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Abstract. In this paper, we give some fixed point theorems for generalized cyclic contraction and generalized

ϕ−weak contraction in partial metric spaces, which improve the results of S. Romaguera in [1], M. Abbas in [2]

and T. Abdeljiawad in [5].
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1. INTRODUCTION

In 1992, the notion of partial metric space was introduced by Matthews [7] as a part of the

study of denotational semantics of dataflow networks. Henceforward, many authors made ef-

forts to study various fixed point theorems and obtained a lot of perfect results. Ravi P Agarwal

[10] proved some fixed point results for generalized cyclic contraction on partial metric spaces.

Mădălina and Ioan [3] proved a Maia type fixed point theorem for cyclic ϕ-contraction, which

extended the results of W.A. Kirk [9]. Z. Qingnian and S. Yisheng [12] proved fixed point re-

sults for single-valued hybrid generalized ϕ-weak contractions. Very recently, many new fixed

point results were established by Yi Zhang, Jiang Zhu [8] and L.N. Mishra [11], etc.
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In this paper, we shall give some fixed point theorems for generalized cyclic contraction

and generalized ϕ−weak contraction in partial metric spaces, which improve the results of S.

Romaguera in [1], M. Abbas in [2] and T. Abdeljiawad in [5].

2. PRELIMINARIES

First, we shall introduce some essential definitions and lemmas.

Definition 2.1([1,2]) Suppose that the set X is nonempty. We call (X , p) a PMS (the

abbreviation o f partial metric space) if a function p maps X×X into nonnegative number and

satisfies: (T1) x = y i f f p(x,x) = p(x,y) = p(y,y), (T2) p(x,x)≤ p(x,y), (T3) p(x,y) = p(y,x),

and (T4) p(x,y)≤ p(x,z)+ p(z,y)− p(z,z), ∀x,y,z ∈ X .

Now let (X , p) be a PMS, the mapping ps maps X×X into nonnegative number, and

ps(x,y) = 2p(x,y)− p(x,x)− p(y,y).

We can verify the fact that (X , ps) is a metric space. In addition, we can define the open ball

on (X , p) denoted by B(x,ε) = {z ∈ X : p(x,z)< ε + p(x,x)}, where x ∈ X , ε > 0. Meanwhile,

we also use these open balls to form a base for T0-topology τ .

Definition 2.2([1,2]) Suppose that (X , p) is a PMS, and {xn} ⊂ (X , p). Then

(1) {xn} converges to x ∈ X iff lim
n→∞

p(xn,x) = p(x,x).

(2) {xn} is called Cauchy sequence iff lim
n,m→∞

p(xn,xm) = ξ (0≤ ξ < ∞).

(3) (X , p) is called complete if any Cauchy sequence {xn} converges w.r.t τ to x ∈ X and

lim
n,m→∞

p(xn,xm) = p(x,x).

(Remark 1([4]): lim
n→∞

p(xn,x) = p(x,x) = 0 ⇒ lim
n→∞

p(xn,y) = p(x,y), y ∈ X .)

Lemma 2.3([1]) Let (X , p) be a PMS, and {xn} ⊂ (X , p). Then

(1) {xn} is a Cauchy sequence in (X , p) iff it is a Cauchy sequence in (X , ps).
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(2) A PMS (X , p) is complete iff (X , ps) is complete. Moreover,

lim
n→∞

ps(x,xn) = 0⇐⇒ p(x,x) = lim
n→∞

p(x,xn) = lim
n,m→∞

p(xn,xm)

Definition 2.4([3]) Let Xi be nonempty set, i = 1,2, ...,m, and X =
m⋃

i=1
Xi. X is called a cyclic

representation of X w.r.t. f if there exists a self-map f on X satisfying f (X1)⊂X2, ..., f (Xm−1)⊂

Xm, and f (Xm)⊂ X1.

Definition 2.5([6]) Assume that the set X is nonempty and H,G : X → X . If w = Hx =

Gx, x,w ∈ X , then x,w are called a coincidence point of H and G and a point of coincidence

of H and G, respectively. Moreover, H, G are weakly compatible if HGx = GHx, whenever

Hx = Gx.

Definition 2.6 To simplify notation, we shall introduce some abbreviations:

(1) we denote by Λ all upper semicontinuous from the right function (or u.s.r.f) if any φ ∈ Λ

maps nonnegative real number into nonnegative real number with φ(t)< t for t > 0.

(2) we denote by ∆ all continuous function if any φ ∈ ∆ maps nonnegative real number into

nonnegative real number with φ(t)< t for t > 0.

(3) we denote by Θ all lower semi-continuous function if any ϕ ∈ Λ maps positive real

number into positive real number with ϕ(0) = 0.

(4) we denote by by N and ω the set of all positive integer numbers and the set of all

nonnegative integer numbers, respectively.

3. MAIN RESULTS

Part 1. Fixed point theorem for generalized cyclic contraction in partial metric spaces

To obtain fixed point theorem for generalized cyclic contraction in partial metric spaces, we

shall firstly prove the following result by improving the Theorem 3 of S. Romaguera [1].

Theorem 3.1 If (X , p) is complete PMS, λ ∈ [0, 1
2 ], φ ∈ Λ and f : X → X satisfies:

p( f x, f y)≤ φ(max{p(x,y), p( f x,x), p( f y,y),λ p(x, f y)+(1−λ )p( f x,y)}), ∀x,y ∈ X ,
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then f has a unique fixed point z ∈ X . Moreover, p(z,z) = 0.

Proof To simplify notation, we define

M(x,y) = max{p(x,y), p( f x,x), p( f y,y),λ p(x, f y)+(1−λ )p( f x,y)}.

First, let us construct {xn} ⊂ X . Assume that x0 = x and xn = f nx0, ∀x ∈ X ,n ∈ ω . If

f nx = f n+1x for some n ∈ ω , then f nx is a fixed point of f , and f nx’s uniqueness follows as in

the last part.

So, suppose that f nx 6= f n+1x, ∀n ∈ ω .

Next, we shall prove that lim
n→∞

p(xn,xn+1) = 0.

We define

rMn = M(xn,xn+1), rMnm = M(xnk ,xmk), rn
i j = p(xn+i,xn+ j),

rnmk
i j = p(xnk+i,xmk+ j), rnk

i j = p(xnk+i,xnk+ j), rmk
i j = p(xmk+i,xmk+ j)

where i, j ∈ {−1,0,1,2}.

For all n ∈ ω , since

p(xn+1,xn+2) = p( f xn, f xn+1)≤ φ(M(xn,xn+1))< M(xn,xn+1) (1)

where M(xn,xn+1) = max{rn
01, rn

12, λ rn
02 +(1−λ )rn

11}.

(a) If rMn = rn
01, by (1) we have

rn
12 < rMn = rn

01.

(b) If rMn = rn
12, by (1) we have

rn
12 < rMn = rn

12

which is contradictive.
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(c) If rMn = λ rn
02 +(1−λ )rn

11,

since

λ rn
02 +(1−λ )rn

11 ≤ λ (rn
01 + rn

12− rn
11)+(1−λ )rn

11

= λ (rn
01 + rn

12)+(1−2λ )rn
11

≤ λ (rn
01 + rn

12)+(1−2λ )rn
01

= λ rn
12 +(1−λ )rn

01 (2)

by (1)(2)we obtain that

rn
12 < rMn = λ rn

02 +(1−λ )rn
11 ≤ λ rn

12 +(1−λ )rn
01

i.e.

rn
12 < λ rn

12 +(1−λ )rn
01

i.e.

rn
12 < rn

01.

Then by above (a)(b)(c), we claim that rn
12 < rn

01,∀n ∈ ω , and lim
n→∞

p(xn,xn+1) = r0, where

r0 is a constant.

Now by (1)(2) and taking limit of the inequality:

rn
12 ≤ φ(rMn))< rMn = max{rn

01, rn
12, λ rn

02 +(1−λ )rn
11}

≤ max{rn
01, rn

12, λ rn
12 +(1−λ )rn

01}

so we have

r0 = lim
n→∞

φ(rMn) = lim
n→∞

rMn

Since rMn ≥ r0 for all n ∈ ω and φ is u.s.r.f., we obtain that

r0 = lim
n→∞

φ(rMn) = limsup
n→∞

φ(rMn)≤ φ(r0).

So, r0 = 0 and limn→∞ p(xn,xn+1) = 0
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Consequently, for any subsequence {xnk} of {xn}, we have lim
k→∞

rnk
01 = 0, and by (T4), lim

k→∞
rnk

0q =

0 for any q ∈ N.

Next, let us prove that lim
n,m→∞

p(xn,xm) = 0.

Now suppose the contradiction, then for sequence (nk)k∈N ,(mk)k∈N ⊂ N with mk > nk ≥ k0,

there exist ε > 0, k0 ∈ N such that rnmk
00 ≥ ε,∀k ∈ N.

Since lim
n→∞

rn
01 = 0, w.l.g., we suppose that rnmk

0−1 < ε and rnmk
10 < ε for mk > nk ≥ k0 and k ∈N,

so for all k ∈ N, We have

ε ≤ rnmk
00 ≤ rnmk

0−1 + rmk
−10 < ε + rmk

−10

hence lim
k→∞

rnmk
00 = ε.

Since

lim
k→∞

[λ rnmk
01 +(1−λ )rnmk

10 ] ≤ lim
k→∞

[λ (rnk
01 + rnmk

10 + rmk
01 )+(1−λ )rnmk

10 ]

= lim
k→∞

[λ (rnk
01 + rmk

01 )+ rnmk
10 ]

< ε (3)

and by (3) we have

ε = lim
k→∞

rnmk
00 ≤ lim

k→∞
rMnm

= lim
k→∞

max{rnmk
00 , rnk

10, rmk
10 , λ rnmk

01 +(1−λ )rnmk
10 }

< max{ε,0,0,ε}= ε.

Hence lim
k→∞

rMnm = ε .

Since rMnm ≥ ε for all k ∈ N, and φ is u.s.r.f., we have

limsup
k→∞

φ(rMnm)≤ φ(ε).

at the same time, for all k ∈ N, we have

ε ≤ rnmk
00 ≤ rnk

01 + rnmk
11 + rmk

10

≤ rnk
01 +φ(rMnm)+ rmk

10
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so

ε ≤ limsup
k→∞

φ(rMnm)≤ φ(ε).

Hence lim
n,m→∞

p(xn,xm) = 0, and {xn} converges to a point z ∈ X such that

lim
n,m→∞

p(xn,xm) = lim
n→∞

p(z,xn) = p(z,z) = 0.

Now, for λ ∈ [0, 1
2 ] i.e. 1−λ ∈ [1

2 ,1], we obtain that lim
n→∞

M(z,xn) = p( f z,z).

Since M(z,xn)≥ p( f z,z) for n ∈ N and φ is u.s.r.f., we have

limsup
n→∞

φ(M(z,xn))≤ φ(p( f z,z)) (4)

by (4) and the condition that p( f z,z)≤ p( f z,xn)+ p(xn,z), we obtain that

p( f z,z) ≤ limsup
n→∞

(p( f z,xn)+ p(xn,z))

= limsup
n→∞

p( f z, f xn−1)

≤ limsup
n→∞

φ(M(z,xn−1))≤ φ(p( f z,z)).

Hence p( f z,z) = 0, i.e. z = f z. Thus z is a fixed point of f .

If there exists z∗ ∈ X such that z∗ = f z∗, then we get

p(z,z∗) = p( f z, f z∗)≤ φ(M(z,z∗)) = φ(p(z,z∗)),

therefore p(z,z∗) = 0, i.e. z = z∗. Thus z is unique fixed point of f and p(z,z) = 0. �

Secondly, we shall improve the Theorem 2.3 of M.Abbas[2] and obtain fixed point theorem

for generalized cyclic contraction mapping in partial metric spaces.

Theorem 3.2 Let (X , p) be complete PMS, A1,A2, ...,Am, m nonempty closed subsets of

(X , ps) and Y =
m⋃

i=1
Ai be a cyclic representation of Y w.r.t. f . If λ ∈ [0, 1

2 ], φ ∈ ∆, and

p( f x, f y)≤ φ(M(x,y)), ∀x ∈ Ai,y ∈ Ai+1, i = 1,2, ...,m

where Am+1 = A1, and M(x,y) = max{p(x,y), p( f x,x), p( f y,y),λ p(x, f y)+ (1−λ )p( f x,y)},

then f has a unique fixed point z ∈
⋂m

i=1 Ai ⊂ Y.
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Proof First, let us construct {xn} ⊂Y. Assume that x0 = x, ∀x ∈Y , thus we obtain that x0 ∈

Ai0 for some i0. By definition 2.4, we claim that f x0 ∈ Ai0+1, and there exists x1 ∈ Ai0+1 such

that f x0 = x1. Similarly, there exists x2 ∈ Ai0+2 such that f x1 = x2. By inductive method, for

each n ∈ω, there exist xn ∈ Ain and xn+1 ∈ Ain+1, where in ∈ {1,2, ...,m}, such that f xn = xn+1.

If f nx = f n+1x for some n ∈ ω , then f nx is a fixed point of f , and f nx’s uniqueness follows

as in the last part.

So, suppose that f nx 6= f n+1x, ∀n ∈ ω .

First, by the proof of Theorem 3.1, we obtain that lim
n→∞

p(xn,xn+1) = 0.

Similarly, if {xnk} is any subsequence of {xn}, then we obtain that lim
k→∞

p(xnk ,xnk+1) = 0, and

lim
k→∞

p(xnk ,xnk+i) = 0, ∀i ∈ N. (5)

Next, we shall prove that lim
n,m→∞

p(xn,xm) = 0.

Now, we can decompose {xn} into m subsequence {x(i)n }, i = 1,2, ...,m, where x(i)n ∈ Ai, ∀n∈

ω. In order to prove that {xn} is Cauchy sequence in (Y, p) or (Y, ps) by Lemma 2.3, we only

need to prove that any {x(i)n } is Cauchy sequence in (Y, p), i = 1,2, ...,m.

W.l.g., let x0 ∈ Am and xm ∈ Am. Next, we shall show that lim
j,l→∞

p(x(m)
j ,x(m)

l ) = 0.

We define

r jlk
st = p(x(m)

jk+s,x
(m)
lk+t), r jk

st = p(x(m)
jk+s,x

(m)
jk+t), rlk

st = p(x(m)
lk+s,x

(m)
lk+t),

r jlkh
st = p(x(m)

jkh+s,x
(m)
lkh+t), r jkh

st = p(x(m)
jkh+s,x

(m)
jkh+t), rM = M(x(m)

jk ,x(m)
lk−1),

rMh = M(x(m)
jkh

,x(m)
lkh−1),

where s, t ∈ {−m, −1, 0, 1}.

Now suppose the contradiction, thus for sequence { jk},{lk} ⊂ N with lk > jk ≥ k0, there

exist ε > 0 such that

r jlk
00 ≥ ε and r jlk

0−1 < ε, ∀k ∈ N (6)

Since (5) holds, then for any k ∈ N, by (6) we get

ε ≤ r jlk
00 ≤ r jlk

0−1 + rlk
−10 < ε + rlk

−10,
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so

lim
k→∞

r jlk
00 = ε,

and

lim
k→∞

φ(r jlk
00 ) = φ(ε)< ε.

Now, we claim that {rM} has a subsequence {rMh}, and lim
k→∞

rMh = α , where α ∈ [ ε

2 ,ε] is a

constant.

Indeed, since

ε ≤ r jlk
00 ≤ r jk

01 + r jlk
1−1 + rlk

−10

so

ε ≤ lim
k→∞

r jlk
1−1 (7)

Besides, for any ε
′ ∈ (0,ε), there exists k

ε
′ ∈ N such that for all k ≥ k

ε
′

r jk
01 < ε

′
, rlk

−m−1 < ε
′

and rlk
−10 < ε

′
.

Moreover, because r jlk
0−1 < ε , thus for lk > jk ≥min{k0,kε

′} we have

r jlk
00 ≤ r jlk

0−m + rlk
−m−1 + rlk

−10 < ε +2ε
′
, (8)

and

r jlk
1−1 ≤ r jk

10 + r jlk
0−m + rlk

−m−1 < 2ε
′
+ ε, (9)

Hence by (7)(8)(9), for each lk > jk ≥min{k0,kε
′}, we get

ε

2
≤ lim

k→∞

r jlk
1−1

2
≤ lim

k→∞
(1−λ )r jlk

1−1 ≤ lim
k→∞

rM

= lim
k→∞

max{r jlk
0−1, r jk

10, rlk
0−1, λ r jlk

00 +(1−λ )r jlk
1−1}

< max{ε, ε
′
, ε
′
, ε +2ε

′
}

= ε +2ε
′
.
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Then, lim
k→∞

rMh = α ∈ [ ε

2 ,ε], so

lim
k→∞

φ(rMh) = φ(α)< α ≤ ε.

Now, we choose β ∈ (φ(α),α). Hence there exists hβ ∈ N such that r jkh
01 < β − φ(α) for

h≥ hβ , and for some h≥ hβ , we obtain that

r jlkh
00 ≤ r jkh

01 + r jlkh
10 < β −φ(α)+φ(rMh)< α ≤ ε,

i.e

r jlkh
00 < ε

which contradicts with r jlk
00 ≥ ε, ∀k ∈ N.

By the proof above, we have that lim
j,l→∞

p(x(m)
j ,x(m)

l ) = 0, i.e. {x(m)
n }n∈ω is Cauchy se-

quence in (Y, p), and then {x(m)
n }n∈ω is Cauchy sequence in (Y, ps). In the similar way, any

{x(i)n }n∈ω , i = 1,2, ...,m− 1, is Cauchy sequence in (Y, ps). Therefore {xn}n∈ω is Cauchy se-

quence in (Y, p) and (Y, ps).

Because Y is a closed set of (Y, ps), thus (Y, ps) is a complete metric space. Then {xn}

converges to a point z ∈ Y in (Y, ps), by Lemma 2.3, we have

0 = p(z,z) = lim
n→∞

p(z,xn) = lim
n,m→∞

p(xn,xm)

Note that {xn} has an infinite number of terms in Ai, i = 1,2, ...,m. Therefore, in Ai, i =

1,2, ...,m, we can construct a subsequence of {xn} that converges to z. Since any Ai, i =

1,2, ...,m, is a closed subset, it is easy to conclude that z ∈
⋂m

i=1 Ai and
⋂m

i=1 Ai 6= /0.

Now, let Z =
⋂m

i=1 Ai. Since each Ai, i = 1,2, ...,m, is a closed subset, then Z is also a closed

set, and (Z, p) is complete PMS. Since f |Z satisfies all conditions of Theorem 3.1 and so f |Z

has a unique fixed point in Z, where f |Z is a restrictive self-map on Z.

If there exists v ∈ Y such that v = f v, then we have

p(z,v) = p( f z, f v)≤ φ(M(z,v)) = φ(p(z,v))

which contradicts with φ(t)< t for t > 0. This concludes the proof. �
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Remark 2 If we take λ = 1
2 in Theorem 3.1 and Theorem 3.2, then we shall obtain Theorem

3 [1] and Theorem 2.3 [2], respectively.

Remark 3 If we take λ = 1
2 and take φ(t) = kt for k ∈ [0,1) in Theorem 3.2, then we shall

obtain corollary 2.5 [2]

Part 2. Fixed point theorem for generalized ϕ−weak contraction in partial metric

spaces

In this part, we shall extend the Theorem 5 of T.Abdeljiawad [5] and establish the common

fixed point result of four self-maps which use generalized ϕ-weak contractions in partial metric

spaces.

Theorem 3.3 If (X , p) is complete PMS, and f ,g,h,q : X → X satisfy: λ ∈ [0, 1
2 ] ϕ ∈ Θ,

f X ⊆ qX , gX ⊆ hX and for any x,y ∈ X ,

p( f x,gy)≤M(x,y)−ϕ(M(x,y)), (10)

where M(x,y) = max{p(hx,qy), p( f x,hx), p(gy,qy),λ p(hx,gy)+(1−λ )p( f x,qy)}.

If anyone of the subsets f X ,gX ,hX or qX is closed subset of (X , p), then { f ,h}, {g,q} have

both a point of coincidence.

Besides, if { f ,h}, {g,q} are weakly compatible, then the maps f ,g,h and q have a unique

common fixed point in X .

Proof First, let us construct {yn}, {xn} ⊂ X . Assume that ∀y0 ∈ X and x0 = f y0. Because

f X ⊆ qX , thus let y1 ∈ X such that x0 = f y0 = qy1. In the similar way, we assume that x1 = gy1,

and let y2 ∈ X such that x1 = gy1 = hy2. By inductive method, we have that

x2n = f y2n = qy2n+1 and x2n+1 = gy2n+1 = hy2n+2, ∀n ∈ N.

Next, we shall prove that lim
n→∞

p(xn,xn+1) = 0.
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Indeed, by using (10) we get

p(x2n,x2n+1) = p( f y2n,gy2n+1)≤M(y2n,y2n+1)−ϕ(M(y2n,y2n+1)), ∀n ∈ N (11)

where M(y2n,y2n+1) = max{r2n
−10, r2n

10, λ r2n
−11 +(1−λ )r2n

00}, and r2n
i j = p(x2n+i,x2n+ j),

i, j ∈ {−1,0,1}.

(A) if M(y2n,y2n+1) = r2n
−10, then by (11) we have

r2n
01 ≤ r2n

−10−ϕ(r2n
−10)≤ r2n

−10.

(B) if M(y2n,y2n+1) = r2n
10, then by (11) we have

r2n
01 ≤ r2n

10−ϕ(r2n
10)

hence ϕ(r2n
10)≤ 0, r2n

01 = 0 and x2n = x2n+1.

(C) if M(y2n,y2n+1) = λ r2n
−11 +(1−λ )r2n

00, then

r2n
01 ≤ M(y2n,y2n+1)

= λ (r2n
−11 + r2n

00)+(1−2λ )r2n
00

≤ λ (r2n
−10 + r2n

01)+(1−2λ )r2n
01

i.e. r2n
01 ≤ r2n

−10.

Then by above (A)(B)(C), we obtain

p(x2n,x2n+1)≤ p(x2n−1,x2n), ∀n ∈ N.

Analogously,

p(x2n−1,x2n)≤ p(x2n−2,x2n−1), ∀n ∈ N.

Therefore we claim that p(xn,xn+1)≤ p(xn−1,xn), ∀n ∈ N, and lim
n→∞

p(xn,xn+1) = r0, where

r0 ≥ 0 is a constant.
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Now, we assume that n is an even, and by using (11) and taking limit of the inequality:

p(xn,xn+1) = p( f yn,gyn+1)≤M(yn,yn+1)

= max{rn
0−1, rn

01, λ rn
−11 +(1−λ )rn

00}

≤ max{rn
0−1, rn

01, λ (rn
−10 + rn

01− rn
00)+(1−λ )rn

00}

= max{rn
0−1, rn

01, λ (rn
−10 + rn

01)+(1−2λ )rn
00}

≤ max{rn
0−1, rn

01, λ (rn
−10 + rn

01)+(1−2λ )rn
01}

where rn
i j = p(xn+i,xn+ j), i, j ∈ {−1,0,1}, so we get

lim
n→∞

p(xn,xn+1) = lim
n→∞

M(yn,yn+1) = r0.

Because ϕ ∈Θ, so

ϕ(r0)≤ liminf
n→∞

ϕ(M(yn,yn+1))

Now by taking upper limits as n→ ∞ for the following inequality:

p(xn,xn+1)≤M(yn,yn+1)−ϕ(M(yn,yn+1)),

so, we get

r0 ≤ r0− liminf
n→∞

ϕ(M(yn,yn+1))≤ r0−ϕ(r0)

i.e. ϕ(r0)≤ 0, then r0 = 0 and lim
n→∞

p(xn,xn+1) = 0. (12)

Now, let us prove that lim
n,m→∞

p(xn,xm) = 0.

Clearly, we need only to prove that limn,m→∞ p(x2n,x2m)= 0. Now suppose the contradiction,

thus there exist ε > 0, k0 ∈ N and two sequence {2nk},{2mk} in N with nk > mk ≥ k0 (k ∈ N)

such that

p(x2nk ,x2mk)> ε (∗)

where for k ∈N, we shall denote 2nk the smallest even integer outdoing 2mk such that (∗) holds.

Hence p(x2nk−2,x2mk)≤ ε and ϕ(ε)> 0 for ε > 0.
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Since

ε < p(x2nk ,x2mk)≤ p(x2mk ,x2nk−2)+ p(x2nk−2,x2nk)

≤ ε + p(x2nk−2,x2nk)

therefore by (12) and definition 2.1, we obtain that lim
k→∞

p(x2nk ,x2mk) = ε . (13)

Similarly, letting r0
i j = p(x2nk+i,x2mk+ j), r1

i j = p(x2nk+i,x2nk+ j),r2
i j = p(x2mk+i,x2mk+ j),

i, j ∈ {0,1,2}, we get

|r0
10− r0

00| ≤ r1
01, |r0

10− r0
11| ≤ r2

01

|r0
11− r0

21| ≤ r1
12, |r0

20− r0
21| ≤ r2

01

so by (12)(13), we get

lim
k→∞

p(x2mk ,x2nk+1) = ε, lim
k→∞

p(x2mk+1,x2nk+1) = ε

lim
k→∞

p(x2mk+1,x2nk+2) = ε, lim
k→∞

p(x2mk ,x2nk+2) = ε (14)

Then, by (14) we have that lim
k→∞

M(y2nk+2,y2mk+1) = ε . (15)

So by (10), we have

p(x2nk+2,x2mk+1) = p( f y2nk+2,gy2mk+1)≤M(y2nk+2,y2mk+1)−ϕ(M(y2nk+2,y2mk+1))

i.e.

ϕ(M(y2nk+2,y2mk+1))≤M(y2nk+2,y2mk+1)− p(x2nk+2,x2mk+1) (16)

Hence, by (14)(15), the condition that ϕ ∈Θ, and letting k→ ∞ in (16) we get

ϕ(ε)≤ liminf
k→∞

ϕ(M(y2nk+2,y2mk+1))≤ lim
k→∞

[M(y2nk+2,y2mk+1)− p(x2nk+2,x2mk+1)] = 0

which is contradictive with the assumption. Therefore, lim
n,m→∞

p(xn,xm) = 0.

Next, we assume that h(X) is closed subset of complete PMS, thus {xn} converges to a point

z0 ∈ h(X). Then we get

lim
n,m→∞

p(xn,xm) = lim
n→∞

p(xn,z0) = p(z0,z0) = 0

Now, let z1 ∈ X such that h(z1) = z0. Then we obtain that lim
n→∞

M(z1,y2n+1) = p( f z1,z0).
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Because ϕ ∈Θ, we have

ϕ(p( f z1,z0))≤ liminf
n→∞

ϕ(M(z1,y2n+1))

moreover, by taking upper limits as n→ ∞ for the following inequality:

p( f z1,x2n+1) = p( f z1),gy2n+1)≤M(z1,y2n+1)−ϕ(M(z1,y2n+1))

so, we obtain that

p( f z1,z0)≤ p( f z1,z0)− liminf
n→∞

ϕ(M(z1,y2n+1))≤ p( f z1,z0)−ϕ(p( f z1,z0))

hence ϕ(p( f z1,z0))≤ 0, p( f z1,z0) = 0 and z0 = f z1 = hz1.

Since f X ⊆ qX , then let z2 ∈ X such that z0 = f z1 = qz2.

Because M(z1,z2) = p(gz2,z0), and

p(z0,gz2) = p( f z1,gz2)≤M(z1,z2)−ϕ(M(z1,z2)) = p(gz2,z0)−ϕ(p(gz2,z0))

hence ϕ(p(gz2,z0))≤ 0, p(gz2,z0) = 0 and z0 = gz2 = qz2.

By the proof above, we conclude that f z1 = hz1 = z0 = gz2 = qz2.

Next, if { f ,h}, {g,q} are weakly compatible, thus

f z0 = hz0, gz0 = qz0

Since M(z0,z2) = p( f z0,z0), then by (2.3.1), we get

p( f (z0),z0)≤M(z0,z2)−ϕ(M(z0,z2)) = p( f z0,z0)−ϕ(p( f z0,z0))

hence ϕ(p( f z0,z0))≤ 0, z0 = f z0 = hz0. Similarly, we obtain that z0 = gz0 = qz0. Thus z0 is a

common fixed point of f ,g,h,q.

Finally, let us complete the proveness of the uniqueness. If z = f z = gz = hz = qz, z ∈ X ,

then we have

p( f z0,gz)≤M(z0,z)−ϕ(M(z0,z) = p(z0,z)−ϕ(p(z0,z)),

i.e ϕ(p(z0,z))≤ 0. Hence p(z0,z) = 0 and z0 = z. �
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Remark 4 In Theorem 3.3, there are conditions: (i) h and v are both identity maps and (ii)

f = g. If (i) or (i)(ii) holds, we shall establish relevant fixed point theorems of two mappings

or only one mapping, respectively.
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[3] M. Păcurar, I. A. Rus, Fixed point theory for cyclic ϕ-contractions. Nonlinear Anal., TMA 72(2010), 1181-

1187.

[4] D.M. Erhan, E.Karapinar, and D. Turkoglu. Different types Meir-Keeler contractions on partial metric spaces,

J. Comput. Anal. Appl 14(2012), 1000-1005.
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