
Available online at http://scik.org

J. Math. Comput. Sci. 9 (2019), No. 4, 432-446

https://doi.org/10.28919/jmcs/4089

ISSN: 1927-5307

A FAST GRADIENT PROJECTION ALGORITHM FOR TIME FRACTIONAL
OPTIMAL CONTROL PROBLEM

YU SHI1, CHENYANG ZHANG2,∗

1School of Science, Shandong Jiaotong University, Jinan 250000, China

2School of Mathematics and Statistics, Shandong Normal University, Jinan 250000, China

Copyright c© 2019 the authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper a fast gradient projection algorithm for optimal control problems governed by time frac-

tional diffusion equation is developed. The state equation is discretized by piecewise linear FE for space variable

and L1 scheme for time variable, while the control variable is approximated by variational discretization. Based

on the block triangular Toeplitz structure of the coefficient matrix of the discretized state equation and adjoint state

equation, a fast gradient projection algorithm is designed for the control problem. Numerical examples are carried

out to illustrate the effectiveness of the algorithms.

Keywords: optimal control problem; time fractional diffusion equation; block triangular Toeplitz matrix; projec-

tion gradient algorithm; fast algorithm.
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1. INTRODUCTION

The main objective of this paper is to develop a fast algorithm for optimal control problems

governed by time fractional diffusion equation. Let ΩT = Ω× (0,T ), ΓT = ∂Ω× (0,T ) with Ω

being a bounded domain of Rd(1≤ d ≤ 3) and sufficiently smooth boundary ∂Ω. Consider the
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following optimal control problem:

min
u∈Uad

J(u,q) :=
1
2
‖u(x, t)−ud(x, t)‖2

L2(ΩT )
+

γ

2
‖q(x, t)‖2

L2(ΩT )
.(1.1)

subject to 
0∂

α
t u−∇ · (K(x, t)∇u) = f +q, (x, t) ∈ΩT ,

u(x, t) = 0, (x, t) ∈ ΓT ,

u(x,0) = 0, x ∈Ω.

(1.2)

Here 0∂ α
t u denotes the left Caputo fractional derivative of order α(0 < α < 1), which is defined

by

0∂
α
t u =

1
Γ(1−α)

∫ t

0

u′(s)
(t− s)α

ds.

The other details will be specified later.

Time fractional diffusion equation has been widely used to describe anomalous process in

many fields. In recent years lots of numerical methods and algorithms are proposed to solve

this kinds of problem, for example, finite difference methods[1, 2, 3, 4], Galerkin finite element

methods[5, 6, 7, 8], spectral methods[9, 10] and fast algorithms[11, 12, 13, 14].

In contrast to fractional differential equations and optimal control problem governed by in-

teger order differential equations, the research for fractional diffusion optimal control problem

is still immature and only a few literatures are reported on numerical methods and algorithms.

An initial value inverse problem for time fractional diffusion equation was investigated in [15]

under optimal control framework by spectral method. In [16] finite element method combined

with L1-scheme was applied to discretize time fractional optimal control problem with Caputo

derivative and a priori error estimate for semidiscrete case was proved. Recently, a fully discrete

error estimate for L1 and back Euler scheme was developed in [17]. A fast projection gradient

algorithm for space fractional optimal control problem based on finite difference discretization

of the state equation was proposed in [18]. In [19], Legendre pseudo-spectral method com-

bining with L1 scheme was applied to approximate optimal control problem governed by a

time-fractional diffusion equation.

To obtain the numerical solution for optimal control problem we usually need to solve the

discrete first order optimality condition in an iterative manner, which consists of discrete state
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equation, adjoint state equation and variational inequality. The nonlocal property of time frac-

tional derivative results in big computational cost, since one need to save all previous infor-

mation. Therefore developing effective fast algorithm for fractional optimal control problem is

necessary.

Note that the diffusion coefficient depends on time variable. The coefficient matrix for the

discrete state equation and adjoint state equation is a block lower triangular Toeplitz-like with

tri-diagonal block(BT3LB-like) matrix, where the main diagonal matrix is different due to time

dependent diffusion coefficient. According to [14] , we develop a fast gradient projection al-

gorithm to solve the discrete first order optimality condition. The total computational cost for

solving the state and adjoint state equation is of O(MN log2 N) operations, which is smaller

than those of the traditional block forward substitution method (BFSM)(see, [20]) and the clas-

sical inverse method. Numerical experiments are carried out to show the efficiency of the fast

algorithm.

The paper is organized as follows. In Section 2, for the optimal control problems, the first

order optimality condition is given. In Section 3, a fully discrete scheme for the control problem

is presented based on L1 discretization for time variable. The structure of the coefficient matrix

for discrete state and adjoint state equation is investigated. A fast projection gradient algorithm

is developed in section 4. Numerical results are given to show the effectiveness of fast algorithm

in Section 5.

2. OPTIMAL CONTROL PROBLEM

Consider the following time-fractional optimal control problem

min
q∈Uad

J(u,q),(2.1)

subject to 
0∂

α
t u−∇ · (K(x, t)∇u) = f +q, (x, t) ∈ΩT ,

u(x, t) = 0, (x, t) ∈ ΓT ,

u(x,0) = 0, x ∈Ω.

(2.2)
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Here Uad is the admissible set defined by

Uad = {u ∈ L2(ΩT ) : ua ≤ u(x, t)≤ ub a.e. in ΩT with ua,ub ∈ R}.

f ,ud ∈ L∞(0,T ;L2(Ω)) are given functions, K(x, t) is the diffusion coefficient. Since the state

equation is linear and the objective functional is strictly convex, the existence and uniqueness

of the solution of above control problem can be guaranteed by standard theory(see, [16]).

For above optimal control problem the following first order optimality conditions holds(see,[16]).

Theorem 2.1. Assume that u ∈Uad is the solution to optimal control problem (2.1)-(2.2) and u

is the corresponding state variable given by (2.2). Then there exists an adjoint state z such that

(u,z,q) satisfies the following optimality conditions:
0∂

α
t u−∇ · (K(x, t)∇u) = f +q, (x, t) ∈ΩT ,

u(x, t) = 0, (x, t) ∈ ΓT ,

u(x,0) = 0, x ∈Ω.

(2.3)


t∂

α
T z−∇ · (K(x, t)∇z) = u−ud, (x, t) ∈ΩT ,

z(x, t) = 0, (x, t) ∈ ΓT ,

z(x,T ) = 0, x ∈Ω.

(2.4)

∫
ΩT

(γq+ z)(v−u)≥ 0,∀v ∈Uad.(2.5)

Here t∂
α
T z denotes the right Caputo fractional derivative of order α(0 < α < 1), which is

defined by the following formula

t∂
α
T z =− 1

Γ(1−α)

∫ T

t

z′(s)
(s− t)α

ds,

Let

PUad(q(x, t)) = max{qa,min(z(x, t),qb)}

denote the pointwise projection onto the admissible set Uad . Then (2.5) is equivalent to

q = PUad(−
1
γ

z).
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3. FINITE ELEMENT APPROXIMATION

3.1 Finite element discrete scheme for control problem

Let Vh be the finite element space consisting of continuous piecewise linear functions over

the triangulation Th:

Vh = {vh ∈ H1
0 (Ω)∩C(Ω); vh is a linear function over K ,∀K ∈ Th}.

To define the fully discrete scheme we introduce a time partition. Let ∆τ : 0 = t0 < t1 < · · · <

tN−1 < tN = T be a time grid with τ = T/N, tn = nτ,n = 0,1, . . . ,N.

Then the Galerkin finite element discrete scheme for the control problem (2.1)-(2.2) is to find

(Un+1,Qn+1) ∈Vh×Uad such that

min
Qn+1∈Uad

Jh,τ(Un+1,Qn+1)(3.1)

subject to 
(0Lα

t Un+1,χh)+(Kn+1
∇Un+1,∇χh) = ( f n+1 +Qn+1,χh),χh ∈Vh,

U0 = 0.
(3.2)

Here Kn+1 = K(x, tn+1), and the cost functional is discretized by the right rectangular rule:

Jh,τ(Un+1,Qn+1) :=
1
2

N−1

∑
n=0

τ

(
‖Un+1−un+1

d ‖2
L2(Ω) +γ ‖ Qn+1 ‖2

L2(Ω)

)
.(3.3)

The time fractional derivative is discretized by L1-scheme(see, [9]),

0∂
α
t un+1 ≈ 0Lα

t Un+1 =
1

Γ(2−α)

n

∑
i=0

Bi
Un+1−i−Un−i

τα
,

where Bi = (i+1)1−α − i1−α .

According [16], the following discrete optimality conditions can be derived based on ’first

discretize, then optimize’ approach:

(a)(0Lα
t Un+1,wh)+(Kn+1

∇Un+1,∇wh) = ( f n+1 +Qn+1,wh), ∀wh ∈V h,

(b)(tLα
T Zn,wh)+(Kn+1

∇Zn,∇wh) = (Un+1−un+1
d ,wh), ∀wh ∈V h,

(c)(γQn+1 +Zn,vh−Qn+1)≥ 0, ∀vh ∈Uad,

(d)U0 = 0,ZN = 0,n = 0,1, . . . ,N−1.

(3.4)
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Here

tLα
T Zn =

1
Γ(2−α)

N−1

∑
i=n

Bi−n
Zi−Zi+1

τα
.

By the projection operator PUad the discrete control variable Qn can be expressed as follows

Qn = PUad(−
1
γ

Zn−1).

3.2 The coefficient matrix of discrete state and adjoint state equation

In this part we are going to investigate the structure of the coefficient matrix of discrete state

and adjoint state equation. The finite element space Vh takes the following form

Vh = span{ϕ1,ϕ2, · · · ,ϕM}.

We denote the mass matrix and stiff matrix by M and S n+1, respectively, whose entries are

calculated by (ϕi,ϕ j) and (Kn+1∇ϕi,∇ϕ j), i, j = 1,2, . . . ,M.

For convenience, we set g(α) = 1
Γ(2−α)τα . By rearranging the discrete state equation, we have

the following formula

(g(α)B0U1,wh)+(K1
∇U1,∇wh) = ( f 1 +Q1,wh)+(g(α)B0U0,wh),

(g(α)(B1−B0)U1,wh)+(g(α)B0U2,wh)+(K2
∇U2,∇wh)

= ( f 2 +Q2,wh)+(g(α)B1U0,wh),

(g(α)(B2−B1)U1,wh)+(g(α)(B1−B0)U2,wh)+(g(α)B0U3,wh)+(K3
∇U3,∇wh)

= ( f 3 +Q3,wh)+(g(α)B2U0,wh),

...

(g(α)(BN−1−BN−2)U1,wh)+ · · ·+(g(α)B0UN ,wh)+(KN
∇UN ,∇wh)

= ( f N +QN ,wh)+(g(α)BN−1U0,wh).

Then above discrete state equation can be rewritten as follows

AU = b.(3.5)

Here

U = (U1,U2, . . . ,UN)T ,

b = (b1,b2, . . . ,bN)T
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with bn = (( f n +Qn,ϕ j))M×1,n = 1, . . . ,N, j = 1,2, . . . ,M, because the initial value U0 = 0.

The coefficient matrix A takes the following form

(3.6) A =



A0
0

A1 A1
0

...
... . . .

AN−2 AN−3 · · · AN−2
0

AN−1 AN−2 · · · A1 AN−1
0


,

where 
An

0 =g(α)B0M +S n+1, n = 0, . . . ,N−1,

An =g(α)(Bn−Bn−1)M , n = 1, . . . ,N−1.

In an analogous way we can rearrange the adjoint state equation as follows

(g(α)B0ZN−1,wh)+(KN
∇ZN−1,∇wh) = (UN−uN

d ,wh)+(g(α)B0ZN ,wh),

(g(α)(B1−B0)ZN−1,wh)+(g(α)B0ZN−2,wh)+(KN−1
∇ZN−2,∇wh)

= (UN−1−uN−1
d ,wh)+(g(α)B1ZN ,wh),

(g(α)(B2−B1)ZN−1,wh)+(g(α)(B1−B0)ZN−1,wh)+(g(α)B0ZN−3,wh)+(KN−2
∇ZN−3,∇wh)

= (UN−2−uN−2
d ,wh)+(g(α)B2ZN ,wh),

...

(g(α)(BN−1−BN−2)ZN−1,wh)+ · · ·+(g(α)B0Z0,wh)+(K1
∇Z0,∇wh)

= (U1−u1
d ,wh)+(g(α)BN−1ZN ,wh),

Then above equations implies

DZ = c,(3.7)

among

Z = (ZN−1,ZN−2, . . . ,Z0)T ,

c = (c1,c2, . . . ,cN)T .

cn = ((UN−n+1−uN−n+1
d ,ϕ j))M×1,n = 1, . . . ,N, j = 1, . . . ,M
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with the initial value ZN = 0. The coefficient matrix takes the following form:

(3.8) D =



D0
0

D1 D1
0

...
... . . .

DN−2 DN−3 · · · DN−2
0

DN−1 DN−2 · · · D1 DN−1
0


with 

Dn
0 =g(α)B0M +S N−n, n = 0, . . . ,N−1,

Dn =g(α)(Bn−Bn−1)M , n = 1,2, . . . ,N−1.

Remark: By the (3.6) and (3.8), we can observe that the coefficient matrix for state equa-

tion and adjoint state equation are both block lower triangular Toeplitz-like with tri-diagonal

block matrix. For K = K(x, t), we can observe that A and D only have different main diagonal

elements, i.e,

An
0 = DN−1−n

0 , n = 0,1, . . . ,N−1,

An = Dn, n = 1,2, . . . ,N−1.

At this point, the matrix A and D have the following form

A =


A0

0

A1 A1
0

... . . . . . .

AN−1 . . . A1 AN−1
0

 , D =


AN−1

0

A1 AN−2
0

... . . . . . .

AN−1 . . . A1 A0
0


in which all An

0, n = 0,1, . . . ,N−1,A j, j = 1, . . . ,N−1, are M×M tri-diagonal matrices. This

matrix is called BL3T B− like matrix.

4. FAST ALGORITHM

In this section, a fast projection gradient algorithm is designed to solve the optimal control

problem. In the following FN and F∗N denote the Fourier matrix and the inverse fourier matrix.

⊗ denotes the Kronecker tensor product,
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Note that for K = K(x, t) the coefficient matrix of the state equation and adjoint equation are

not exactly the same. Therefore, in this section, we focus on the following linear system with

BT 3T B− like matrix

AX = y.(4.9)

According [14], for N ≥ 1 satisfying N = 2p with p being a nonnegative integer, the matrix

A can be divided into the following four parts with k = N/2,

A =



A0
0
... . . .

Ak−1 · · · Ak−1
0

Ak · · · A1 Ak
1

...
...

... . . .

AN−1 · · · Ak Ak−1 · · · AN−1
0


=

 H 0

G Q

 .

Set

X =

 v(1)

v(2)

 and y =

 p(1)

p(2)

 .

Then the linear system (4.9) reduces to

(4.10)

 Hv(1) = p(1),

Qv(2) = p(2)−Gv(1).

Since H and Q are also BLT3B-like matrix, we can use an iterative algorithm to solve this

problem. So the remaining problem is how to calculate Gv(1). Note that G is a block toeplitz
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matrix. Then we can extend G into a MN×MN circular matrix G̃, whose first block column is:

R =



Ak
...

AN−1

0

A1
...

Ak−1


(NM×M)

,

Thus the term Gv(1) can be calculated by using of FFT in the following manner

G̃

 v(1)

0

= (F∗⊗ IM)diag(Λ0,Λ1, . . . ,ΛN−1)(F⊗ IM)

 v(1)

0

 ,(4.11)

where


Λ0

Λ1
...

ΛN−1

=
√

N(F⊗ IM)R.

For the equation (4.9), the calculation process is given by the following algorithm. According

[14], we called this algorithm DC-BFS, since this method combined the divided and conquer

method and the block forward substitution method.
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Algorithm 1 DC-BFS for solving the BL3T B− like system

1 Input {A j
0}

N−1
j=0 , {A j}N−1

j=1 and y, d = 1, n = N.

2 If N = 1, then solve A0
0X = y.

3 else

4 Carry out function DAC(d,n)

(a) If n = 1, then solve Ad
0Xd = yd ;

(b) else

(i) DAC(d,n/2);

(ii) according (4.11), correction right hand member y[d +n/2,d +n−1];

(iii) DAC(d+n/2,n/2);

(c) Endif

5 Endif

According the [14], we know the computational operator for above algorithm is O(MN log2 N).

Combined the DC-BFS method with the classical gradient projection we present the fast pro-

jection gradient algorithm.

Algorithm 2 Fast gradient projection algorithm
1 Given the time step τ , space step h and tolerance η .

2 Given the initial value Q, and set error = 1.

3 If error > η

4 Solving the state equation (a) in the discrete optimal system (3.4) to get state variable U by using AIM

or DC-BFS method;

5 Solving the adjoint state equation (b) in the discrete optimal system (3.4) to get adjoint state variable

Z by using AIM or DC-BFS method;

6 Using the pointwise projection PUad onto the admissible Uad to compute the control variable:

Qnew = PUad (−
1
γ

Z).

7 Calculate the error

error = norm(Q−Qnew, in f )/norm(Q, in f ).

8 Update the control variable Q = Qnew,

9 Endif
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If the diffusion coefficient is independent of time, the DC-BFS algorithm is still utilized. So

here we only discuss the time-dependent diffusion coefficient.

5. NUMERICAL EXPERIMENTS

In this example, we consider the problem with Ω = [0,1], γ = 1, K = 1+ t2 and T = 1 . The

exact solutions are given by

u = t2 sin(πx),

z = (1− t)2 sin(2πx),

q = max(−0.8,min(−z,−0.1)).

The right hand term f and the desired state ud can be calculated by the exact solutions and

governing equation. In this example the diffusion coefficient depends on time variable. There-

fore, the fast algorithm is equipped with DC-BFS.

The space-time surfaces of discrete state variable, adjoint state variable and the control vari-

able are displayed in Fig. 1.
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FIGURE 1. discrete state U, adjoint state Z and control Q.

In table 1, we give a comparison of the computing time for the gradient projection algorithm

equipped with DC-BFS and BFSM. We can observe from Table 3 that fast algorithm can effec-

tively reduce computation time. In Fig. 2 and 3, the relationship between time growth and time

division for the gradient projection algorithm equipped with DC-BFS and BFSM are given. We

can see that in the fast algorithm equipped with DC-BSF the computation time is almost linear

with N, which is in agreement with the theoretical result.
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M N 25 26 27 28 29 210

25 DC-BFS 0.0453 0.0871 0.191 0.403 0.864 1.843

BFSM 0.069 0.211 0.694 2.435 9.295 46.017

26 DC-BFS 0.0682 0.148 0.320 0.691 1.531 3.201

BFSM 0.151 0.457 1.693 11.628 47.972 218.080

27 DC-BFS 0.135 0.297 0.650 1.418 3.080 6.618

BFSM 0.493 2.931 11.918 50.269 207.310 1024.181
TABLE 1. computation time
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FIGURE 2. the time of DC-BFS
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FIGURE 3. the time of BFSM
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