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Abstract. The objective of the present paper is to study concircular curvature tensor of Kenmotsu manifold with

respect to generalized Tanaka-Webster connection, whose concircular curvature tensor satisifies certain conditions

and it is shown that if the curvature tensor of a Kenmotsu manifold admitting generalized Tanaka-Webster con-

nection ∇∗ vanishes, then the Kenmotsu manifold is locally isometric to the hyperbolic space H2n+1(−1). Further

we have studied ξ -concircularly flat, φ -concircularly flat, pseudo-concircularly flat, C∗.φ = 0, C∗.S∗ = 0 and we

have shown that R∗.C∗ = R∗.R∗. Finally, an example of a 5-dimensional Kenmotsu manifold with respect to the

generalized Tanaka-Webster connection is given to verify our result.
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1. INTRODUCTION

The Tanaka-Webster connection is canonical affine connection defined on a non-degenerate

pseudo-Hermition CR-manifold [18, 21]. The generalized Tanaka-Webster connection for con-

tact metric manifolds by the canonical connection was first studied by Tanno [19]. This connec-

tion coincides with the Tanaka-Webster connection if the associated CR-structure is integrable.
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For a real hypersurface in a Kahler manifold with almost contact structure (φ ,ξ ,η ,g), Cho

[4, 5] adapted Tanno’s generalized Tanaka-Webster connection for a non-zero real number k.

Using the generalized Tanaka-Webster connection, some geometers have studied some charac-

terizations of real hypersurfaces in complex space forms [17]. Kenmotsu manifolds introduced

by Kenmotsu in 1971[10]. Kenmotsu manifolds have been studied by various others such as

Ozgur [14], yildz et al [25], Hui et al [8, 9], Nagaraja et al [11, 12, 13] and many others [2, 22].

Recently many authors[15, 7, 16] have been studied generalized Tanaka-Webster connection in

Kenmotsu manifolds.

The present paper is organized as follows: After a brief review of Kenmotsu manifolds in sec-

tion 2, we study concircular curvature tensor of Kenmotsu manifold with generalized Tanaka-

Webster connection and prove that if the curvature tensor of a Kenmotsu manifold admitting

generalized Tanaka-Webster connection ∇∗ vanishes, then the Kenmotsu manifold is locally iso-

metric to the hyperbolic space H2n+1(−1). Next, we study ξ -concircularly flat, φ -concircularly

flat, pseudo-concircularly flat, C∗.φ = 0 and C∗.S∗ = 0 with respect to generalized Tanaka-

Webster connection. Then we have proved R∗.C∗ = R∗.R∗. Finally, in the last section we give

an example of a 5-dimensional Kenmotsu manifold admitting generalized Tanaka-Webster con-

nection to verify our results.

2. PRELIMINARIES

A (2n+ 1)-dimensional smooth manifold M is said to be an almost contact metric mani-

fold if it admits an almost contact metric structure (φ ,ξ ,η ,g) consisting of a tensor field φ of

type (1,1), a vector field ξ , a 1-form η and a Riemannian metric g compatible with (φ ,ξ ,η)

satisfying

(1) φ
2X =−X +η(X)ξ , φξ = 0, g(X ,ξ ) = η(X), η(ξ ) = 1,η ◦φ = 0

and

(2) g(φX ,φY ) = g(X ,Y )−η(X)η(Y ).

An almost contact metric manifold is said to be a Kenmotsu manifold [3] if

(3) (∇X φ)Y =−g(X ,φY )ξ −η(Y )φX ,



CONCIRCULAR CURVATURE TENSOR OF KENMOTSU MANIFOLDS 449

where ∇ denotes the Riemannian connection of g.

In a Kenmotsu manifold the following relations hold [6].

(4) ∇X ξ = X−η(X)ξ ,

(5) (∇X η)Y = g(∇X ξ ,Y ),

(6) R(X ,Y )ξ = η(X)Y −η(Y )X ,

(7) η(R(X ,Y )Z) = g(X ,Z)η(Y )−g(Y,Z)η(X),

(8) S(X ,ξ ) =−2nη(X),

(9) Qξ =−2nξ ,

(10) S(φX ,φY ) = S(X ,Y )+2nη(X)η(Y ),

for any vector fields X ,Y,Z on M, where R denote the curvature tensor of type (1,3) on M.

3. MAIN RESULTS

Througout this paper we associate ∗ with the quantities with respect to generalized Tanaka-

Webster connection. The generalized Tanaka-Webster connection ∇∗ associated to the Levi-

Civita connection ∇ is given by [20, 7]

(11) ∇
∗
XY = ∇XY −η(Y )∇X ξ +(∇X η)(Y )ξ −η(X)φY,

for any vector fields X , Y on M.

Using (4) and (5), the above equation yields,

(12) ∇
∗
XY = ∇XY +g(X ,Y )ξ −η(Y )X−η(X)φY.

By taking Y = ξ in (12) and using (4) we obtain

(13) ∇
∗
X ξ = 0.
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We now calculate the Riemann curvature tensor R∗ using (12) as follows:

(14) R∗(X ,Y )Z = R(X ,Y )Z +g(Y,Z)X−g(X ,Z)Y.

Using (6) and taking Z = ξ in (14) we get

(15) R∗(X ,Y )ξ = 0.

On contracting (14), we obtain the Ricci tensor S∗ of a Kenmotsu manifold with respect to the

generalized Tanaka-Webster connection ∇∗ as

(16) S∗(Y,Z) = S(Y,Z)+2ng(Y,Z).

This gives

(17) Q∗Y = QY +2nY.

Contracting with respect to Y and Z in (16), we get

(18) r∗ = r+2n(2n+1),

where r∗ and r are the scalar curvatures with respect to the generalized Tanaka-Webster con-

nection ∇∗ and the Levi-Civita connection ∇ respectively.

Definition 3.1. A Kenmotsu manifold with respect to the Levi-Civita connection is of constant

curvature if its curvature tensor R is of the form

g(R(X ,Y )Z,U) = k{g(Y,Z)g(X ,U)−g(X ,Z)g(Y,U)},

where k is a constant.

If R∗ = 0, then the equation (14) becomes

(19) R(X ,Y,Z,U) =−{g(Y,Z)g(X ,U)−g(X ,Z)g(Y,U)}.

From which it follows that the Kenmotsu manifold with respect to the Levi-Civita connection

is of constant curvature −1.

This leads to the following :

Theorem 3.1. If curvature tensor of a Kenmotsu manifold with respect to generalized Tanaka-

Webster connection ∇∗ is vanishes, then the Kenmotsu manifold is locally isometric to the
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hyperbolic space H2n+1(−1).

Definition 3.2. [1] For each plane p in the tangent space Tx(M), the sectional curvature K(p) is

defined by K(p) =
R(X ,Y,X ,Y )

g(X ,X)g(Y,Y )−g(X ,Y )2 , where {X ,Y} is orthonormal basis for p. Clearly

K(p) is the independent of the choice of the orthonormal basis {X ,Y}.

Taking Z = X , U = Y in (19), we get

(20) R(X ,Y,X ,Y ) = {g(X ,X)g(Y,Y )−g(X ,Y )g(X ,Y )}.

Then from the above equation we conclude that

(21) K(p) =
R(X ,Y,X ,Y )

g(X ,X)g(Y,Y )−g(X ,Y )2 =−1.

Thus we can state the following theorem :

Theorem 3.2. If in a Kenmotsu manifold, the curvature tensor of a generalized Tanaka-Webster

connection ∇∗ vanishes, then the sectional curvature of the plane determined by two vectors

X ,Y ∈ ξ⊥ is −1.

Now, an interesting invariant of a concircular transformation is the concircular curvature ten-

sor. The concircular curvature tensor [23] C∗ with respect to the generalized Tanaka-Webster

connection ∇∗ is defined by

(22) C∗(X ,Y )Z = R∗(X ,Y )Z− r∗

2n(2n+1)
{g(Y,Z)X−g(X ,Z)Y},

for all vector fields X , Y , Z on M.

By interchanging X and Y in (22), we have

(23) C∗(Y,X)Z = R∗(Y,X)Z− r∗

2n(2n+1)
{g(X ,Z)Y −g(Y,Z)X}.

On adding (22) and (23) and using the fact that R(X ,Y )Z +R(Y,X)Z = 0, we get

(24) C∗(X ,Y )Z +C∗(Y,X)Z = 0.

From (14), (22) and first Bianchi identity R(X ,Y )Z +R(Y,Z)X +R(Z,X)Y = 0 with respect to

∇, we obtain

(25) C∗(X ,Y )Z +C∗(Y,Z)X +C∗(Z,X)Y = 0.
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Hence, from (24) and (25), shows that concircular curvature tensor with respect to generalized

Tanaka-Webster connection in a Kenmotsu manifold is skew-symmetric and cyclic.

Next, we assume that the manifold M with respect to the generalized Tanaka-Webster connec-

tion is concircularly flat, that is, C∗(X ,Y )Z = 0. Then from (22), it follows that

(26) R∗(X ,Y )Z =
r∗

2n(2n+1)
{g(Y,Z)X−g(X ,Z)Y}.

Taking inner product of the above equation with ξ , we have

(27) g(R∗(X ,Y )Z,ξ ) =
r∗

2n(2n+1)
{g(Y,Z)η(X)−g(X ,Z)η(Y )}.

Using (1), (7), (14) and (18) in (27), we get

(28)
r+2n(2n+1)

2n(2n+1)
{g(Y,Z)η(X)−g(X ,Z)η(Y )}= 0.

Replacing X by QX in (28), we obtain

(29)
r+2n(2n+1)

2n(2n+1)
{

g(Y,Z)η(QX)−g(QX ,Z)η(Y )
}
= 0.

Using (8) in (29), we get

(30)
r+2n(2n+1)

2n(2n+1)
{
−2ng(Y,Z)η(X)−S(X ,Z)η(Y )

}
= 0.

Taking Y = ξ in (30), yields

(31)
r+2n(2n+1)

2n(2n+1)
{
−2nη(X)η(Z)−S(X ,Z)

}
= 0.

This implies either the scalar curvature of M is −2n(2n+1) or

(32) S(X ,Z) =−2nη(X)η(Z).

Hence we can state the following theorem:

Theorem 3.3. For a concircularly flat Kenmotsu manifold with respect to the generalized

Tanaka-Webster connection, either the scalar curvature is −2n(2n + 1) or the manifold is a

special type of η-Einstein manifold.
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Definition 3.3. A Kenmotsu manifold with respect to the generalized Tanaka-Webster connec-

tion ∇∗ is said to be ξ - concircularly flat if C∗(X ,Y )ξ = 0.

In view of (14) and (18) in (22), we get

C∗(X ,Y )Z = R(X ,Y )Z +g(Y,Z)X−g(X ,Z)Y − r+2n(2n+1)
2n(2n+1)

{g(Y,Z)X−g(X ,Z)Y}.(33)

By taking Z = ξ in (33) and then using (1) and (6), we find

(34) C∗(X ,Y )ξ =
r+2n(2n+1)

2n(2n+1)
R(X ,Y )ξ .

Thus from (14), (18), (33) and (34), we have the following theorem:

Theorem 3.4.Let M be a Kenmotsu manifold with generalized Tanaka-Webster connection. In

M, the following three conditions are equivalent:

i) M is ξ - concircularly flat.

ii) r =−2n(2n+1).

iii) r∗ = 0.

Now, we assume that the manifold M with respect to the generalized Tanaka-Webster connec-

tion is ξ -concircularly flat, that is, C∗(X ,Y )ξ = 0. Then from (22), it follows that

(35) R∗(X ,Y )ξ =
r∗

2n(2n+1)
{η(Y )X−η(X)Y}.

In view of (15) and (18), we have

(36)
r+2n(2n+1)

2n(2n+1)
{η(Y )X−η(X)Y}= 0.

Taking Y = ξ in (36) and using (1), we get

(37)
r+2n(2n+1)

2n(2n+1)
{X−η(X)ξ}= 0.

Taking inner product of the above equation with U , we have

(38)
r+2n(2n+1)

2n(2n+1)
{g(X ,U)−η(X)η(U)}= 0.

Now, replacing X by QX in (38), we obtain

(39)
r+2n(2n+1)

2n(2n+1)
{

g(QX ,U)−η(QX)η(U)
}
= 0.
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Using (9) in (39), we get

(40)
r+2n(2n+1)

2n(2n+1)
{

S(X ,U)+2nη(X)η(U)
}
= 0.

This implies either the scalar curvature of M is −2n(2n+1) or

(41) S(X ,U) =−2nη(X)η(U).

Hence we can state the following theorem:

Theorem 3.5. For a ξ -concircularly flat Kenmotsu manifold with respect to the generalized

Tanaka-Webster connection, either the scalar curvature is −2n(2n + 1) or the manifold is a

special type of η-Einstein manifold.

Definition 3.4. A Kenmotsu manifold is said to be φ -concircularly flat with respect to the

generalized Tanaka-Webster connection ∇∗ if

(42) g(C∗(φX ,φY )φZ,φW ) = 0,

for any vector fields X ,Y,Z on M.

Using (22) in (42), we have

g(R∗(φX ,φY )φZ,φW ) =
r∗

2n(2n+1)
{g(φY,φZ)g(φX ,φW )−g(φX ,φZ)g(φY,φW )}.(43)

Let {e1,e2,e3, .......e2n+1} be a local orthonormal basis of vector fields in M. Then

{φe1,φe2,φe3, .......φe2n+1} is also a local orthonormal basis. If we put X = W = ei in (43)

and summing up with respect to i,1≤ i≤ 2n+1, we obtain

2n

∑
i=1

g(R∗(φei,φY )φZ,φei) =
r∗

2n(2n+1)

2n

∑
i=1
{g(φY,φZ)g(φei,φei)

−g(φei,φZ)g(φY,φei)}.

(44)

From (44), it follows that

(45) S∗(φY,φZ) =
r∗(2n−1)
2n(2n+1)

g(φY,φZ).

Using (1), (16) and (18) in (45), we get

(46) S(φY,φZ)+2ng(φY,φZ) =
(r+2n(2n+1))(2n−1)

2n(2n+1)
g(φY,φZ).
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By using (2) and (10) in (46), we obtain

S(Y,Z)+2nη(Y )η(Z)+{2n− (r+2n(2n+1))(2n−1)
2n(2n+1)

}g(φY,φZ) = 0.(47)

Hence contracting (47), we get

(48) r =−2n.

By substituting equation (48) in (22), we get

C∗(X ,Y )Z = R(X ,Y )Z +
1

2n+1
{g(Y,Z)X−g(X ,Z)Y}.(49)

This leads to the following:

Theorem 3.6. Let the Kenmotsu manifold M with generalized Tanaka-Webster connection be

φ -concircularly flat. Then M is of constant sectional curvature − 1
2n+1 if and only if concircular

curvature tensor C∗ vanishes.

Definition 3.5. A Kenmotsu manifold is said to be pseudo-concircularly flat with respect to the

generalized Tanaka-Webster connection ∇∗ if it satisfies

(50) g(C∗(φX ,Y )Z,φW ) = 0,

for any vector fields X ,Y,Z on M.

In view of (22) and (50), we have

(51) g(R∗(φX ,Y )Z− r∗

2n(2n+1)
{g(Y,Z)φX−g(φX ,Z)Y},φW ) = 0.

Making use of (14) and (18) in (51), we get

(52) g(R(φX ,Y )Z,φW )− r
2n(2n+1)

{g(Y,Z)g(φX ,φW )−g(φX ,Z)g(Y,φW )}= 0.

Let {e1,e2,e3, .......e2n+1} be a local orthonormal basis of vector fields in M. Then by putting

Y = Z = ei in (52) and summing up with respect to i,1≤ i≤ 2n+1, we obtain

(53) S(φX ,φW ) =
r

2n+1
g(φX ,φW ).

On using (1) and (10) in (53), we get

(54) S(X ,W ) =
r

2n+1
g(X ,W )−{2n+

r
2n+1

}η(X)η(W ).
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Again taking X =W = ei in (54) and summing up with respect to i,1≤ i≤ 2n+1, we obtain

(55) r =−2n(2n+1).

By virtue of (54) and (55), we get

(56) S(X ,W ) =−2ng(X ,W ).

Thus M is an Einstein manifold.

Again by substituting (55) in (33), we obtain

(57) C∗(X ,Y )Z = R(X ,Y )Z +{g(Y,Z)X−g(X ,Z)Y}.

Thus, from the above discussions we state the following:

Theorem 3.7. Let the Kenmotsu manifold M with generalized Tanaka-Webster connection be

pseudo-concircularly flat if and only if S(Y,Z) =−2ng(Y,Z).

Further if C∗ = 0, then M is isomorphic to the hyperbolic space H2n+1(−1).

Definition 3.6. A Kenmotsu manifold is said to be φ -concircularly semisymmetric with respect

to generalized Tanaka-Webster connection ∇∗ if C∗(X ,Y ).φ = 0 holds on M.

Now, we consider φ -concircularly semisymmetric Kenmotsu manifold with respect to general-

ized Tanaka-Webster connection. Then

(58) (C∗(X ,Y ).φ)Z =C∗(X ,Y )φZ−φC∗(X ,Y )Z = 0.

for all X ,Y,Z on M.

Taking Z = ξ in (58), we get

(59) φ(C∗(X ,Y )ξ ) = 0.

Using (34) and (6) in (59), we get

(60)
r+2n(2n+1)

2n(2n+1)
{η(X)φY −η(Y )φX}= 0.

Replace Y by ξ and X by φX in (60) and using (1), we get

(61)
r+2n(2n+1)

2n(2n+1)
{X−η(X)ξ}= 0.
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Taking inner product of the above equation with U , we have

(62)
r+2n(2n+1)

2n(2n+1)
{g(X ,U)−η(X)η(U)}= 0.

Now, replacing X by QX in (62), we obtain

(63)
r+2n(2n+1)

2n(2n+1)
{

g(QX ,U)−η(QX)η(U)
}
= 0.

Using (9) in (63), we get

(64)
r+2n(2n+1)

2n(2n+1)
{

S(X ,U)+2nη(X)η(U)
}
= 0.

This implies either the scalar curvature of M is −2n(2n+1) or

(65) S(X ,U) =−2nη(X)η(U).

Hence we can state the following:

Theorem 3.8. For a φ -concircularly semisymmetric Kenmotsu manifold with respect to the

generalized Tanaka-Webster connection, either the scalar curvature is −2n(2n+1) or the man-

ifold is a special type of η-Einstein manifold.

Now, we consider

C∗.S∗ = S∗(C∗(X ,Y )Z,U)+S∗(Z,C∗(X ,Y )U).(66)

By making use of (22) and (16) in (66), we obtain

C∗.S∗ = S(R(X ,Y )Z− r
2n(2n+1)

{g(Y,Z)X−g(X ,Z)Y},U)

+S(Z,R(X ,Y )U− r
2n(2n+1)

{g(Y,U)X−g(X ,U)Y}).
(67)

Suppose C∗.S∗ = 0. Then we have

(68) S∗(C∗(X ,Y )Z,U)+S∗(Z,C∗(X ,Y )U) = 0.

Taking U = ξ in (68) and using (16), it follows that

(69) S∗(Z,C∗(X ,Y )ξ ) = 0.

Making use of (1), (6) and (33) in (69), we get

(70)
r+2n(2n+1)

2n(2n+1)
S∗(Z,η(X)Y −η(Y )X) = 0.
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Replacing X by ξ in (70) and using (1) and (16), we get

(71)
r+2n(2n+1)

2n(2n+1)
{S(Z,Y )+2ng(Z,Y )}= 0.

Contracting (71) with respect to Y and Z, we get

(72) r =−2n(2n+1).

From (67) and (72), we obtain

(73) S(Y,Z) =−2ng(Y,Z).

Thus M is an Einstein manifold.

Again by substituting (72) in (33), we obtain

(74) C∗(X ,Y )Z = R(X ,Y )Z +{g(Y,Z)X−g(X ,Z)Y}.

Thus, from the above discussions we state the following:

Theorem 3.9. Let M be a Kenmotsu manifold with generalized Tanaka-Webster connection,

then C∗.S∗ = 0 if and only if S(Y,Z) =−2ng(Y,Z).

Further if C∗ = 0 then M is isomorphic to the hyperbolic space H2n+1(−1).

Further, we have

(R∗(X ,Y ).C∗)(U,V,W ) = R∗(X ,Y )C∗(U,V )W −C∗(R∗(X ,Y )U,V )W

−C∗(U,R∗(X ,Y )V )W −C∗(U,V )R∗(X ,Y )W.
(75)

With the use of (22), (75) becomes

(R∗(X ,Y ).C∗)(U,V,W ) = R∗(X ,Y )R∗(U,V )W −R∗(R∗(X ,Y )U,V )W −R∗(U,R∗(X ,Y )V )W

−R∗(U,V )R∗(X ,Y )W +
r∗

2n(2n+1)
{g(R∗(X ,Y )V,W )U +g(V,R∗(X ,Y )W )U

−g(R∗(X ,Y )U,W )V −g(U,R∗(X ,Y )W )V}.

(76)

By the symmetric properties of the curvature tensor R∗ [7, 16], we get

(R∗(X ,Y ).C∗)(U,V,W ) = R∗(X ,Y )R∗(U,V )W −R∗(R∗(X ,Y )U,V )W

−R∗(U,R∗(X ,Y )V )W −R∗(U,V )R∗(X ,Y )W.
(77)
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Finally, we get

(78) (R∗(X ,Y ).C∗)(U,V,W ) = (R∗(X ,Y ).R∗)(U,V,W ).

Thus we state the following:

Theorem 3.10. Let M be a Kenmotsu manifold with generalized Tanaka-Webster connection.

Then R∗.C∗ = R∗.R∗.

4. EXAMPLE OF A 5-DIMENSIONAL KENMOTSU MANIFOLD WITH RESPECT TO THE

GENERALIZED TANAKA-WEBSTER CONNECTION

We consider the five-dimensional manifolod M = {(x,y,z,u,v) ∈ R5}, where (x,y,z,u,v) are

the standard coordinates in R5. The vector fields

E1 = e−v ∂

∂x
, E2 = e−v ∂

∂y
, E3 = e−v ∂

∂ z
, E4 = e−v ∂

∂u
, E5 =

∂

∂v

are linearly independent at each point of M. Let g be the Riemannian metric defined by

gi j =


1 for i = j,

0 for i 6= j.

Let η be the 1-form defined by η(Z) = g(Z,E3) for any Z ∈ χ(M). Let φ be the (1,1) tensor

field defined by φE1 =E3,φE2 =E4,φE3 =−E1,φE4 =−E2,φE5 = 0. Then using the linearity

of φ and g we have

η(E5) = 1, φ
2(Z) =−Z +η(Z)E5, g(φZ,φU) = g(Z,U)−η(Z)η(U),

for any Z,U ∈ χ(M). Thus for E5 = ξ ,(φ ,ξ ,η ,g) defines an almost contact metric structure on

M.

Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have

[E1,E2] = [E1,E3] = [E1,E4] = [E2,E3] = 0, [E1,E5] = E1,

[E4,E5] = E4, [E2,E4] = [E3,E4] = 0, [E2,E5] = E2, [E3,E5] = E3.
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The Riemannian connection ∇ of the metric g is given by the Koszul’s formula

2g(∇XY,Z) = X(g(Y,Z))+Y (g(Z,X))−Z(g(X ,Y ))

−g(X , [Y,Z])−g(Y, [X ,Z])+g(Z, [X ,Y ]).

By Koszul’s formula, we get

∇E1E1 =−E5, ∇E1E2 = 0, ∇E1E3 = 0, ∇E1E4 = 0, ∇E1E5 = E1,

∇E2E1 = 0, ∇E2E2 =−E5, ∇E2E3 = 0, ∇E2E4 = 0, ∇E2E5 = E2,

∇E3E1 = 0, ∇E3E2 = 0, ∇E3E3 =−E5, ∇E3E4 = 0, ∇E3E5 = E3,

∇E4E1 = 0, ∇E4E2 = 0, ∇E4E3 = 0, ∇E4E4 =−E5, ∇E4E5 = E4,

∇E5E1 = 0, ∇E5E2 = 0, ∇E5E3 = 0, ∇E5E4 = 0, ∇E5E5 = 0.

Further we obtain the following:

∇
∗
Ei

E j = 0, i, j = 1,2,3,4,5

and hence

(∇∗Ei
φ)E j = 0, i, j = 1,2,3,4,5.

From the above expressions it follows that the manifold satisfies (2), (3) and (4) for ξ = E5.

Hence the manifold is a Kenmotsu manifold. With the help of the above results we can verify

the following results.

R(E1,E2)E2 = R(E1,E3)E3 = R(E1,E4)E4 = R(E1,E5)E5 =−E1,

R(E1,E2)E1 = E2, R(E1,E3)E1 = R(E5,E3)E5 = R(E2,E3)E5 = E3,

R(E2,E3)E3 = R(E2,E4)E4 = R(E2,E5)E5 =−E2, R(E3,E4)E4 =−E3,

R(E2,E5)E2 = R(E1,E5)E1 = R(E4,E5)E4 = R(E3,E5)E3 = E5,

R(E1,E4)E1 = R(E2,E4)E2 = R(E3,E4)E3 = R(E5,E4)E5 = E4

and

R∗(Ei,E j)Ek = 0, i, j, k = 1,2,3,4,5.
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From the above expressions of the curvature tensor of the Kenmotsu manifold it can be easily

seen that the manifold has a constant sectional curvature −1.

Making use of the above results we obtain the Ricci tensors as follows:

S(E1,E1) = g(R(E1,E2)E2,E1)+g(R(E1,E3)E3,E1)+g(R(E1,E4)E4,E1)

+g(R(E1,E5)E5,E1) =−4.

Similarly, we have

S(E2,E2) = S(E3,E3) = S(E3,E3) = S(E4,E4) = S(E5,E5) =−4

and

S∗(E1,E1) = S∗(E2,E2) = S∗(E3,E3) = S∗(E4,E4) = S∗(E5,E5) = 0.

Therefore, it can be easily verified that the manifold is an Einstein manifold with respect to

Levi-Civita connection.

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] A. Barman and U. C. De, Semi-symmetric non-metric connections on Kenmotsu manifolds, Rom. J. Math.

Comput. Sci. 5 (2015), 13–24.

[2] A. Barman, U. C. De and P Majhi, On Kenmotsu manifold admitting special type of semi-symmetric non-

metric φ -connection, Novi. Sad J. Math. 48 (2018), 47–60.

[3] D. E. Blair, Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics, Springer-Verlag,

Berlin-New York, 509 (1976).

[4] J. T. Cho, CR-structures on real hypersurfaces of a complex space form, Publ. Math. 54 (1999), 473–487.

[5] J. T. Cho, Pseudo-Einstein CR-structures on real hypersurfaces in a complex space form, Hokkaido Math. 37

(2008), 1–17.

[6] U. C. De, A. Yildiz and F. Yaliniz, On φ -recurrent Kenmotsu manifolds. Turk. J. Math. 33 (2009), 17–25.

[7] G. Ghosh and U. C. De, Kenmotsu manifolds with generalized Tanaka-Webster connection, Publications de

l’Institut Mathematique-Beograd, 102 (2017), 221–230.

[8] S. K. Hui and D. Chakraborty, Infinitesimal CL-transformations on Kenmotsu manifolds, Bangmod Int. J.

Math. and Comp. Sci. 3 (2017), 1–9.



462 D. L. KIRAN KUMAR, H. G. NAGARAJA, DIPANSHA KUMARI

[9] S. K. Hui and R. S. Lemence, On Generalized φ -recurrent Kenmotsu manifolds with respect to Quarter-

symmetric metric connection, Kyungpook Math. J. 58 (2018), 347–359.

[10] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. Second Series, 24 (1972),

93–103.

[11] H. G. Nagaraja and D. L. Kiran Kumar, Ricci solitons in Kenmotsu manifolds under generalized D-conformal

deformation, Lobachevskii J. Math. 40 (2019), 195–200.

[12] H. G. Nagaraja and D. L. Kiran Kumar, Kenmotsu manifold admitting the Schouten-van Kampen connection,

Facta Universitatis, Series: Mathematics and Informatics, 34 (2019), 23–34.

[13] H. G. Nagaraja, D. L. Kiran Kumar and V. S. Prasad, Ricci solitons on Kenmotsu manifolds under D-

homothetic deformation, Khayyam J. Math. 4 (2018), 102–109.

[14] C. Ozgar On weakly symmetric Kenmotsu manifolds, Differ. Geom. Dyn. Syst. 8 (2006), 204–209.

[15] S. Y. Perktas, B. E. Acet and E. Kilic, Kenmotsu manifolds with generalized tanaka-webster connection,

Adiyaman Univ. J. Sci. 3 (2013), 79–93.

[16] D. G. Prakasha and B. S. Hadimani, On the conharmonic curvature tensor of Kenmotsu manifolds with

generalized Tanaka-Webster connection, Miskolc Math. Notes, 19 (2018), 491–503.

[17] R. Takagi, Real hypersurfaces in complex projective space with constant principal curvatures, J. Math. Soc.

Japan, 27 (1975), 45–53.

[18] N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan. J.

Math. New series, 2 (1976), 131–190.

[19] S. Tanno, Variational problems on contact Riemannian manifolds, Transactions of the American Mathemati-

cal Society, 314 (1989), 349–379.

[20] S. Tanno, The automorphism groups of almost contact Riemannian manifold, Tohoku Math. J. 21 (1969),

21–38.

[21] S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differ. Geom. 13 (1978), 25–41.

[22] S. Uddin, Geometry of warped product semi-slant submanifolds of Kenmotsu manifolds, Bull. Math. Sci. 8

(2018), 435–451.

[23] K. Yano, Concircular geometry I. Concircular transformations. Proc. Imper. Acad. 16 (1940), 195–200.

[24] A. Yildiz and U. C. De, A classification of (k,µ)-contact metric manifolds, Commun. Korean Math. Soc. 27

(2012), 327–339.

[25] A. Yildiz and U. C. De, On a type of Kenmotsu manifolds, Differ. Geom. Dyn. Syst. 12 (2010), 289–298.


