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I.  Introduction 

 

In the 1950’s and 1960’s mathematicians developed some constructive dense sphere packings 

based on lattices in spaces of moderate to high dimensional namely, 2n-dimensional Barnes-Wall 

lattices [1] and ultra dense 24-dimensional Leech lattice [2]. Forney [8], [12] exposed the 

outstanding squaring construction of Barnes-Wall lattices, their principal sublattices and their 

rotated versions with the code formulas in real and complex forms. Salomon and Amrani [11] 

found some product lattices which are easy to encode decode, yet the dimensions of these 

product lattices are typically smaller than the good binary lattices of similar minimum distance. 

Goldberg [5], Rao and Reddy [6], Peng and Farrell [7] discussed a technique called 
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augmentation of original product code with several of its cosets or (AP construction) to solve this 

problem such that the minimum distance is not affected or marginally reduced. Salomon and 

Amrani [9], extended this AP construction to lattices and described it using a particular matrix 

representation of component lattices. They also have shown that BWPSL can be represented as a 

union of cosets of a product of two lower dimensional lattices from the same family. 

The principal purpose of this paper is to describe that the product of rotated versions of two 

distinct lattices from Barnes-Wall family is a sublattice of higher dimensional lattice of the same 

family. Significantly, the higher dimensional lattice can be represented as a union of cosets of the 

original product lattice. More precisely, it is shown that the real and complex form of 

aforementioned product gives a sublattice of rotated version and of rotated square version of 

higher dimensional Barnes-Wall principal sublattice. Particularly, a product lattice involving 

rotated versions of two distinct (mth and nth) members of Barnes-Wall family in complex form is 

again a higher dimensional member of the same family which is a promising construction in this 

paper. The description comprises an expanded generator matrix representation of lattices and 

their products. Expanded generator matrices are built using code formulas [11] however, we 

have presented a slightly modified form of code formulas of rotated versions given by Forney 

[12] to properly account for the coefficient of Reed-Muller codes. Indeed, it is proved that 

minimum distance remains invariant for each product lattice and coding gain of augmented 

lattice, as compared to the PL, is improved. For completeness, we give some illustrations in 

tabular form embracing a few known lattices, their products along with the parameters.  

 

II.  Preliminaries 

 

The Barnes-Wall lattices are a family of 2n-dimensional binary lattices. The nth member of this 

family ),0( nΛ  may be regarded as a 2n+1-dimensional real lattice or 2n-dimensional complex 

lattice. The Barnes-Wall lattices are decomposable with code formulas that involve the code 

family of Reed-Muller codes which when considered of a given length are nested in the sense 

that RM(n,n)/RM(n,n-1)/...../RM(0,n) is a code partition chain [8]. The principal sublattices of 

Barnes-Wall lattices are a family of lattices ,0,0),,( nrnnr ≤≤≤Λ which may be defined as 

decomposable 2n-dimensional complex lattice and 2n+1-dimensional real lattice with the 

following code formulas [12].     
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Complex formula 

                           )1(),(),( )()( ∑
≤′≤

−′− φ′+φ=Λ
nrr

rrNrn
c nrRMGnr    

Real formulas 

For rn −  even  

)2(2)1,(2),(
,1

2/)(22/)( ∑
′−≤′≤+

′−− +′+=Λ
evenrnnrr

rnNrn
r nrRMZnr  

For rn −  odd                                                                                   

                          )3(2)1,(2),(
,1

2/)(22/)1( ∑
′−≤′≤+

′−+− +′+=Λ
evenrnnrr

rnNrn
r nrRMZnr  

Further, the rotated version of Barnes-Wall principal sublattices ),( nrRΛ  are easily accomplished 

by operating the 2N-dimensional rotation operator R, defined in [8] on the principal sublattices 

),( nrΛ . We provide a slightly modified form of the code formulas given by Forney in [12] of 

these rotated versions as follows: 

Complex formula 

                          )4(),(),( )1()1( ∑
≤′≤

+−′+− φ′+φ=Λ
nrr

rrNrn
c nrRMGnrR    

Real formulas 

For rn −  even  

)5(2)1,(2),(
,

2/)(22/)2( ∑
′−≤′≤

−′+− +′+=Λ
evenrnnrr

rrNrn
r nrRMZnrR  

For rn −  odd                                                                   

  )6(2)1,(2),(
,

2/)(22/)1( ∑
′−≤′≤

−′+− +′+=Λ
oddrnnrr

rrNrn
r nrRMZnrR  

where N=2n, i+=φ 1  and RM(r, n) represents Reed-Muller code. Thus ),( nnΛ  are the Gaussian 

integer lattice GN in complex form and the integer lattice Z2N in real form, ),0( nΛ  is the Barnes- 

Wall lattice as mentioned above and 1:),1( ≥−Λ nnn is the checkerboard lattice D2N. Also note that 

according to real form formulas (2) and (3), ),1( n−Λ is a rotated version of the Barnes-Wall lattice 

i.e., ),0(),1( nRn rr Λ=−Λ  where R is 2N-dimensional rotation operator. 
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    The minimum squared distance and the fundamental volume of ),( nrRΛ are given as 2n--r+1 and 

∑ <′≤
′+−=Λ nrr

nrkrnNnrRV
),()1( 22)),(( respectively where ),( nrk  is the number of information bits 

associated with RM((r ,n) (the dimension of G(r, n)) and ∑ <′≤
′

nrr
nrk ),(  represents the total 

number of coded bits. For these values of minimum squared distance 2
mind  and the fundamental 

volume )),(( nrRV Λ , the fundamental coding gain is [8] 

  )7(2
)),((

)),((
)),((

),(1

22

2
min ∑ <′≤

′
=

Λ

Λ
=Λγ nrr

nrk
N

NnrRV

nrRd
nrR  

 

Barnes-Wall Product lattice: Lattices are often analyzed in terms of their generator matrices [10]. 

Thus, let us denote ),(),( 2211 nrMandnrM  as the generator matrices of lattices ),( 11 nrΛ  and ),( 22 nrΛ  

respectively. The product of these two lattices yields a product lattice whose generator matrix is 

),(),( 2211 nrMnrM ⊗ [11]. 

  Salomon and Amrani presented the augmented product construction of Reed-Muller codes in [9] 

and proved an important Lemma stated as: 

 

Lemma I:  For any integer l and set of Reed-Muller codes { }l
iii nrRM 1),( = , with ii nr ≤≤0                  

),(),(.....),(),(
11

2211 ∑∑
==

⊆⊗⊗
l

i
i

l

i
ill nrRMnrRMnrRMnrRM . 

 

III. Augmented product construction of rotated version of Barnes-Wall principal 

sublattices in real form 

 

Let us consider two real form rotated version of Barnes-Wall principal sublattices ),( 11 nrRΛ and 

),( 22 nrRΛ . Salomon and Amrani provided the representation of lattice in terms of expanded 

generator matrix [11] which is a proper generator matrix and span the lattice i.e., every lattice 

point can be represented as an integral linear combination of its rows and any such combination 

is necessarily a lattice point. Using (5) and (6), we construct below the expanded generator 

matrices ),(~
iir nrMR  for each lattice; in each case, the first matrix is for (ni - ri) even while the 

second matrix is for (ni - ri ) odd: 
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where ),( nrGRM  are generator matrices of ),( nrRM . Next we prove that all the rows of the 

expanded matrix ),(~),(~
2211 nrMRnrMR rr ⊗  are contained in the matrix )1,(~

2121 +++ nnrrMR r  in the 

following Lemma.  

 

Lemma II:  For any 2211 0,0 nrnr ≤≤≤≤   

                     )1,(~),(~),(~
21212211 +++⊆⊗ nnrrMRnrMRnrMR rrr  

    Proof: In accordance with the parity of )( 11 rn −  and )( 22 rn −  appear in the expression 

),(~),(~
2211 nrMRnrMR rr ⊗  we will have four distinct cases: 

Case I: 11 rn −  odd and 22 rn −  odd imply 12121 +−−+ rrnn  odd 
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Using Lemma I and the facts that ),1(),( nrGnrG RMRM +⊂  and that changing the order of the rows 

of an (expanded) generator matrix yields the same lattice, all the the rows of 

),(~),(~
2211 nrMRnrMR rr ⊗  in Case I are explicitly contained in )1,(~

2121 +++ nnrrMR r . The other three 

Cases constitute the same characteristics and the expressions are given below 

Case II: 11 rn −  odd and 22 rn −  even imply 12121 +−−+ rrnn  even 

=⊗ ),(~),(~
2211 nrMRnrMR rr  
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Case III: 11 rn −  even and 22 rn −  odd imply 12121 +−−+ rrnn  even 
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Case IV: 11 rn −  even and 22 rn −  even then 12121 +−−+ rrnn  odd 

=⊗ ),(~),(~
2211 nrMRnrMR rr  
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We shall now show the main result of this Section in the following theorem. 

 

Theorem 1:   For any 2211 0,0 nrnr ≤≤≤≤   

                     )1,(),(),( 21212211 +++Λ⊆Λ⊗Λ nnrrRnrRnrR rrr  

      Proof:  The kronecker product of any two lattices is given by kronecker product of their 

corresponding expanded generator matrices. Thus, the matrix ),(~),(~
2211 nrMRnrMR rr ⊗  is the 

expanded generator matrix of ),(),( 2211 nrRnrR rr Λ⊗Λ . Lemma II reveals that in each case, 

expanded generator matrix of )1,( 2121 +++Λ nnrrR r  contains all the rows of expanded generator 

matrix of ),(),( 2211 nrRnrR rr Λ⊗Λ . 

    Corollary 1.1: The minimum distance of real PL involving rotated versions of the two Barnes-

Wall principal sublattices as its component lattices is the product of the minimum distances of 

the two component lattices despite of dimension.  

   Proof: It is known that [11]  

 )8()),(()),(()),(),(( 22
2
min11

2
min2211

2
min nrRdnrRdnrRnrRd rrrr ΛΛ≤Λ⊗Λ   

Also Theorem 1 tells that  
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The equalities in (10) prove the corollary and also make known that the minimum distance 

remains same by augmenting cosets of the product lattice ),(),( 2211 nrRnrR rr Λ⊗Λ  until the complete 

rotated version of Barnes-Wall principal sublattice is obtained which in turn suggests the 

following result for fundamental coding gain: 

Corollary 1.2:    The fundamental coding gain of augmented lattice is improved as 

compared to the PL. 

In general from [11], 
                          1 1 2 2 1 1 2 2( ( , ) ( , )) ( ( , )) ( ( , )) (11)r r r rR r n R r n R r n R r nγ Λ ⊗ Λ = γ Λ γ Λ  

Using (7) and the fact that fundamental coding gain remains same under scaled orthogonal 

transformation, the equality (11) becomes   

1 21 2
1 21 2

1 1 2 2 1 1 2 2
1 1( , ) ( , )

2 2

( ( , ) ( , )) ( ( , )) ( ( , ))

2
n n

r rr n r n

r r r r

k r n k r n

R r n R r n r n r n

′ ′≤ ≤ ≤ ≤

′ ′+

γ Λ ⊗ Λ = γ Λ γ Λ

=
∑ ∑  

Substituting for the dimension of RM code, ∑
≤≤









=

nm
m
n

nrk
0

),(  

    
))1,(((

2

2

2121

1
2

1

2
1

2
1

0

21

12121
121

0

2

22
2

0

1

11
1

+++Λγ=
≤

=

∑∑

∑∑∑∑

′≤≤++≤′≤+
++

′≤≤≤′≤′≤≤≤′≤






 ++






+







nnrrR r

m
nn

m
n

m
n

rmnnrrr
nn

rmnrr
n

rmnrr
n

                    

 

Corollary 1.3:   For any integer m and a set of lattices m
iiir nrR 1)},({ =Λ , with ii nr ≤≤0             

 












+−Λ⊆Λ⊗⊗Λ⊗Λ ∑∑

==

m

i
i

m

i
irmmrrr nmrRnrRnrRnrR

11
2211 1,),(......),(),(                                 

The proof of above corollary is a simple extension of Theorem 1.    
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Example 1.4: The product of rotated versions of two “checkerboard” lattices is a sublattice of 

rotated version of a lattice from Barnes-Wall family of different type i.e. 

  
)1,2(

),1(),1(

2121

221122 1211

++−+Λ⊆

−Λ⊗−Λ=⊗ ++

nnnnR

nnRnnRRDRD

r

rrnn                         

Here r
NRD2  represents the real form “checkerboard” lattice of dimension 2N. In particular if we 

take N=2, 1644 )3,0()1,0()1,0( Λ=Λ⊆Λ⊗Λ=⊗ RRRRRDRD rrr  . 

 

IV. Augmented product construction of rotated version of Barnes-Wall principal 

sublattices in Complex form 

Corresponding to an 21NN - dimensional complex form PL ),(),( 1111 nrnr cc Λ⊗Λ , the dimension of 

PL in real form is 212 NN  where 21, NN  denote the dimensions of (complex) lattices ),( 11 nrcΛ  and 

),( 22 nrcΛ  respectively. Thus, ),(),( 1111 nrnr cc Λ⊗Λ  does not correspond to 214 NN  dimensional real 

form product lattice ),(),( 1111 nrnr rr Λ⊗Λ  and it needs a separate treatment. Neverthless, AP 

construction is provided involving the rotated versions of two different principal sublattices.  

Consider 1 1( , )cR r nΛ  and 2 2( , )cR r nΛ  be two complex form Barnes-Wall principal sublattice in 

rotated version. Corresponding expanded generator matrices are deemed as 1 1( , )cRM r n and 

1 1( , )cRM r n respectively. Using (1), (4) and the equality ),(),( iiciic nrnrR Λφ=Λ µµ  [8] we can construct 

the complex expanded generator matrices of ),( 11 nrR cΛ , ),( 22 nrR cΛ and ),( 2121
2 nnrrR c ++Λ  as :     

=),(~
11 nrMR c                               =),(~

22 nrMR c                               =++ ),(~
2121

2 nnrrMR c         
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+φ

−φ

−φ

φ
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−
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),1(
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),2(

),1(

),(
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2
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1
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11
1
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11

11
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nrG

nnG

nnG

nnG
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RM
rn

RM
rn

RM
rn
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−φ

−φ
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−

+−

),(

),1(

...

...
),2(

),1(

),(
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2

22
1

22
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1
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nrG

nnG

nnG

nnG

RM

RM

RM
rn

RM
rn

RM
rn

;          
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+++φ

+−+φ

+−+φ

++φ

+−+

++−+

++−+

),(

),1(

...

...
),2(

),1(

),(

2121
2

2121
3

2121

2121
1

2121
2

2121

2121

2121

nnrrG

nnrrG

nnnnG

nnnnG

nnnnG

RM

RM

RM
rrnn

RM
rrnn

RM
rrnn

 

We shall now prove that the kronecker product of rotated versions of two distinct BWPSL is a 

sublattice of square rotated version of higher dimensional lattice from the same family. For this, 

we need to prove the following Lemma.  

 

Lemma III:   For any 2211 0,0 nrnr ≤≤≤≤   
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 (i) ),(~),(~),(~
2121

2
2211 nnrrMRnrMRnrMR ccc ++⊆⊗   

 (ii) ),0(~),0(~),0(~
21

2
21 nnMRnMRnMR ccc +=⊗  

 Proof: Using the (complex) expanded generator matrices mentioned before, Lemma I along with 

the facts that ),1(),( nrGnrG RMRM +⊂  and that changing the order of the rows of an (expanded) 

generator matrix yields the same lattice, prove (i) of  Lemma and it can be shown as: 

=⊗ ),(~),(~
2211 nrMRnrMR cc  
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⊗+

φ









⊗−
−⊗−

−⊗
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−⊗
⊗−
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⊗φ
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+−−+

+−−+

),(),(

),1(),(
),(),1(
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....

),(),2(
),1(),1(

),2(),(

),1(),(
),(),1(

),(),(

2211
2

2211

22113

2211

2211

2211
)(

2211

2211)1(

2211
)2(

2121

2121

2121

nrGnrG

nrGnrG
nrGnrG

nnGnnG
nnGnnG

nnGnnG

nnGnnG
nnGnnG

nnGnnG

RMRM

RMRM

RMRM

RMRM

RMRM

RMRM
rrnn

RMRM

RMRMrrnn

RMRM
rrnn





























++φ

+++φ

+−+φ

+−+φ

++φ

⊆
−−+

+−−+

+−−+

),(

),1(

.....
),2(

),1(

),(

2121
2

2121
3

2121
)(

2121
)1(

2121
)2(

2121

2121

2121

nnrrG

nnrrG

nnnnG

nnnnG

nnnnG

RM

RM

RM
rrnn

RM
rrnn

RM
rrnn

),(~
2121

2 nnrrMR r ++=  

Using the following result for Reed-Muller codes [9] stated as 

 For any  ;0 21 nnr +≤≤

1 2 1 1 2 2

1 1 2 2 1 2
,0 ,0

( , ) ( , ) ( , )RM RM RM
r r r r n r n

G r n G r n G r n n
+ = ≤ ≤ ≤ ≤

⊗ = +


   

 (where BA   denotes a matrix that includes all the rows of matrices A and B such that each row 

appears exactly once) and on substituting 021 == rr  in  (i), the subset notation ⊆  is turned into an 

equality which proves (ii) of Lemma.   

Theorem 2:   For any 2211 0,0 nrnr ≤≤≤≤  

 (i) ),(),(),( 2121
2

2211 nnrrRnrRnrR ccc ++Λ⊆Λ⊗Λ  

 (ii) ),0(),0(),0( 21
2

21 nnRnRnR ccc +Λ=Λ⊗Λ  

  Proof: Case (i) of Theorem follows immediately from (i) of Lemma III. Namely, lattice 

),( 2121
2 nnrrR c ++Λ  consists of all the lattice points of the product lattices ),(),( 2211 nrRnrR cc Λ⊗Λ  

while (ii) of Lemma III imply a promising constructions of the lattices ),0( 21
2 nnR c +Λ . In contrast 

to the real form case herein in (ii) of Theorem, augmenting is not required on top of the 

kronecker product which exhibits promising constructions in this correspondence.  
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Corollary 2.1: The minimum distance of complex PL in Theorem-2 remains invariant i.e., it is 

the product of the minimum distances of the two component lattices, regardless of dimension.  

   Proof:  In general, following inequality holds [11]:  

 )12()),(()),(()),(),(( 22
2
min11

2
min2211

2
min nrdnrdnrnrd cccc ΛΛ≤Λ⊗Λ  

which allow us to write respectively for the kronecker product ),(),( 2211 nrRnrR cc Λ⊗Λ

 )13()),(()),(()),(),(( 22
2
min11

2
min2211

2
min nrRdnrRdnrRnrRd cccc ΛΛ≤Λ⊗Λ   

 Also it follows from Theorem-2(i)  

)14()),(()),((

22

22

),(()),(),((

22
2
min11

2
min

11

2
2121

22
min2211

2
min

2211

2121

nrRdnrRd

nnrrRdnrRnrRd

cc

rnrn

rrnn
crr

ΛΛ=

=

=

++Λ≥Λ⊗Λ

+−+−

−−+
 

Combining inequalities (13) with (14) yields  

   )15()),(()),(()),(),(( 22min11min2211min nrRdnrRdnrRnrRd cccc ΛΛ=Λ⊗Λ  

The equality in (15) proves the corollary and by augmenting cosets of the product 

lattice ),(),( 2211 nrRnrR cc Λ⊗Λ , we can fill its “holes” such that the minimum distance remains same. 

 

Corollary 2.2:   For any integer m and a set of lattices m
iiic nrR 1)},({ =Λ , with ii nr ≤≤0             

 (i) 












Λ⊆Λ⊗⊗Λ⊗Λ ∑∑

==

m

i
i

m

i
ic

m
mmccc nrRnrRnrRnrR

11
2211 ,),(......),(),(     

                           (ii) 












Λ=Λ⊗⊗Λ⊗Λ ∑

=

m

i
ic

m
mccc nRnRnRnR

1
21 ,0),0(......),0(),0(  

The proof of above corollary is an extension of Theorem 2.    

Example 2.3: The real and complex form representation of 4RD  and 8RE  are given by (4), (5) and 

(6) 

 )4,1,4(2)1,0( 4
4 +=Λ= ZRRD r  

 )8,1,8()2,7,8(24)2,0( 8
8 ++=Λ= ZRRE r  

 )1,0()1,0( 22
4 RMGRRD c φ+φ=Λ=  

 )4,1,4()2,3,4()2,0( 243
8 φ+φ+φ=Λ= GRRE c  

The generator matrices of 4RD  and 8RE  in complex form can be written as 
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3

8REM ; which gives immediately        























φφφφ

φφ

φφ

φ

=⊗

2222

33

33

4

00

00

000

44 RDRD MM  ;





































φφφφφφφφ

φφφφ

φφφφ

φφ

φφφφ

φφ

φφ

φ

=⊗

22222222

3333

3333

44

4444

44

44

5

0000

0000

000000

0000

000000

000000

0000000

84 RERD MM                                                                      

and these are also the complex form generator matrices of 8
2 ER  and 16

2ΛR .  

 

V.  Conclusion 

In summary, we extended the AP-construction to lattices using the architecture provided by 

Salomon and Amrani [9] and thus constructed BWPSL of rotated version in real as well as in 

complex form. For each construction, expanded generator matrices of product lattices are given. 

Of particular interest is a product lattice involving rotated versions of two distinct (mth and nth) 

members of Barnes-Wall family in complex form which is again a higher dimensional member 

of the same family. Given below is a table which explicitly shows some illustrations embracing a 

few known lattices viz. fliaSchl   lattice 4D , Gosset lattice 8E , checkerboard lattice ND  etc., their 

products along with the parameters.  
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1Λ    2Λ    rrr
321 Λ⊆Λ⊗Λ     rrr RR 421 Λ⊆Λ⊗Λ      ccc

321 Λ⊆Λ⊗Λ      ccc RR 421 Λ⊆Λ⊗Λ    )( 3
rΛµ )( 4

rΛµ  )( 3
cΛµ )( 4

cΛµ                    

2Z    2Z    422 ZZZ ⊆⊗      rRDRZRZ 4
22 ⊆⊗      GGG =⊗          GRRGRG 2=⊗         0       1         0       0 

2Z    4Z    842 ZZZ ⊆⊗       rRDRZRZ 8
42 ⊆⊗    22 GGG ⊆⊗      222 GRRGRG ⊆⊗      0       1         0       0 

2Z    4D    rr DDZ 84
2 ⊆⊗      rr RERDRZ 84

2 ⊆⊗    cc DDG 44 =⊗       cc DRRDRG 4
2

4 =⊗       1       2         1       1    

4Z    4D    rr DDZ 164
4 ⊆⊗     rr RHRDRZ 164

4 ⊆⊗  cc DDG 84
2 ⊆⊗    cc DRRDRG 8

2
4

2 ⊆⊗     1       2         1       1 

4D    4D    rrr HDD 1644 ⊆⊗    rrr RRDRD 1644 Λ⊆⊗  ccc EDD 844 =⊗     ccc ERRDRD 8
2

44 =⊗      2       3         2       2  

4D    8D    rrr XDD 3284 ⊆⊗    rrr RHRDRD 3284 ⊆⊗  ccc HDD 1684 ⊆⊗  ccc HRRDRD 16
2

84 ⊆⊗     2       3         2       2 

4D    8E     rrr HED 3284 ⊆⊗   rrr RRERD 3284 Λ⊆⊗  ccc ED 1684 Λ=⊗   ccc RRERD 16
2

84 Λ=⊗       3       4         3       3 

r
iΛ , c

iΛ are real and complex form lattices with r
iRΛ , c

iRΛ  as their rotated versions respectively. The 3rd 

and 5th columns are explicable by [9] and that of 4th and 6th by Theorem 1 and Theorem 2 of this 

paper. c
i

c
iR Λφ=Λ 22 and )(Λµ denotes the depth of lattice Λ  [8]. 

)( 21
2
min

rrd Λ⊗Λ  )( 21
2
min

rr RRd Λ⊗Λ  )( 21
2
min

ccd Λ⊗Λ  )( 21
2
min

cc RRd Λ⊗Λ  
)()(

)()(

2121

2121
cccc

rrrr

RR

RR

Λ⊗Λγ=Λ⊗Λγ=

Λ⊗Λγ=Λ⊗Λγ  )( 3
rΛγ       )( 4

rΛγ          )( 3
cΛγ         )( 4

cΛγ                    

     1              4               1                  4                          1                   1            21/2           1            1 

     1              4               1                  4                          1                   1            23/4           1            1     

     2              8               2                  8                        21/2                23/4                 2             21/2        21/2                     

     2              8               2                  8                        21/2               27/8          211/8         23/4        23/4  

     4            16               4                 16                        2                 211/8          23/2           2            2 

     4            16               4                 16                       25/4              213/8        231/16       211/8       211/8 

     8            32               8                 32                       23/2              231/16         4            23/2        23/2 

)(,)(2
min ΛγΛd are squared minimum distance and fundamental coding gain of lattice Λ . 
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