is 

defined earlier. He used. 

    |𝛽̂𝑖| >  𝑡𝛾,𝑚𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒
𝐴𝑆𝐸 

 to test whether a contrast 𝛽̂𝑖 is active or not, where 𝛾 = (1 + 0.981/𝑚)/2             

Dong (1993) also suggested iteratively calculating ASE until it stops changing when there is a 

large number of active effects. 

 

2.1.4 The Proposed Method  

This proposed method is obtained as a result of modification to Lenth’s method. The 

procedure is as follows: 

i Find the median of all contrast effects 

ii Multiply the obtained median by 1.50 

iii List all values of |𝛽̂𝑖| < 1.5 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛   

iv Find the sum of the square root of all 𝛽̂𝑖 obtain in (iii) 
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v PSE = ∑ √|𝛽̂𝑖|<1.5∗𝑚𝑒𝑑𝑖𝑎𝑛
  

 The test statistic 𝑡 =  
|𝛽̂𝑖|

𝑃𝑆𝐸
  

 Active contrasts are then identified for t > tk, 0.025          

 where k = number of contrasts for design  

The modified method is therefore a modification of Lenth and Dong methods by summing the 

square root of contrasts that are less than the median of all contrasts multiplied by a constant to 

obtain a new expression for the Pseudo Standard Error (PSE) 

The 24 factorial designs was used to compare four methods of identifying significant 

effects in unreplicated factorial designs. The four methods under investigation are those proposed 

by Lenth (1989), Berk and Picard (1991), Juan and Pena (1992) and Dong (1993). The criteria used 

in evaluating the performances of the methods are Power and Individual Error Rate (IER). Based 

on the result obtained a method was proposed which was also compared with the four methods 

under investigation. 

 

2.2 Simulation Procedure  

The comparison was performed using Monte Carlo simulation method.  

Data were simulated for 24 factorial designs. The parameters used are: 

c = number of significant effects  

d () = magnitude of each effect 

Simulation of 1000 for each combination of  

 = 0, 1, 3, 5, 7, 10 and 20  

c = 0, 1, 2, 3, 4, 5, 6 and 7 

 

3. MAIN RESULTS 

Data Analysis and Results  

The analysis of result are presented in table 1.1 to 1.6 while the corresponding graphs are as shown 

in figures 1.1 to 1.6 
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   Table 1.1: Power and IER of the method  when number of significant effect c = 0 

    

Magnitud

e of sig. 

effect 

Power IER 

Method Method 

Juan_Pena Berk_Picard Lenth Dong Modified  Juan_Pena Berk_Picard Lenth Dong Modified  

0 0.540 0.560 0.768 0.947 0.987 0.077 0.047 0.027 0.005 0.002 

1 0.522 0.532 0.764 0.939 0.981 0.080 0.051 0.029 0.005 0.002 

3 0.540 0.560 0.768 0.947 0.983 0.077 0.047 0.027 0.005 0.002 

5 0.522 0.532 0.764 0.939 0.981 0.080 0.051 0.029 0.005 0.002 

7 0.506 0.534 0.751 0.943 0.980 0.085 0.050 0.027 0.005 0.002 

10 0.540 0.550 0.775 0.960 0.982 0.079 0.047 0.025 0.004 0.002 

15 0.553 0.569 0.762 0.955 0.980 0.076 0.048 0.027 0.005 0.002 

20 0.495 0.519 0.755 0.955 0.985 0.087 0.054 0.028 0.005 0.001 

Average 0.527 0.545 0.763 0.948 0.982 0.080 0.049 0.027 0.048 0.002 

    

Table 1.2: Power and IER of the method  when number of significant effect c = 1 

    

Magnitud

e of sig. 

effect 

Power IER 

Method Method 

Juan_Pena Berk_Picard Lenth Dong Modified  Juan_Pena Berk_Picard Lenth Dong Modified  

0 0.178 0.272 0.141 0.044 0.016 0.072 0.031 0.018 0.002 0.001 

1 0.147 0.225 0.142 0.031 0.014 0.075 0.038 0.019 0.002 0.001 

3 0.342 0.453 0.418 0.242 0.106 0.090 0.053 0.033 0.006 0.002 

5 0.546 0.645 0.747 0.783 0.382 0.095 0.057 0.038 0.009 0.002 

7 0.586 0.678 0.814 0.945 0.694 0.095 0.053 0.033 0.007 0.002 

10 0.569 0.658 0.807 0.964 0.941 0.095 0.056 0.034 0.005 0.002 

15 0.555 0.652 0.794 0.959 0.985 0.097 0.056 0.036 0.006 0.002 

20 0.575 0.634 0.789 0.954 0.991 0.091 0.060 0.037 0.007 0.001 

Average 0.437 0.527 0.582 0.615 0.516 0.089 0.051 0.031 0.006 0.002 
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   Table 1.2: Power and IER of the method  when number of significant effect c = 2 

    

Magnitud

e of sig. 

effect 

Power IER 

Method Method 

Juan_Pena Berk_Picard Lenth Dong Modified  Juan_Pena Berk_Picard Lenth Dong Modified  

0 0.102 0.103 0.058 0.008 0.004 0.053 0.018 0.010 0.001 0.000 

1 0.110 0.125 0.054 0.009 0.002 0.053 0.016 0.008 0.001 0.000 

3 0.249 0.354 0.234 0.106 0.043 0.088 0.039 0.031 0.005 0.001 

5 0.566 0.713 0.686 0.677 0.280 0.097 0.056 0.045 0.008 0.003 

7 0.640 0.766 0.792 0.949 0.637 0.097 0.051 0.048 0.007 0.003 

10 0.624 0.759 0.791 0.969 0.938 0.102 0.053 0.049 0.007 0.002 

15 0.644 0.763 0.805 0.975 0.992 0.096 0.053 0.045 0.005 0.002 

20 0.640 0.748 0.785 0.963 0.992 0.099 0.055 0.090 0.009 0.002 

           

    

Table 1.3: Power and IER of the method  when number of significant effect c = 3 

    

Magnitud

e of sig. 

effect 

Power IER 

Method Method 

Juan_Pena Berk_Picard Lenth Dong Modified  Juan_Pena Berk_Picard Lenth Dong Modified  

0 0.074 0.054 0.031 0.001 0.000 0.041 0.006 0.007 - 0.000 

1 0.059 0.048 0.027 0.005 0.000 0.042 0.007 0.006 - 0.000 

3 0.197 0.237 0.150 0.047 0.017 0.081 0.023 0.027 0.004 0.002 

5 0.593 0.753 0.644 0.559 0.219 0.096 0.041 0.053 0.006 0.003 

7 0.702 0.865 0.824 0.944 0.597 0.094 0.037 0.049 0.005 0.003 

10 0.728 0.880 0.834 0.976 0.927 0.088 0.033 0.050 0.007 0.004 

15 0.690 0.861 0.818 0.985 0.991 0.102 0.039 0.054 0.005 0.003 

20 0.682 0.855 0.815 0.974 0.995 0.105 0.040 0.055 0.007 0.001 
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   Table 1.4: Power and IER of the method  when number of significant effect c = 4 

    

Magnitud

e of sig. 

effect 

Power IER 

Method Method 

Juan_Pena Berk_Picard Lenth Dong Modified  Juan_Pena Berk_Picard Lenth Dong Modified  

0 0.051 0.012 0.009 0.002 0.000 0.030 0.001 0.003 0.000 0.000 

1 0.052 0.023 0.015 0.002 0.000 0.030 0.002 0.005 0.00 0 0.000 

3 0.173 0.152 0.101 0.029 0.029 0.068 0.010 0.021 0.001 0.001 

5 0.567 0.723 0.564 0.437 0.437 0.093 0.021 0.055 0.005 0.003 

7 0.761 0.934 0.815 0.933 0.933 0.087 0.022 0.063 0.004 0.003 

10 0.741 0.925 0.793 0.980 0.980 0.097 0.025 0.075 0.007 0.002 

15 0.736 0.933 0.804 0.985 0.985 0099 0.023 0.071 0.005 0.004 

20 0.753 0.931 0.798 0.987 0.987 0.093 0.023 0.073 0.004 0.001 

           

    

Table 1.5: Power and IER of the method  when number of significant effect c = 5 

    

Magnitud

e of sig. 

effect 

Power IER 

Method Method 

Juan_Pena Berk_Picard Lenth Dong Modified  Juan_Pena Berk_Picard Lenth Dong Modified  

0 0.038 0.007 0.007 0.000 0.000 0.019 0.000 0.001 0.000 0.000 

1 0.028 0.007 0.006 0.000 0.000 0.019 0.001 0.002 0.000 0.000 

3 0.127 0.061 0.056 0.020 0.006 0.052 0.001 0.010 - 0.001 

5 0.602 0.613 0.522 0.325 0.173 0.073 0.007 0.043 0.004 0.003 

7 0.786 0.952 0.793 0.849 0.587 0.085 0.010 0.072 0.002 0.003 

10 0.808 0.978 0.835 0.993 0.950 0.083 0.009 0.069 0.002 0.001 

15 0.783 0.978 0.812 0.990 0.993 0.093 0.009 0.079 0.004 0.003 

20 0.824 0.984 0.857 0.992 0.996 0.076 0.006 0.060 0.003 0.002 
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   Table 1.6: Power and IER of the method  when number of significant effect c = 6 

    

Magnitud

e of sig. 

effect 

Power IER 

Method Method 

Juan_Pena Berk_Picard Lenth Dong Modified  Juan_Pena Berk_Picard Lenth Dong Modified  

0 0.032 0.000 0.003 0.000 0.000 0.008 0.000 0.001 0.000 0.000 

1 0.029 0.000 0.001 0.000 0.000 0.008 0.000 0.001 0.000 0.000 

3 0.109 0.018 0.037 0.008 0.009 0.036 0.000 0.002 0.000 0.000 

5 0.580 0.349 0.377 0.168 0.173 0.068 0.000 0.034 0.001 0.002 

7 0.830 0.891 0.776 0.650 0.657 0.070 0.000 0.061 0.001 0.001 

10 0.861 1.000 0.845 0.988 0.994 0.068 0.000 0.076 0.000 0.000 

15 0.852 1.000 0.831 0.999 0.995 0.072 0.000 0.083 0.000 0.002 

20 0.845 1.000 0.815 0.995 0.997 0.074 0.000 0.091 0.002 0.001 

           

    

Table 1.7: Power and IER of the method  when number of significant effect c = 7 

    

Magnitud

e of sig. 

effect 

Power IER 

Method Method 

Juan_Pena Berk_Picard Lenth Dong Modified  Juan_Pena Berk_Picard Lenth Dong Modified  

0 0.016 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 

1 0.008 0.000 0.001 0.000 0.000 0.000 0.002 0.000 0.000 0.000 

3 0.069 0.000 0.006 0.000 0.001 0.000 0.011 0.000 0.000 0.000 

5 0.575 0.000 0.209 0.057 0.130 0.050 0.000 0.002 0.000 0.001 

7 0.863 0.000 0.594 0.316 0.605 0.058 0.000 0.021 0.000 0.002 

10 0.912 0.000 0.876 0.857 0.986 0.049 0.000 0.054 0.000 0.001 

15 0.893 0.000 0.855 0.999 0.998 0.059 0.000 0.080 0.000 0.001 

20 0.899 0.000 0.834 1.000 1.000 0.061 0.000 0.091 0.000 0.000 
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4. DISCUSSION OF RESULTS AND CONCLUSION 

As earlier mentioned, most studies showed that there is no one single method which 

performs best in all situations. In this study, the proposed method performed best for all values of 

c and  when IER is used as criteria of assessment. Dong, Lenth, Berkard & Picard and Juan & 

Pena’s performance follows in the given order with Dong leading. In terms of power, the 

proposed method performed better than the other at c = 0 and for all values of . However, this 

proposed method is only better than the other methods for c ≥ 1 and at  ≥ 7. Berk and Picard 

also performed well in terms of power but it has the disadvantage that it breaks down at large 

values of c i.e c ≥ 7. 

On the overall, combining the two criteria of assessment, the proposed method and Dong 

are consistent in performance. They have the advantage of performing in all situations, the 

proposed method also has the additional advantage of being easy to compute. 

It is suggested that for future study, situation when the response variable does not follow 

normal distribution should be explored.  
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