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. Introduction

In the 1950”° and 1960’° mathematicians developed some constructive dense sphere packings
based on lattices in spaces of moderate to high dimensional namely, 2"-dimensional Barnes-Wall
lattices [1] and ultra dense 24-dimensional Leech lattice [2]. Forney [8], [12] exposed the
outstanding squaring construction of Barnes-Wall lattices, their principal sublattices and their
rotated versions with the code formulas in real and complex forms. Salomon and Amrani [11]
found some product lattices which are easy to encode decode, yet the dimensions of these
product lattices are typically smaller than the good binary lattices of similar minimum distance.
Goldberg [5], Rao and Reddy [6], Peng and Farrell [7] discussed a technique called
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augmentation of original product code with several of its cosets or (AP construction) to solve this
problem such that the minimum distance is not affected or marginally reduced. Salomon and
Amrani [9], extended this AP construction to lattices and described it using a particular matrix
representation of component lattices. They also have shown that BWPSL can be represented as a
union of cosets of a product of two lower dimensional lattices from the same family.

The principal purpose of this paper is to describe that the product of rotated versions of two
distinct lattices from Barnes-Wall family is a sublattice of higher dimensional lattice of the same
family. Significantly, the higher dimensional lattice can be represented as a union of cosets of the
original product lattice. More precisely, it is shown that the real and complex form of
aforementioned product gives a sublattice of rotated version and of rotated square version of
higher dimensional Barnes-Wall principal sublattice. Particularly, a product lattice involving
rotated versions of two distinct (m™ and n™) members of Barnes-Wall family in complex form is
again a higher dimensional member of the same family which is a promising construction in this
paper. The description comprises an expanded generator matrix representation of lattices and
their products. Expanded generator matrices are built using code formulas [11] however, we
have presented a slightly modified form of code formulas of rotated versions given by Forney
[12] to properly account for the coefficient of Reed-Muller codes. Indeed, it is proved that
minimum distance remains invariant for each product lattice and coding gain of augmented
lattice, as compared to the PL, is improved. For completeness, we give some illustrations in
tabular form embracing a few known lattices, their products along with the parameters.

I1. Preliminaries

The Barnes-Wall lattices are a family of 2"-dimensional binary lattices. The n'™ member of this
family a(o,n) may be regarded as a 2"-dimensional real lattice or 2"-dimensional complex
lattice. The Barnes-Wall lattices are decomposable with code formulas that involve the code
family of Reed-Muller codes which when considered of a given length are nested in the sense
that RM(n,n)/RM(n,n-1)/...../RM(0,n) is a code partition chain [8]. The principal sublattices of
Barnes-Wall lattices are a family of lattices A(r,n), 0<n, 0<r<n, which may be defined as

2n+1

decomposable 2"-dimensional complex lattice and -dimensional real lattice with the

following code formulas [12].
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Complex formula

Acrm =¢GN+ " RM(r, n) 90

r<r'<n
Real formulas
For n—r even

Ap(rn)y=20N12z2N Z RM(r', n+1) 2(0-r)/2

r+1<r'<n, n-r’ even

For n-r odd

A, (r,n) =202z 2N Z RM(r', n+1) 20772

r+1<r'<n, n-r’ even
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Further, the rotated version of Barnes-Wall principal sublattices ra(r,n) are easily accomplished

by operating the 2N-dimensional rotation operator R, defined in [8] on the principal sublattices

A(r,n). We provide a slightly modified form of the code formulas given by Forney in [12] of

these rotated versions as follows:

Complex formula

RAG(r,n) =9GN + " RM(r', n) oY

r<r'<n
Real formulas
For n-r even

RA, (r,n)=20""T+2)/272N Z RM(r', n+1) 2(r="/2

r<r'sn, n-r’ even

For n-r odd

RA(r,n) =20 /2z2N o N RM(r, n+D) 207012

r<r'<n, n—r' odd

(4)

®)

(6)

where N=2", ¢=1+i and RM(r, n) represents Reed-Muller code. Thus A(n,n) are the Gaussian

integer lattice G" in complex form and the integer lattice Z*" in real form, A(,n) is the Barnes-

Wall lattice as mentioned above and A(n-1n):n>1is the checkerboard lattice Doy. Also note that

according to real form formulas (2) and (3), A(-1n)is a rotated version of the Barnes-Wall lattice

i.., A;(-1,n)=RA,(0,n) Where R is 2N-dimensional rotation operator.
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The minimum squared distance and the fundamental volume of ra(r,n) are given as 2" and

k(r’,n)

V(RA(r,n)):2N(”‘”1)/22'§"<" respectively where k(r,n) is the number of information bits

associated with RM((r ,n) (the dimension of G(r, n)) and zmnk(r', n) represents the total

number of coded bits. For these values of minimum squared distance d2;, and the fundamental

volumev (RA(r,n)) , the fundamental coding gain is [8]

2 1 r',n
HRA(r, ) - - DG D). gt )
V (RA(r,n))

Barnes-Wall Product lattice: Lattices are often analyzed in terms of their generator matrices [10].
Thus, let us denote M(r;,n;) and M(r,,n,) as the generator matrices of lattices A(r,n;) and A(r,,n,)
respectively. The product of these two lattices yields a product lattice whose generator matrix is
M (r;,n;) ® M (rp,ny) [11].

Salomon and Amrani presented the augmented product construction of Reed-Muller codes in [9]

and proved an important Lemma stated as:

Lemma I: For any integer | and set of Reed-Muller codes RM(r;,n)}l , with o<r <n
|

|
RM (1,11) @ RM (12, 12) ®....RM (1, ny) < RM(D_ 1, > my)
i=1 i=1

I11. Augmented product construction of rotated version of Barnes-Wall principal

sublattices in real form

Let us consider two real form rotated version of Barnes-Wall principal sublattices ra(r;,n;) and
RA(r,,ny) . Salomon and Amrani provided the representation of lattice in terms of expanded

generator matrix [11] which is a proper generator matrix and span the lattice i.e., every lattice
point can be represented as an integral linear combination of its rows and any such combination
is necessarily a lattice point. Using (5) and (6), we construct below the expanded generator

matrices rRM, (r,,n;) for each lattice; in each case, the first matrix is for (n; - r;) even while the

second matrix is for (n;- r; ) odd:
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R (17, ny) =

2("1‘r1+2)lzGRM (n, +1,ny +1)
212 G (ng, Ny +1)

222G (ny =2,y +1)

R (1, 1p) =

2(”2_r2+2)/26RM (ny +1,n, +1)
2 )/2 o (ny,ny +1)

222G (n, —2,n, +1)

1275

; Np—r even ; Ny —Typ even
ZGRM (rl +2,nl+1) ZGRM (r2 +2,n2 +1)
Ggm (11, Ny +1) Ggm (r2,n2 +1)
2(n1—r1+1)/2GRM (n]_ +1’ n]_ +1) 2(”27r2+1)/ZGRM (n2 +1’ n2 +1)
2=nD2G 1 (ng —1,ny +1) 2 D126 (ny —1,n, +1)
2(n17r173)/2GRM (nl —3, nl +1) 2(n2—r2—3)IZGRM (n2 —3, n2 +l)
; Ny—r; odd ; Ny —r, odd

2GRrm (2 +2,n5 +1)
Ggrm (r2,np +1)

2Gry (p +2,n1 +1)
Ggrm (r1,ng +1)

2 hR43)2G (4 0y + 2,1y + 1y + 2)
2+ b D26 (n 4y +1,0y + 0y + 2)
2L DI2G . (n 40y —1,ny + 1y + 2)

n+n,—n—r,-3)/2
202G (4, ~3m 40y +2) | ny4n, 41— 1, even

2Ggm (R+ K +2,nm +ny+2)
Grm (R + 1 0 +1Ny +2)

Consequently, RM . (f, + ,,ny + Ny +1) = 2(m+n2_r1_r2+4)/zGRM (M +np+2.1y +1ny +2)
2R 422G (ny 4Ny + 2,0 + Ny + 2)
20 =hR)2 G (0 + N 1y + Ny + 2)

26226 (ny 40y — 2,0 + Ny +2)
2 b =d2G . (n 4y —4 40y +2) | Ny +1-1, 1, odd

2Ggm (R4 +2,n +ny +2)
Grm (R +1,n +1ny +2)
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where Ggy, (r,n) are generator matrices of rRm(r,n). Next we prove that all the rows of the
expanded matrix RM,(r;,n;)®RM,(r,,n,) are contained in the matrix RM,(r, +r,,n, +n, +1) in the

following Lemma.

Lemmall: Forany o< <n;,0<r, <n,
RM (1, n) ® RM  (r2,n5)  RM 1y + 15, Ny + 1y +1)
Proof: In accordance with the parity of (n,-r,) and (n,-r,) appear in the expression
RM, (r;,n;)®RM, (r,,n,) We will have four distinct cases:
Case I: n,-r, odd and n, -r, odd imply n; +n, -1, —r, +1 0dd
RMr(rl,n1)®RMr(r2,n2):

2(MHe=h-142)/2G () 41,0 +1) @GRy (N, +1,ny +1)
o (N, 1-15) 12 {GRM (N +1,n +1) ®GRy (N2 —1,n; +1)
Grm (N1 —L,n; +1)®GRry (Ny +L, 0y +1)
Grm (N1 +1,n +1) ®Grp (N2 —3,ny +1)
2(Mthe-h=2)/2) G (ng —3,n; +1) ® Gy (Np +1,Nn5 +1)
Grm (N1 =L n; +1)®GRry (N -1, Ny +1)
Grpm (N +1,n; +1) ®GRpy (N —5,Nn5 +1)
o(w+n,—r,-4)12 ) Cru (M =5, My +1) @GRy (N2 +1,1, +1)
Grm (N1 =Ln; +1)®GRrpy (N —3,n, +1)

Ggm (N1 =3, n +)®Ggy (N, -Lny+1 | | ==
2GRy (1L +1p +2,np +Ny +2)

Grm (L +T12,np+n5+2)

2(n1+n27r17r2+2)/2GRM (nl +Ny + 2, ny +ny + 2)
2(n1+n2—r1—r2)/2 GRM (nl+n2,nl+n2 +2)
2(n1+n2_r1_r2_2)/2GRM (nl +Ny —2, Ny +nNy +2)

2 iR =8)/2G 0 (ny +ny — 4,0y +ny +2)

N

Grm (1 +2,n; +1) ®GRp (r2,n5 +1)
Ggm (11, N +1) ®Gry (r2 +2,n5 +1)
Ggm (11, Ny +1) @GRy (12, 0y +1)

Using Lemma | and the facts that Ggy, (r,n) = Ggy (r+1,n) and that changing the order of the rows
of an (expanded) generator matrix vyields the same lattice, all the the rows of
RM, (r;,n;)®RM,(r,,n,) in Case | are explicitly contained in RM,(r, +r,,n +n,+1). The other three
Cases constitute the same characteristics and the expressions are given below

Case Il: n,—r, odd and n, -r, evenimply n, +n, —r, —r, +1 even

RM, (,n) ® RM(1p,ny) =
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2R+ dI2G (0 41,0y +1) ® Gry (N, +1, 1, +1)
2(n1+n2rlr2+l)/2{GRM (N +1n; +1) ®GRry (N2, 7 +1)
Grm (N1 =L,n +1)®GRrpy (N +L, 0y +1)
Grm (N +1,ny +1) @GRy (N —2,n5 +1)
2t —i-R-DI24G () —1,n) +1) ® Gry (N5, N, +1)
Grym (N1 —3,n +1) @GRy (N +1,n5 +1)
Grym (N +1,n; +1) ®GRry (N2 —4,n, +1)
(- -1,-3)/2 Grm (1 —1,n +1) @GRy (N —2,n5 +1)
Grm (N1 =3,n; +1) ®GRpy (N2, N5 +1)
Ggrm (N1 =5,n; +1) ®GRrpy (N2 +2,n5 +1)

5 Grm (1 +2,n; +1) @GRy (r2, N5 +1)
Ggm (11, N +1) ®Gry (r2 +2,n5 +1)
Ggm (11, N +1) ®Ggy (r2, Ny +1)

2(n1+n2—r1—r2+3)/2 GRM (nl +Nny + 2, Ny +nyp + 2)
2(n1+ﬂ2—f1—l’2+11)/ZGRM (nl +Ny +1, Ny +ny +2)
2 —i-LDI2G (0 40, —1 0y +n, +2)

2 =i—-3)/2G (0 +n,—3,ny +ny +2)

ZGRM (rl+r2 +2,n1+n2 +2)
Grm (L +r2,n +ny +2)

:RMr(r1+r2,n1+n2 +1)

Case lll: n,—r, evenand n, -r, odd imply n; +n, —r, —r, +1 even

RM I’(rll nl) ®RM I‘(rzv n2) =

2(Me=h43)/2G (0 +1,n; +1) ® Gy (Np +1,N, +1)
2(n1+n2rlr2+l)/2{GRM (N, Ny +1) ®Gpy (N2 +1,n3 +1)
Grm (N1 +1,n; +1) ®GRry (N —L Ny +1)
Grm (N1 =2,n{ +1) ®Gry (N +1,n5 +1)
2t —i-R-DI24G 0 (ngny +1) @GRy (Ny —1,n, +1)
Grym (N +1,n1 +1) ®GRrpy (N —3,n5 +1)
Grm (N1 —4,n +)®Grpy (Ny +L, 0, +1)
(- -1,-3)/2 Grm (N1 =2,n; +1) ®Gpy (N2 —1,np +1)
Ggm (N1,n +) ®Grpy (N —3,n5 +1)
Grm (N1 +2,n +1) ®GRy (N5 —5,n5 +1)

’ Ggm (11, N +1) ®Gry (r2 +2,n5 +1)
Grm (1 +2,n +1) ®Gpyy (12, N5 +1)
Ggm (11, N +1) ®Ggy (r2, Ny +1)

)

2(n1+n27r17r2+3)/2 GRM (nl +Ny + 2, ny+ny,+ 2)
2(n1+n2—r1—r2+11)IZGRM (nl +Ny +1, Ny +ny + 2)
2 e—i-u-DI2G (0 40, —1ny +n, +2)

2(M*M—h-R=3)/2G(n; +ny —3,n  +n, +2)

2Ggm (+r+2,n1+ny +2)
Grm (L + 12, N +ny +2)

:RMr(r1+r2,n1+n2 +1)

Case IV: n,-r, evenand n, -r, even then n; +n, -r, —r, +1 0dd

RM (ry,n) ®RM ( (rp,ny) =

1277
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2ot + /26 (0 +1, 0y +1) @GRy (N, +1, Ny +1)
2(n1+n2rlr2+2)/2{G rM (N1 +1, 0 +1) ® Gry (N, Ny +1)
Grm (N, N +) ® Gy (N5 +1,n5 +1)
Ggm (N1 +1,ny +1) ®GRrpy (N — 2,05 +1)
Ggrm (N1, Ny +) ®GRry (N2, N5 +1)
Grv (N1 —2,n; +) ®GRrpy (Ny +L, Ny +1)
Grpm (N +1,n; +1) ®GRry (N2 —4, 0, +1)
Grm (N, N +) ®Grp (N2 —2,n5 +1)
Grym (N1 —2,n; +1) ®GRrpy (N, N5 +1)
Grm (N1 =4,n +)®Grpy (N5 +1,ny +1)

2 (n+n,—n—r,)/2

2(n1+n2—r1—r2—2)/2

5 Grm (1 +2,n; +1) @GRy (r2, Ny +1)
Grm (11, +1) ®GRry (r2 +2,n5 +1)

Ggm (11, N +1) ®Ggy (r2, Ny +1)

2(n1+n2—r1—r2+4)/2 GRM (n1 +Ny + 2, ny+no + 2)
2(n1+ﬂ2—f1—l’2+2)/ZGRM (nl +Ny +1, ny+ny + 2)

2 2=h-R)/I2 G (0 +ny, 0y +Ny +2)

| 222G (0 0y —2,ny 40y +2)

ZGRM (rl+r2 +2,n1+n2 +2)
Grm (r +12,n +ny +2)

:RMr(r1+r2,n1+n2 +l)

We shall now show the main result of this Section in the following theorem.

Theorem 1: Forany o<r <n;,0<r, <n,

RAr(I’l,nl)®RAr(r2,n2)g RAr(I’1+I’2,n1+I’l2 +1)

Proof: The kronecker product of any two lattices is given by kronecker product of their

corresponding expanded generator matrices. Thus, the matrix RM,(r,,n,)®RM,(r,,n,) is the
expanded generator matrix of RA,(r,n))®RA,(r,,n,) . Lemma Il reveals that in each case,

expanded generator matrix of RA,(r+r,,n +n,+1) contains all the rows of expanded generator

matrix of RA, (r;,n)) ® RA, (r,n,) .

Corollary 1.1: The minimum distance of real PL involving rotated versions of the two Barnes-
Wall principal sublattices as its component lattices is the product of the minimum distances of
the two component lattices despite of dimension.

Proof: It is known that [11]

d2in (RAL (i, ny) ® RA L (ry,n2)) < d B (RA (1, ny)) d 2 (RA L (7, 112))

Also Theorem 1 tells that
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din (RA, (1, np) ® RA L (1, 12)) > d B (RA (1 + 15, +115 +1)
-2 N +n,+1-r,-1,

— oM+l oNy—rp+l
= dfin (RA (17,n1)) d Zin (RA (12, n2) ©
Equations (8) and (9) simultaneously give
dinin (RA (1, 1) ® RA (12, 12)) = dfin (RA( (11,m1)) d i (RA (12, 12)) (L0)
The equalities in (10) prove the corollary and also make known that the minimum distance

remains same by augmenting cosets of the product lattice rRa,(r,n) ® RA,(r,.n,) until the complete

rotated version of Barnes-Wall principal sublattice is obtained which in turn suggests the

following result for fundamental coding gain:

Corollary 1.2: The fundamental coding gain of augmented lattice is improved as
compared to the PL.
In general from [11],

Y(RAL (1, m) ® RAL(1p,n7)) = Y(RA (R, 1)) Y(RA[(1p,17)) ((hh)

Using (7) and the fact that fundamental coding gain remains same under scaled orthogonal
transformation, the equality (11) becomes

Y(RAL (1, 1) @ RAL (10, 12)) = v (A, (1, ) v(Ar (12, 1))
Zinl > k(r’,n1)+2% D k()

=2 f<r'<m 2<r'<ny

Substituting for the dimension of RM code, k(r,n) = Z (”J

m
0<m<n

w2 TR 2 T (R

_ 2 n<r<n o<m<r’ R<r<n 0<ms<r’

1
2n1+n2 +1 Z z (nlJrl’?’]z +1)

< 2 rpHry < r< ny+ny+1 0<msr’

=Y((RA(rp + 12,0y +ny +1))

Corollary 1.3: For any integer m and a set of lattices{ra, (r;,n;)3",, With o<r; <n;

m m
RA, (f, ) ®RA, (fy,N) ®.....k®RA, (Fy, Ny ) < RA{Z ri,m—l+2ni]
i=1 i=1

The proof of above corollary is a simple extension of Theorem 1.



1280 VIKAS DHAKA AND O.P.VINOCHA

Example 1.4: The product of rotated versions of two “checkerboard” lattices is a sublattice of

rotated version of a lattice from Barnes-Wall family of different type i.e.

RD2n1+1 ® RD2n2+1 = RAr(nl —1, nl)®RAr(n2 —1,n2)

c RAr(nl+n2 —2,n1+n2 +1)
Here rD}, represents the real form “checkerboard” lattice of dimension 2N. In particular if we

take N=2, RD, ®RD, =RA, (0,1) ® RA, (0,1) = RA, (0,3) = RA4 .

IV. Augmented product construction of rotated version of Barnes-Wall principal
sublattices in Complex form

Corresponding to an N;N, - dimensional complex form PL A (r;,n))®A.(r;,n;), the dimension of
PL in real form is 2n;N, where N;, N, denote the dimensions of (complex) lattices a(r,n;) and
A (rp,ny) respectively. Thus, A (r,n)®A.(r,n) does not correspond to 4N;N, dimensional real
form product lattice A,(r.n))®A,(r,ny) and it needs a separate treatment. Neverthless, AP

construction is provided involving the rotated versions of two different principal sublattices.

Consider RA.(r,n) and Ra.(r,,n,) be two complex form Barnes-Wall principal sublattice in
rotated version. Corresponding expanded generator matrices are deemed as RM_(r,n) and
RM.(r,ny) respectively. Using (1), (4) and the equality R*A.(r;,n;) =¢"A.(r;,n;) [8] we can construct

the complex expanded generator matrices of RA, (r;,ny) , RA,(rp,n,) @Nd RZA_(r; +1,,n; +n,) @S :

RM¢(r,n) = RM¢(rp,ny) = R®M¢ (1 + y, 1y + ) =
oM Gy (ng,ny) 0" MGy (ny,ny) QM T 2GRy (m + N,y + 1)
o™ Gry (0 —1,ny) 0™ Gry (N, —1ny) QMG (4 0y — 1y +y)
oM Gy (0 —2,my) 0" Gy (ny —2,1y) QMM Gyt (ng + 1y — 2,1 +1p)
0?Gpry (L +Lny) $*Ggy (r2 +1,ny) 0°Gym (B + 1 +11y +1y)
¢ Gpm (11, np) d Ggm (r2.n7) $?Gry (1 + T,y +1y)

We shall now prove that the kronecker product of rotated versions of two distinct BWPSL is a
sublattice of square rotated version of higher dimensional lattice from the same family. For this,

we need to prove the following Lemma.

Lemma lll: Forany o<r <n,0<r, <n,
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(i) RM(r1,n) ®RM ¢ (r5,n2) € R¥Mg (1 + 15,y + 1)
(i) RM,(0,n;)®RM(0,n,) =R2M(0,n; +n,)
Proof: Using the (complex) expanded generator matrices mentioned before, Lemma I along with

the facts that Ggy (r,n) =Ggy (r+1,n) and that changing the order of the rows of an (expanded)

generator matrix yields the same lattice, prove (i) of Lemma and it can be shown as:

RM¢(r;,n) ®RM(rp,ny) =

oW Gy (ng,np ) ® Gy (N, Np)
(#1141 {GRM (1 =1,n) ®GRry (n2,N7)
Ggrm (N1,n1) ®Ggry (N2 —1,ny)
e Grm (N1, n) ®Gry (N2 —2,n3) ¢t =h-2F DG (ny 40y, 0y +Ny)
¢TI JGy (M =10 ) ®GRry (N2 =1,n3)

(6% )G (g 40, =1 ng +0
Grm (N1 =2,n1) ®GRry (N2,Nn3) ¢ Ru (g 0z =1y +0)

(Wt =h=12) Gy (N +Ny —2,n, 40 ~
-2, 2
¢ rm (N +1; 1+N2) | _p M (1, + Ty + 1)

N

3
3{GRM (n+1,n1) ®Ggy (r2,n2) 9" Grw (r+ 12 +1,ny + 1)

Ggrm (11, ) ® Gy (r2 +1,n5) 0%Gy (i +12,n +1p)

$2Ggy (1, n1) ® Gy (12,1n,)

Using the following result for Reed-Muller codes [9] stated as

Forany o<r <n;+ny; U Ggu (f, M) ® Gryy (12,15) = Gy (r, 1y + 1)

-+, =1, 0<5 <1y, 0<,<n

(where A U B denotes a matrix that includes all the rows of matrices A and B such that each row
appears exactly once) and on substituting r, =r, =0 in (i), the subset notation < is turned into an
equality which proves (ii) of Lemma.
Theorem 2: Forany o<r <n;,0<r, <n,

(1) RA(r1,n) ®RA((r2,n2) € RPA (1 +12, 1y +1p)

(if) RA¢(0,n)®RA(0,n,) =R2A,(0,n; +ny)

Proof: Case (i) of Theorem follows immediately from (i) of Lemma Ill. Namely, lattice

RZA.(r, +1,,n; +n,) consists of all the lattice points of the product lattices RA,(r;,n)) ® RA(ry,n5,)
while (ii) of Lemma Ill imply a promising constructions of the lattices R?A.(0,n, +n,) . In contrast

to the real form case herein in (ii) of Theorem, augmenting is not required on top of the

kronecker product which exhibits promising constructions in this correspondence.
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Corollary 2.1: The minimum distance of complex PL in Theorem-2 remains invariant i.e., it is
the product of the minimum distances of the two component lattices, regardless of dimension.
Proof: In general, following inequality holds [11]:
divin (A (7, 1) ® A (72,12)) < d i (A (7, 1)) A iy (A (12,12)) (12)
which allow us to write respectively for the kronecker product RA.(r,n))®RA.(r,.n,)
dinin (RA (11, 1) ® RA (1, 12)) < d i (RA (17, 11)) d i (RA( (12, 12)) 13)
Also it follows from Theorem-2(i)

d2in (RA (17, n) @ RA (12, np)) 2 d B (RZA (1 + 15,0y +1)
_ 222n1+n2—r1—r2

YR TEPUR St
= dZin (RA (11, 1)) d i (RA (r2,12)) (14)
Combining inequalities (13) with (14) yields
dpin (RAG (1, N ) ®RA (12, n2)) =d i (RAC (r, np)) d iy (RAG (2, 13)) (15)
The equality in (15) proves the corollary and by augmenting cosets of the product

lattice RA (1, n;) ® RA( (5, n,) , We can fill its “holes” such that the minimum distance remains same.

Corollary 2.2: For any integer m and a set of lattices{rRa (r;, n;)}1;, With o< r; <n;

(1) RA¢(r,n)) ®RA((r;,N)®.....Q RA¢ (i, Ny ) © RmAC[Z ri,Zni]

i=1 i=1

(ii) RA¢(0,n)®RA,(0,1,)®..... ®RAC(O,nm):RmAC[O,Zni}
i=1

The proof of above corollary is an extension of Theorem 2.

Example 2.3: The real and complex form representation of rp, and Rgg are given by (4), (5) and
(6)

RD, =RA,(0,1) =2Z* +(41,4)

REg =RA,(0,2) =428 +2(87,2)+(818)

RD, = RA,(0,1) = $2G? + 9RM (0,1)

REg = RA((0,2) = $3G* +¢? (4,3,2) + §(4,14)

The generator matrices of rRo, and RrReg in complex form can be written as
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o

o

N

w

w

N

-6—-9—-9—-6—-9;-@-@-@-

~
S O & O & o © o

and these are also the complex form generator matrices of R2g; and R?Aq .

V. Conclusion

In summary, we extended the AP-construction to lattices using the architecture provided by
Salomon and Amrani [9] and thus constructed BWPSL of rotated version in real as well as in
complex form. For each construction, expanded generator matrices of product lattices are given.
Of particular interest is a product lattice involving rotated versions of two distinct (m™ and n™)
members of Barnes-Wall family in complex form which is again a higher dimensional member
of the same family. Given below is a table which explicitly shows some illustrations embracing a
few known lattices viz. schiafli lattice p,, Gosset lattice g, checkerboard lattice by etc., their

products along with the parameters.
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Ap Ay AI®AZ Ay RAT®RA; CAR AT®AS A RAT®RAS Ay w(A3) w(Ay) w(A%) p(A%)
z?2 7?2 7?®7%°cz* RZ?’®RZ’cRD) G®G=G RG®RG =R?%G 0 1 0
z? 7% z?2®z%cz® RZ2Z®Rz*cRDj G®G?cG? RG®RG?2cR?G? 0 1 0
z? D, 7°®DjcDf RZ?®RD)cREf} G®DS=D§ RG®RDS =R?D§ 1 2 1
z* D, z°®DjcDf; RZ*®RD)cRH{; G2®D§cD{ RG?®RD{cR’D§ 1 2 1
D, D, D)®DjcH{; RDj®RDjcRAls D®DS=E§ RD§®RD{=R%E§ 2 3 2
D, Dg D)®DjcXi, RD)®RDfcRHI, Di®D§cHS RDS®RDS cR?HSG 2 2
D, Es Dj®E§cH) RD)®RE; cRAL, DS®ES =ASs RDS®RES =R2AS, 3 4 3

x, « are real and complex form lattices with ra, ra: a@s their rotated versions respectively. The 31

and 5™ columns are explicable by [9] and that of 4" and 6" by Theorem 1 and Theorem 2 of this

paper. r2ac=¢22¢ and u(a) denotes the depth of lattice a [8].

(AL ® Ab) = Y(RAL ® RAY)

dan (AL ®AY)  dAin(RAY®RAY) i (AT ® AG)  dfin (RAS ® RAS) (A%) 7(AY) 7(A) 7(A)
= 7(AS ® AS) =7(RAS ® RAS)

1 4 1 4 1 1 21/2 1 1
1 4 1 4 1 1 221 1
2 8 2 8 9112 3/4 2 o112 oll2
2 8 2 8 21/2 27/8 211/8 23/4 23/4
4 16 4 16 2 Q118 232 2 2
4 16 4 16 25/4 213/8 231/16 211/8 211/8
8 32 8 32 23/2 231/16 4 23/2 23/2

d2.(A),v(a) @are squared minimum distance and fundamental coding gain of lattice a .
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