EXISTENCE RESULTS FOR GENERALIZED MIXED VECTOR VARIATIONAL-LIKE INEQUALITY PROBLEMS WITH EXPONENTIAL TYPE INVEXITIES

MOHAMMAD FARID*
Unaizah College of Engineering, Qassim University 51911, Saudi Arabia
Copyright (C) 2019 the authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we study a new kind of existence of solution for set valued exponential type mixed vector variational-like inequality problem in Euclidean space and proposed α_{g}-relaxed exponentially (γ, η)-monotone mapping. Moreover, we established an example in order to illustrate the main problem. We proved the existence results by KKM-technique with α_{g}-relaxed exponentially (γ, η)-monotone mapping. Further, we give some consequences of the main result. The results presented in this paper unifies and extends some known results in this area.

Keywords: Euclidean space; α_{g}-relaxed exponentially (γ, η)-monotone mapping; variational-like inequality problem; set valued mapping.

2010 AMS Subject Classification: 47H05, 47H09, 47J20, 47J05, 49 J 40.

1. Introduction

The theory of vector variational inequality has been introduced by Giannessi [7] in 1980 for finite dimensional space. Later, it has been studied by Chen et al. [4] in abstract spaces and

[^0]obtained existence theorems. Wu and Huang [16] defined the concepts of relaxed $\eta-\alpha$ pseudomonotone mappings to study vector variational-like inequality problem in Banach spaces. The generalized variational-like inequalities with generalized α-monotone multifunctions studied by Ceng et al. [3] [see for instance, [6, 12, 14]]. In 2004, Antczak [1] introduced the class of exponential (p, r)-invex functions for differentiable case [see for more details [8, 13]]. The exponential and logarithmic functions are very important in mathematical modeling of various real-life problems, for example, in mathematical modeling of growth and decline of populations, digital circuit optimization in the field of electrical engineering. Very recently, Jayswal et al. [9,10] introduced exponential type vector variational-like inequality problems with exponential invexities.

Motivated by the work of Antczak [1], Jayswal et al. [9, 10], Ho et al. [8] and by the ongoing research in this direction, we introduced a generalized mixed exponential type vector variational-like inequality problem (in short, GMEVVLIP) in Euclidean space and defined a new kind of α_{g}-relaxed exponential (γ, η)-monotone mappings. We proved the existence results of GMEVVLIP by KKM-technique and Nadler results. The results presented in this paper extend and generalize many previously known results in this research area.

2. Preliminaries

Now, we recall some useful concepts and results which are necessary for proving our main result. Throughout the paper unless otherwise stated, we consider E_{1} and E_{2} as Euclidean spaces of dimensions m and n, K and C be nonempty subsets of E_{1} and E_{2} respectively.

Let K be a nonempty subset of E_{1}. Then, K is said to be
(i) cone if $\lambda K \subset K, \forall \lambda \geq 0$;
(ii) convex cone if $K+K \subset K$;
(iii) pointed cone if K is cone and $K \bigcap\{-K\}=\{0\}$;
(iv) proper cone if $K \neq E_{2}$.

Let $K: C \rightarrow 2^{E_{2}}$ be a closed pointed convex cone valued mapping with int $K(u) \neq \emptyset$ with apex at origin, where $\operatorname{int} K(u)$ be a set of interior points of $K(u)$. Then, $K(u)$ induces a partial ordering in E_{2} as:
(i) $v \leq_{K(u)} w \Leftrightarrow w-v \in K(u)$;
(ii) $v \not \leq_{K(u)} w \Leftrightarrow w-v \notin K(u)$;
(iii) $v \leq_{\operatorname{int} K(u)} w \Leftrightarrow w-v \in \operatorname{int} K(u)$;
(iv) $v \not \mathbb{K}_{\operatorname{int} K(u)} w \Leftrightarrow w-v \notin \operatorname{int} K(u)$.

Let $\left(E_{2}, K\right)$ be an ordered space with the ordering of E_{2} defined by a set $K(u)$ and ordering relation " $\leq_{K(u)}$ " is a partial order. Then
(i) $v \not \underbrace{}_{K(u)} w \Leftrightarrow v+s \not \subset w+s$, for any $u, v, w, s \in E_{2}$;
(ii) $v \not \not_{K(u)} w \Leftrightarrow \lambda v \not \leq \lambda w$, for any $\lambda \geq 0$.

Let $C \subseteq E_{1}$ be a nonempty closed convex subset of an Euclidean space $E_{1}=R^{m}$ and $\left(E_{2}, K\right)$ be an ordered space induces by the closed convex pointed cone $K(u)$ whose apex at origin with $\operatorname{int} K(u) \neq \emptyset$.

Lemma 1. [3] Let $\left(E_{2}, K\right)$ be an ordered space induced by the pointed closed convex cone K with $\operatorname{int} K(u) \neq \emptyset$. Then, for any $u, v, w \in E_{2}$, the following relation hold:
(i) $w \not \mathbb{K i n t}_{\mathrm{in} K} x \geq_{K} v \Rightarrow w \not \mathbb{Z i n t}_{\mathrm{int}} v$;
(ii) $w \not ¥_{\text {int } K} x \leq_{K} v \Rightarrow w \not ¥_{\text {int } K} v$.

Definition 1. A mapping $F: E_{1} \rightarrow E_{2}$ is a $K(u)-$ convex on E_{1} if

$$
F(\lambda u+(1-\lambda) v) \leq_{K(u)} \lambda F(u)+(1-\lambda) F(v), \forall u, v \in E_{1}, \lambda \in[0,1]
$$

that is,

$$
\lambda F(u)+(1-\lambda) F(v)-F(\lambda u+(1-\lambda) v) \in K(u) .
$$

Remark 1. (i) If $K(u)=K$, for all $u \in E_{1}$, where K is convex in E_{2} then Definition 1 reduces to the vector convexity of F that is

$$
F(\lambda u+(1-\lambda) v) \leq_{K} \lambda F(u)+(1-\lambda) F(v), \forall u, v \in E_{1}, \lambda \in[0,1]
$$

(ii) If $E_{2}=R$ and $K=[0,+\infty)$ in (i) then Definition 1 reduces to the convex function that is

$$
\lambda F(u)+(1-\lambda) F(v)-F(\lambda u+(1-\lambda) v) \geq 0, \forall u, v \in E_{1}, \lambda \in[0,1]
$$

Definition 2. A mapping $F: C \rightarrow E_{2}$ is said to be completely continuous if for any sequence $\left\{u_{n}\right\} \in C, u_{n} \rightharpoonup u_{0}$ weakly, then $F\left(u_{n}\right) \rightarrow F\left(u_{0}\right)$.

Definition 3. Let E_{1} and E_{2} be two topological vector spaces, $A: E_{1} \rightarrow 2^{E_{2}}$ be a set valued mapping and $A^{-1}(v)=\left\{u \in E_{1}: v \in A(u)\right\}$. Then,
(i) A is said to be upper semicontinuous if for each $u \in E_{1}$ and each open set V in E_{2} with $A(u) \subset V$, then there exists an open neighborhood U of u in E_{1} such that $A\left(u_{0}\right) \subset V$, for each $u_{0} \in U$.
(ii) A is said to be closed iffor any set $\left\{u_{\alpha}\right\} \rightarrow u$ in E_{1} and any net $\left\{v_{\alpha}\right\}$ in E_{2} such that $v_{\alpha} \rightarrow v$ and $v_{\alpha} \in A\left(u_{\alpha}\right)$, for any α, we have $v \in A(u)$.
(iii) A is said to have a closed graph if the graph of $A, \operatorname{Graph}(A)=\left\{(u, v) \in E_{1} \times E_{2}, v \in\right.$ $A(u)\}$ is closed in $E_{1} \times E_{2}$.

Definition 4. Let $F: C \rightarrow 2^{E_{1}}$ be a set valued mapping. Then F is said to be a KKM-mapping if for any $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of C, we have $\operatorname{co}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset \bigcup_{i=1}^{n} F\left(v_{i}\right)$, where $\operatorname{co}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ denotes the convex hull of $v_{1}, v_{2}, \ldots, v_{n}$.

Lemma 2. [5] Let C be a nonempty subset of a Hausdorff topological vector space E_{1} and let $F: C \rightarrow 2^{E_{1}}$ be a KKM-mapping. If $F(v)$ is a closed in E_{1} for all $v \in C$ and compact for some $v \in C$, then $\bigcap_{v \in C} F(v) \neq \emptyset$.

Lemma 3. [11] Let E be a normed vector space and H be a Hausdorff metric on the collection $C B(E)$ of all closed and bounded subsets of E, induced by a metric d in terms of $d(u, v)=$ $\|u-v\|$, which is defined by

$$
H(X, Y)=\max \left\{\sup _{u \in X} \inf _{v \in Y}\|u-v\|, \sup _{v \in Y} \inf _{u \in X}\|u-v\|\right\}
$$

for $X, Y \in C B(E)$. If X and Y are compact subset in E, then for each $u \in X$, there exists $v \in Y$ such that $\|u-v\| \leq H(X, Y)$.

Definition 5. Let $\eta: E_{1} \times E_{1} \rightarrow E_{1}$ be a mapping and $N: C \rightarrow L\left(E_{1}, E_{2}\right)$ be a single valued mapping, where $L\left(E_{1}, E_{2}\right)$ be the space of all continuous linear mapping from E_{1} to E_{2}. Suppose $A: C \rightarrow 2^{L\left(E_{1}, E_{2}\right)}$ be a nonempty compact set valued mapping, then
(i) N is said to be η-hemicontinuous, if

$$
\lim _{t \rightarrow 0^{+}}\langle N(u+t(v-u)), \eta(v, u)\rangle=\langle N u, \eta(v, u)\rangle, \forall u, v \in C .
$$

(ii) A is said to be H-hemicontinuous, if for any $u, v \in C$, the mapping $t \rightarrow H(A(u+t(v-$ $u)$), Au) is continuous at 0^{+}, where H is a Hausdorff metric defined on $\operatorname{CB}\left(L\left(E_{1}, E_{2}\right)\right)$.

Definition 6. A mapping $f: R^{m} \rightarrow R^{n}$ is lipschitz continuous on $D \subset R^{m}$ iff there is an $L \in R$ such that

$$
\begin{equation*}
\|f(u)-f(v)\| \leq L\|u-v\|, \forall u, v \in D \tag{1}
\end{equation*}
$$

Definition 7. A mapping $F: E_{1} \rightarrow E_{1}$ is said to be affine iffor any $u_{i} \in C$ and $\lambda_{i} \geq 0,(1 \leq i \leq n)$ with $\sum_{i=1}^{n} \lambda_{i}=1$, we have $F\left(\sum_{i=1}^{n} \lambda_{i} u_{i}\right)=\sum_{i=1}^{n} \lambda_{i} F\left(u_{i}\right)$.

Definition 8. Let E_{1} be an Euclidean space. A mapping $F: E_{1} \rightarrow R$ is a lower semicontinuous at $u_{0} \in E_{1}$ if $F\left(u_{0}\right) \leq \liminf _{n} F\left(u_{n}\right)$, for any sequence $\left\{u_{n}\right\} \subset E_{1}$ such that $\left\{u_{n}\right\}$ converges to u_{0}.

Definition 9. Let E_{1} be an Euclidean space. A mapping $F: E_{1} \rightarrow R$ is a weakly upper semicontinuous at $u_{0} \in E_{1}$ if $F\left(u_{0}\right) \geq \lim \sup _{n} F\left(u_{n}\right)$, for any sequence $\left\{u_{n}\right\} \subset E_{1}$ such that $\left\{u_{n}\right\}$ converges to u_{0} weakly.

Lemma 4. [2] Let S be a nonempty compact convex subset of a finite dimensional space and $T: S \rightarrow S$ be a continuous mapping. Then there exists $x \in S$ such that $T x=x$.

In this paper, we introduce and study the following generalized mixed exponential type vector variational-like inequality problem (in short, GMEVVLIP). Let $C \subseteq E_{1}$ be a nonempty subset of an Euclidean space R^{n} and $\left(E_{2}, K\right)$ be an ordered Euclidean space induces by a closed convex pointed cone K whose apex at origin. Let $K: C \rightarrow 2^{E_{2}}$ be a closed convex pointed cone valued mapping with int $K \neq \emptyset$. Let γ be a nonzero real number, $\eta: C \times C \rightarrow E_{1}, g: C \rightarrow C, F: C \times C \rightarrow$ E_{2} and $N: L\left(E_{1}, E_{2}\right) \times L\left(E_{1}, E_{2}\right) \times L\left(E_{1}, E_{2}\right) \rightarrow L\left(E_{1}, E_{2}\right)$ be the mappings, where $L\left(E_{1}, E_{2}\right)$ be the space of all continuous linear mappings from E_{1} to E_{2} and $A_{1}, A_{2}, A_{3}: C \rightarrow 2^{L\left(E_{1}, E_{2}\right)}$ be set
valued mappings then GMEVVLIP is to find $u_{0} \in C$ and $x \in A_{1}\left(u_{0}\right), y \in A_{2}\left(u_{0}\right), z \in A_{3}\left(u_{0}\right)$ such that

$$
\begin{equation*}
\left\langle N(x, y, z), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{0}\right), v\right) \not \not_{\mathrm{int} K\left(u_{0}\right)} 0, \forall v \in C . \tag{2}
\end{equation*}
$$

The following example is provided to illustrate problem (2)

Example 1. Let $E_{1}=E_{2}=R, C=[0,+\infty), K\left(u_{0}\right)=[0, \infty), \forall u_{0} \in C$. Define $A_{1}, A_{2}, A_{3}: C \rightarrow$ $2^{L\left(E_{1}, E_{2}\right)} \equiv 2^{R}$ by

For $u_{0} \in C$

$$
\begin{aligned}
& A_{1}\left(u_{0}\right)=\left\{x \in R: \frac{1}{1+(x-1)^{2}} \geq \frac{1}{2}\right\}=[0,2] \\
& A_{2}\left(u_{0}\right)=\left\{y \in R: \frac{1}{1+(y-1)^{2}} \geq \frac{1}{2}\right\}=[0,2] \\
& A_{3}\left(u_{0}\right)=\left\{z \in R: \frac{1}{1+(z-1)^{2}} \geq \frac{1}{2}\right\}=[0,2] .
\end{aligned}
$$

Define $N: L\left(E_{1}, E_{2}\right) \times L\left(E_{1}, E_{2}\right) \times L\left(E_{1}, E_{2}\right) \rightarrow L\left(E_{1}, E_{2}\right)$ by

$$
N(x, y, z)=\{x+y+z\}, \forall x, y, z \in L\left(E_{1}, E_{2}\right) \equiv R,
$$

$\eta: C \times C \rightarrow E_{1}=R$ such that

$$
\eta(u, v)=\ln \left(\frac{u}{2}-v+1\right), \forall u, v \in C
$$

$g: C \rightarrow C$ such that

$$
g(u)=\frac{u}{2}, \forall u \in C,
$$

and $F: C \times C \rightarrow E_{2}=R$ such that

$$
F(u, v)=\frac{v}{2}-u, \forall u, v \in C
$$

Consider $\gamma=1$.
Now,

$$
\begin{aligned}
\left\langle N(x, y, z), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{0}\right), v\right) & =\left\langle x+y+z, e^{\ln \left(\frac{v}{2}-\frac{u_{0}}{2}\right)}-1\right\rangle+\frac{v}{2}-\frac{u_{0}}{2} \\
& =(x+y+z+1)\left(\frac{v}{2}-\frac{u_{0}}{2}\right)
\end{aligned}
$$

Thus,

$$
\left.\begin{array}{rl}
(x+y+z+1)\left(\frac{v}{2}-\frac{u_{0}}{2}\right) & \geq 0 \\
& \Rightarrow u_{0}
\end{array}\right) \leq v, \forall v \in C .
$$

This shows that $u_{0}=0$ is a solution of the GMEVVLIP(2).

Definition 10. The mapping $A: C \rightarrow L\left(E_{1}, E_{2}\right)$ is said to be α_{g}-relaxed exponentially (γ, η) monotone if for every pair of points $u, v \in C$, we have

$$
\begin{equation*}
\left\langle A u-A v, \frac{1}{\gamma}\left(e^{\gamma \eta(u, g(v))}-1\right)\right\rangle \geq_{K(u)} \alpha_{g}(u-v), \tag{3}
\end{equation*}
$$

where $\alpha_{g}: E_{1} \rightarrow E_{2}$ with $\alpha_{g}(t u)=t^{q} \alpha_{g}(u)$, for all $t>0$ and $u \in E_{1}$, where $q>1$ is a real number.

Definition 11. Let $N: L\left(E_{1}, E_{2}\right) \times L\left(E_{1}, E_{2}\right) \times L\left(E_{1}, E_{2}\right) \rightarrow L\left(E_{1}, E_{2}\right)$ be a single valued mappings. A multivalued mapping $A: C \rightarrow L\left(E_{1}, E_{2}\right)$ with compact valued is said to be α_{g}-relaxed exponentially (γ, η)-monotone with respect to first argument of N and g iffor each pair of points $u, v, y, z \in C$, we have

$$
\begin{equation*}
\left\langle N\left(x_{1}, y, z\right)-N\left(x_{2}, y, z\right), \frac{1}{\gamma}\left(e^{\gamma \eta(u, g(v))}-1\right)\right\rangle \geq_{K(u)} \alpha_{g}(u-v), \forall x_{1} \in A(u), x_{2} \in A(v), \tag{4}
\end{equation*}
$$

where $\alpha_{g}: E_{1} \rightarrow E_{2}$ with $\alpha_{g}(t u)=t^{q} \alpha_{g}(u)$, for all $t>0$ and $u \in E_{1}$, where $q>1$ is a real number.

Remark 2. Some special cases:
(i) If $K(u)=K, g \equiv I$, identity mapping and $\alpha_{g}=0$ then Definition 10 is called exponentially (γ, η)-monotone that is for each pair of points $u, v \in C$, we have

$$
\begin{equation*}
\left\langle A u-A v, \frac{1}{\gamma}\left(e^{\gamma \eta(u, g(v))}-1\right)\right\rangle \geq_{K} 0 . \tag{5}
\end{equation*}
$$

(ii) If $N(x, y, z)=N(x, y)$ then by Definition 11, we have for each pair of points $u, v, y \in C$,

$$
\begin{equation*}
\left\langle N\left(x_{1}, y\right)-N\left(x_{2}, y\right), \frac{1}{\gamma}\left(e^{\gamma \eta(u, g(v))}-1\right)\right\rangle \geq_{K(u)} \alpha_{g}(u-v), \forall x_{1} \in A(u), x_{2} \in A(v) \tag{6}
\end{equation*}
$$

where $\alpha_{g}: E_{1} \rightarrow E_{2}$ with $\alpha_{g}(t u)=t^{q} \alpha_{g}(u)$, for all $t>0$ and $u \in E_{1}$, where $q>1$ is a real number.
(iii) If $N(x, y, z)=N(x)$ then by Definition 11, we have for each pair of points $u, v, y \in C$,

$$
\begin{equation*}
\left\langle N\left(x_{1}\right)-N\left(x_{2}\right), \frac{1}{\gamma}\left(e^{\gamma \eta(u, g(v))}-1\right)\right\rangle \geq_{K(u)} \alpha_{g}(u-v), \forall x_{1} \in A(u), x_{2} \in A(v) \tag{7}
\end{equation*}
$$

where $\alpha_{g}: E_{1} \rightarrow E_{2}$ with $\alpha_{g}(t u)=t^{q} \alpha_{g}(u)$, for all $t>0$ and $u \in E_{1}$, where $q>1$ is a real number.
(iv) If $N(x, y, z)=N(x), K(u)=K, g \equiv I$, identity mapping and $\alpha_{g}=0$ then Definition 11 is called α-relaxed exponentially (γ, η)-monotone with respect to N that is for each pair of points $u, v \in C$,

$$
\begin{equation*}
\left\langle N\left(x_{1}\right)-N\left(x_{2}\right), \frac{1}{\gamma}\left(e^{\gamma \eta(u, v)}-1\right)\right\rangle \geq_{K} 0, \forall x_{1} \in A(u), x_{2} \in A(v) \tag{8}
\end{equation*}
$$

3. MAIN RESULTS

Theorem 5. Let C be a nonempty closed convex bounded subset of a real Euclidean space E_{1} and $\left(E_{2}, K\right)$ be an ordered Euclidean space induces by a pointed closed convex cone K. Let $K: C \rightarrow 2^{E_{2}}$ be a closed convex pointed cone valued mapping with int $K(u) \neq \emptyset$. Let $g: C \rightarrow C$ be a closed convex and continuous single valued mapping and $\eta: C \times C \rightarrow E_{1}$ be an affine in the first argument with $\eta(u, u)=0$, for all $u \in C$. Let $F: C \times C \rightarrow E_{2}$ be a $K(u)$-convex in the second argument with the condition $F(u, u)=0$, for all $u \in C$. Let $N: L\left(E_{1}, E_{2}\right) \times L\left(E_{1}, E_{2}\right) \times$ $L\left(E_{1}, E_{2}\right) \rightarrow L\left(E_{1}, E_{2}\right)$ be a Lipschitz continuous mapping with all arguments, $A_{1}, A_{2}, A_{3}: C \rightarrow$ $L\left(E_{1}, E_{2}\right)$ be the nonempty compact valued mappings which are H-hemicontinuous and α_{g} relaxed exponentially (γ, η)-monotone with respect to first argument of N and g. Then the following two statements (i) and (ii) are equivalent:
(i) there exists $u_{0} \in C$ and $x \in A_{1}\left(u_{0}\right), y \in A_{2}\left(u_{0}\right), z \in A_{3}\left(u_{0}\right)$ such that

$$
\left\langle N(x, y, z), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{0}\right), v\right) \not \not_{\operatorname{int} K\left(u_{0}\right)} 0, \forall v \in C,
$$

(ii) there exists $u_{0} \in C$ such that

$$
\begin{aligned}
\left\langle N(r, s, t), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle+ & F\left(g\left(u_{0}\right), v\right) \not{\text { int } K\left(u_{0}\right)} \alpha_{g}\left(v-u_{0}\right), \\
& \forall v \in C, r \in A_{1}(v), s \in A_{2}(v), t \in A_{3}(v) .
\end{aligned}
$$

Proof. Let the statement (i) is true that is there exists $u_{0} \in C$ and $x \in A_{1}\left(u_{0}\right), y \in A_{2}\left(u_{0}\right), z \in$ $A_{3}\left(u_{0}\right)$ such that

$$
\begin{equation*}
\left\langle N(x, y, z), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{0}\right), v\right) \not{\nless \mathrm{int} K\left(u_{0}\right)} 0, \forall v \in C . \tag{9}
\end{equation*}
$$

Since N is α_{g}-relaxed exponentially (γ, η)-monotone therefore $\forall v \in C, r \in A_{1}(v), s \in A_{2}(v), t \in$ $A_{3}(v)$, we have

$$
\begin{array}{lll}
\left\langle N(r, s, t)-N(x, y, z), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{0}\right), v\right) & \geq_{K\left(u_{0}\right)} & \alpha_{g}\left(v-u_{0}\right)+F\left(g\left(u_{0}\right), v\right) \\
\left\langle N(r, s, t), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{0}\right), v\right) & \geq_{K(u)} & \left\langle N(x, y, z), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle \\
& +\alpha_{g}\left(v-u_{0}\right)+F\left(g\left(u_{0}\right), v\right) \\
\left\langle N(r, s, t), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{0}\right), v\right)-\alpha_{g}\left(v-u_{0}\right) & \geq_{K(u)} & \left\langle N(x, y, z), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle \\
(10) & & +F\left(g\left(u_{0}\right), v\right) . \tag{10}
\end{array}
$$

From (9), (10) and Lemma 1, we have

$$
\begin{aligned}
\left\langle N(r, s, t), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle+ & F\left(g\left(u_{0}\right), v\right) \not \sum_{\operatorname{intK}\left(u_{0}\right)} \alpha_{g}\left(v-u_{0}\right), \\
& \forall v \in C, r \in A_{1}(v), s \in A_{2}(v), t \in A_{3}(v) .
\end{aligned}
$$

Conversely, consider the statement (ii) is correct, that is there exists $u_{0} \in C$ such that

$$
\begin{align*}
\left\langle N(r, s, t), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle+ & F\left(g\left(u_{0}\right), v\right) \not z_{\mathrm{intK}\left(u_{0}\right)} \alpha_{g}\left(v-u_{0}\right), \\
& \forall v \in C, r \in A_{1}(v), s \in A_{2}(v), t \in A_{3}(v) \tag{11}
\end{align*}
$$

Let $v \in C$ be an arbitrary element. Consider $v_{\lambda}=\lambda v+(1-\lambda) u_{0}, \lambda \in(0,1]$. As C is convex, $v_{\lambda} \in C$. Let $r_{\lambda} \in A_{1}\left(v_{\lambda}\right), s_{\lambda} \in A_{2}\left(v_{\lambda}\right), t_{\lambda} \in A_{3}\left(v_{\lambda}\right)$, we get from (11)
(12) $\left\langle N\left(r_{\lambda}, s_{\lambda}, t_{\lambda}\right), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v_{\lambda}, g\left(u_{0}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{0}\right), v_{\lambda}\right) \not \not_{\operatorname{int} K\left(u_{0}\right)} \alpha_{g}\left(v_{\lambda}-u_{0}\right)=t^{q} \alpha_{g}\left(v-u_{0}\right)$.

Now,

$$
\begin{align*}
\left\langle N\left(r_{\lambda}, s_{\lambda}, t_{\lambda}\right), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v_{\lambda}, g\left(u_{0}\right)\right)}-1\right)\right\rangle= & F\left(g\left(u_{0}\right), v_{\lambda}\right) \\
= & \left\langle N\left(r_{\lambda}, s_{\lambda}, t_{\lambda}\right), \frac{1}{\gamma}\left(e^{\gamma \eta\left(\lambda v+(1-\lambda) u_{0}, g\left(u_{0}\right)\right)}-1\right)\right\rangle \\
& +F\left(g\left(u_{0}\right), \lambda v+(1-\lambda) u_{0}\right) \\
= & \left\langle N\left(r_{\lambda}, s_{\lambda}, t_{\lambda}\right), \frac{1}{\gamma}\left(e^{\gamma \eta \lambda\left(v, g\left(u_{0}\right)\right)+(1-\lambda) \gamma \eta\left(u_{0}, g\left(u_{0}\right)\right)}-1\right)\right\rangle \\
& +\lambda F\left(g\left(u_{0}\right), v\right)+(1-\lambda) F\left(g\left(u_{0}\right), u_{0}\right) \\
\leq & K\left(u_{0}\right)\left\langle N\left(r_{\lambda}, s_{\lambda}, t_{\lambda}\right), \frac{1}{\gamma}\left(\lambda\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right.\right. \\
& \left.+(1-\lambda)\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle+\lambda F\left(g\left(u_{0}\right), v\right) \\
= & \lambda\left\{\left\langle N\left(r_{\lambda}, s_{\lambda}, t_{\lambda}\right), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{0}\right), v\right)\right\} . \tag{13}
\end{align*}
$$

From (12), (13) and Lemma 1, we have

$$
\begin{equation*}
\left\langle N\left(r_{\lambda}, s_{\lambda}, t_{\lambda}\right), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{0}\right), v\right) \not \not_{\mathrm{intK}\left(u_{0}\right)} t^{q-1} \alpha_{g}\left(v-u_{0}\right) \tag{14}
\end{equation*}
$$

Since $A_{1}\left(v_{\lambda}\right), A_{2}\left(v_{\lambda}\right), A_{3}\left(v_{\lambda}\right), A_{1}\left(u_{0}\right), A_{2}\left(u_{0}\right)$ and $A_{3}\left(u_{0}\right)$ are compact, therefore by Lemma 3, for each fixed $r_{\lambda} \in A_{1}\left(v_{\lambda}\right), s_{\lambda} \in A_{2}\left(v_{\lambda}\right), t_{\lambda} \in A_{3}\left(v_{\lambda}\right)$ there exists $r_{\lambda}^{\prime} \in A_{1}\left(u_{0}\right), s_{\lambda}^{\prime} \in A_{2}\left(u_{0}\right), t_{\lambda}^{\prime} \in$ $A_{3}\left(u_{0}\right)$ such that

$$
\begin{align*}
\left\|r_{\lambda}-r_{\lambda}^{\prime}\right\| & \leq H\left(A_{1}\left(v_{\lambda}\right), A_{1}\left(u_{0}\right)\right) \\
\left\|s_{\lambda}-s_{\lambda}^{\prime}\right\| & \leq H\left(A_{2}\left(v_{\lambda}\right), A_{2}\left(u_{0}\right)\right) \\
\left\|t_{\lambda}-t_{\lambda}^{\prime}\right\| & \leq H\left(A_{3}\left(v_{\lambda}\right), A_{3}\left(u_{0}\right)\right) \tag{15}
\end{align*}
$$

Since $A_{1}\left(u_{0}\right), A_{2}\left(u_{0}\right)$ and $A_{3}\left(u_{0}\right)$ are compact, therefore without loss of generality, we may assume that

$$
\begin{aligned}
& r_{\lambda} \rightarrow r_{0} \in A_{1} u_{0} \text { as } \lambda \rightarrow 0^{+} \\
& s_{\lambda} \rightarrow s_{0} \in A_{2} u_{0} \text { as } \lambda \rightarrow 0^{+} \\
& t_{\lambda} \rightarrow t_{0} \in A_{3} u_{0} \text { as } \lambda \rightarrow 0^{+} .
\end{aligned}
$$

Also, A_{1}, A_{2} and A_{3} are H-hemicontinuous, thus it follows that

$$
\begin{array}{ll}
H\left(A_{1}\left(v_{\lambda}\right), A_{1}\left(u_{0}\right)\right) \rightarrow 0 & \text { as } \lambda \rightarrow 0^{+} \\
H\left(A_{2}\left(v_{\lambda}\right), A_{2}\left(u_{0}\right)\right) \rightarrow 0 & \text { as } \lambda \rightarrow 0^{+} \\
H\left(A_{3}\left(v_{\lambda}\right), A_{3}\left(u_{0}\right)\right) \rightarrow 0 & \text { as } \lambda \rightarrow 0^{+} .
\end{array}
$$

By (15), we get

$$
\begin{aligned}
\left\|r_{\lambda}-r_{0}\right\| & \leq\left\|r_{\lambda}-r_{\lambda}^{\prime}\right\|+\left\|r_{\lambda}^{\prime}-r_{0}\right\| \\
& \leq H\left(A_{1}\left(v_{\lambda}\right), A_{1}\left(r_{0}\right)\right)+\left\|r_{\lambda}^{\prime}-r_{0}\right\| \rightarrow 0 \text { as } \lambda \rightarrow 0^{+} \\
\left\|s_{\lambda}-v_{0}\right\| & \leq\left\|s_{\lambda}-s_{\lambda}^{\prime}\right\|+\left\|s_{\lambda}^{\prime}-v_{0}\right\| \\
& \leq H\left(A_{2}\left(v_{\lambda}\right), A_{2}\left(v_{0}\right)\right)+\left\|s_{\lambda}^{\prime}-v_{0}\right\| \rightarrow 0 \text { as } \lambda \rightarrow 0^{+}
\end{aligned}
$$

and

$$
\begin{align*}
\left\|t_{\lambda}-t_{0}\right\| & \leq\left\|t_{\lambda}-t_{\lambda}^{\prime}\right\|+\left\|t_{\lambda}^{\prime}-t_{0}\right\| \\
& \leq H\left(A_{3}\left(v_{\lambda}\right), A_{3}\left(t_{0}\right)\right)+\left\|t_{\lambda}^{\prime}-t_{0}\right\| \rightarrow 0 \text { as } \lambda \rightarrow 0^{+} \tag{16}
\end{align*}
$$

Since N is Lipschitz continuous with all arguments therefore we get

$$
\begin{aligned}
& \left\|\left\langle N\left(r_{\lambda}, s_{\lambda}, t_{\lambda}\right), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle-t^{q-1} \alpha_{g}\left(v-u_{0}\right)-\left\langle N\left(r_{0}, s_{0}, t_{0}\right), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle\right\| \\
& \leq\left\|\left\langle N\left(r_{\lambda}, s_{\lambda}, t_{\lambda}\right)-N\left(r_{0}, s_{0}, t_{0}\right), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle\right\|+\left\|t^{q-1} \alpha_{g}\left(v-u_{0}\right)\right\| \\
& \leq \frac{1}{\gamma}\left\{\left\|N\left(r_{\lambda}, s_{\lambda}, t_{\lambda}\right)-N\left(r_{0}, s_{\lambda}, t_{\lambda}\right)\right\|+\left\|N\left(r_{0}, s_{\lambda}, t_{\lambda}\right)-N\left(r_{0}, s_{0}, t_{\lambda}\right)\right\|\right.
\end{aligned}
$$

(17) $\left.+\left\|N\left(r_{0}, s_{0}, t_{\lambda}\right)-N\left(r_{0}, s_{0}, t_{0}\right)\right\|\right\}\left\|e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right\|+t^{q-1}\left\|\alpha_{g}\left(v-u_{0}\right)\right\| \rightarrow 0$ as $\lambda \rightarrow 0^{+}$.

By (12), we get

$$
\left\langle N\left(r_{\lambda}, s_{\lambda}, t_{\lambda}\right), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v_{\lambda}, g\left(u_{0}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{0}\right), v_{\lambda}\right)-t^{q-1} \alpha_{g}\left(v-u_{0}\right) \in E_{2} \backslash\left(\operatorname{int} K\left(u_{0}\right)\right) .
$$

Since $E_{2} \backslash\left(\operatorname{int} K\left(u_{0}\right)\right)$ is closed therefore from (17), we have

$$
\begin{array}{ll}
\left\langle N\left(r_{0}, s_{0}, t_{0}\right), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{0}\right), v\right) & \in E_{2} \backslash\left(\operatorname{int} K\left(u_{0}\right)\right) \\
\left\langle N\left(r_{0}, s_{0}, t_{0}\right), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{0}\right), v\right) & \not 女_{\operatorname{int} K\left(u_{0}\right)} 0, \forall v \in K .
\end{array}
$$

Theorem 6. Let C be a nonempty closed convex bounded subset of a real Euclidean space E_{1} and $\left(E_{2}, K\right)$ be an ordered Euclidean space induces by a pointed closed convex cone K. Let $K: C \rightarrow 2^{E_{2}}$ be a closed convex pointed cone valued mapping with int $K(u) \neq \emptyset$. Let $g: C \rightarrow C$ be a closed convex and continuous single valued mapping and $\eta: C \times C \rightarrow E_{1}$ be an affine in the first argument with $\eta(u, g(u))=0$, for all $u \in C$. Let $F: C \times C \rightarrow E_{2}$ be a completely continuous in the first argument and affine in the second argument with the condition $F(g(u), u)=0$, for all $u \in C$. Let $\alpha_{g}: E_{1} \rightarrow E_{2}$ be a weakly lower semicontinuous. Let $N: L\left(E_{1}, E_{2}\right) \times L\left(E_{1}, E_{2}\right) \times$ $L\left(E_{1}, E_{2}\right) \rightarrow L\left(E_{1}, E_{2}\right)$ be a Lipschitz continuous mapping with all arguments, $A_{1}, A_{2}, A_{3}: C \rightarrow$ $L\left(E_{1}, E_{2}\right)$ be the nonempty compact valued mappings which are H-hemicontinuous and α_{g} relaxed exponentially (γ, η)-monotone with respect to first argument of N and g. Then (2) is a solvable, that is there exists $u \in C$ and $x \in A_{1}(u), y \in A_{2}(u), z \in A_{3}(u)$ such that

$$
\left\langle N(x, y, z), \frac{1}{\gamma}\left(e^{\gamma \eta(v, g(u))}-1\right)\right\rangle+F(g(u), v) \not \not_{\mathrm{int} K(u)} 0, \forall v \in C .
$$

Proof. Consider the set valued mapping $S: C \rightarrow 2^{E_{1}}$ such that $\forall v \in C$
$S(v)=\left\{u \in C:\left\langle N(x, y, z), \frac{1}{\gamma}\left(e^{\gamma \eta(v, g(u))}-1\right)\right\rangle+F(g(u), v) \not \mathbb{Z}_{\operatorname{int} K(u)} 0, \forall x \in A_{1}(u), y \in A_{2}(u), z \in A_{3}(u)\right\}$.

First, we claim that S is a KKM-mapping. If S is not a KKM-mapping then there exists $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\} \subset C$ such that $\operatorname{co}\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\} \nsubseteq \bigcup_{i=1}^{m} S\left(u_{i}\right)$ that means there exists at least $u \in \operatorname{co}\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}, u=\sum_{i=1}^{m} \lambda_{i} u_{i}$, where $\lambda_{i} \geq 0, i=1,2,3, \ldots, m, \sum_{i=1}^{m} \lambda_{i}=1$ but $u \notin \bigcup_{i=1}^{m} S\left(u_{i}\right)$. From the construction of S, for any $x \in A_{1}(u), y \in A_{2}(u), z \in A_{3}(u)$, we have

$$
\begin{equation*}
\left\langle N(x, y, z), \frac{1}{\gamma}\left(e^{\gamma \eta\left(u_{i}, g(u)\right)}-1\right)\right\rangle+F\left(g(u), u_{i}\right) \not \mathbb{K i n t}_{\mathrm{int}(u)} 0, \text { for } i=1,2,3, \ldots, m . \tag{18}
\end{equation*}
$$

From (18) and since η and F are affine in first and second argument respectively, it follows that

$$
\begin{aligned}
& 0=\left\langle N(x, y, z), \frac{1}{\gamma}\left(e^{\gamma \eta(u, g(u))}-1\right)\right\rangle+F(g(u), u) \\
&=\left\langle N(x, y, z), \frac{1}{\gamma}\left(e^{\gamma \eta\left(\sum_{i=1}^{m} \lambda_{i} u_{i}, g(u)\right)}-1\right)\right\rangle+F\left(g(u), \sum_{i=1}^{m} \lambda_{i} u_{i}\right) \\
&=\left\langle N(x, y, z), \frac{1}{\gamma}\left(e^{\sum_{i=1}^{m} \lambda_{i} \gamma \eta\left(u_{i}, g(u)\right)}-1\right)\right\rangle+\sum_{i=1}^{m} \lambda_{i} F\left(g(u), u_{i}\right) \\
& \leq_{K(u)}\left\langle N(x, y, z), \frac{1}{\gamma}\left(e^{\sum_{i=1}^{m} \lambda_{i} \gamma \eta\left(u_{i}, g(u)\right)}-1\right)\right\rangle+\sum_{i=1}^{m} \lambda_{i} F\left(g(u), u_{i}\right) \\
&=\sum_{i=1}^{m} \lambda_{i}\left\{\left\langle N(x, y, z), \frac{1}{\gamma}\left(e^{\gamma \eta\left(u_{i}, g(u)\right)}-1\right)\right\rangle+F\left(g(u), u_{i}\right)\right\} \leq_{\mathrm{int} K(u)} 0,
\end{aligned}
$$

this shows that $0 \in \operatorname{int} K(u)$, which contradicts the fact that $K(u)$ is proper. Hence, S is a KKMmapping. Define another set valued mapping $W: C \rightarrow 2^{E_{1}}$ such that

$$
\begin{aligned}
W(v) \quad & \left\{u \in C:\left\langle N(p, q, r), \frac{1}{\gamma}\left(e^{\gamma \eta(v, g(u))}-1\right)\right\rangle+F(g(u), v)\right. \\
\not \operatorname{Zint} K(u) & \left.\alpha_{g}(v-u), \forall p \in A_{1}(v), q \in A_{2}(v), r \in A_{3}(v)\right\}, \forall v \in C .
\end{aligned}
$$

Now, we will prove that $S(v) \subset W(v), \forall v \in C$.
Let $u \in S(v)$, there exists some $x \in A_{1}(u), y \in A_{2}(u), z \in A_{3}(u)$, such that

$$
\begin{equation*}
\left\langle N(x, y, z), \frac{1}{\gamma}\left(e^{\gamma \eta(v, g(u))}-1\right)\right\rangle+F(g(u), v) \not \mathbb{K i n}_{\mathrm{in} K(u)} 0 . \tag{19}
\end{equation*}
$$

Since N is α_{g}-relaxed exponentially (γ, η)-monotone therefore $\forall v \in C, p \in A_{1}(v), q \in A_{2}(v), r \in$ $A_{3}(v)$ we have

$$
\begin{equation*}
\left\langle N(x, y, z), \frac{1}{\gamma}\left(e^{\gamma \eta(v, g(u))}-1\right)\right\rangle+F(g(u), v) \leq_{\operatorname{int} K(u)}\left\langle N(p, q, r), \frac{1}{\gamma}\left(e^{\gamma \eta(v, g(u))}-1\right)\right\rangle+F(g(u), v)-\alpha_{g}(v-u) \tag{20}
\end{equation*}
$$

Using (19), (20) and Lemma 1, we have

$$
\begin{aligned}
& \left\langle N(p, q, r), \frac{1}{\gamma}\left(e^{\gamma \eta(v, g(u))}-1\right)\right\rangle+F(g(u), v) \not \AA_{\mathrm{int} K(u)} \alpha_{g}(v-u), \\
& \forall v \in C, p \in A_{1}(v), q \in A_{2}(v), r \in A_{3}(v) .
\end{aligned}
$$

Therefore $u \in W(v)$ that is $S(v) \subset W(v), \forall v \in C$. This implies that W is also a KKM-mapping. We claim that for each $v \in C, W(v) \subset C$ is closed in the weak topology of E_{1}. Let us suppose that $\bar{u} \in \overline{W(v)}^{w}$, the weak closure of $W(v)$. Since E_{1} is reflexive, there is a sequence $\left\{u_{n}\right\}$ in
$W(v)$ such that $\left\{u_{n}\right\}$ converges weakly to $\bar{u} \in C$. Then, for each $p \in A_{1}(v), q \in A_{2}(v), r \in A_{3}(v)$, we have

$$
\begin{array}{rlll}
\left\langle N(p, q, r), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{n}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{n}\right), v\right) & \not_{\operatorname{int} K\left(u_{n}\right)} & \alpha_{g}\left(v-u_{n}\right) \\
\left\langle N(p, q, r), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{n}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{n}\right), v\right)-\alpha_{g}\left(v-u_{n}\right) & \in & E_{2} \backslash\left(-\operatorname{int} K\left(u_{n}\right)\right) .
\end{array}
$$

Since N and F are completely continuous and $E_{2} \backslash\left(-\operatorname{int} K\left(u_{n}\right)\right)$ is closed, α_{g} is weakly lower semicontinuous therefore the sequence

$$
\left\{\left\langle N(p, q, r), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{n}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{n}\right), v\right)-\alpha_{g}\left(v-u_{n}\right)\right\}
$$

converges to

$$
\left\langle N(p, q, r), \frac{1}{\gamma}\left(e^{\gamma \eta(v, g(\bar{u}))}-1\right)\right\rangle+F(g(\bar{u}), v)-\alpha_{g}(v-\bar{u})
$$

and

$$
\left\langle N(p, q, r), \frac{1}{\gamma}\left(e^{\gamma \eta(v, g(\bar{u}))}-1\right)\right\rangle+F(g(\bar{u}), v)-\alpha_{g}(v-\bar{u}) \in E_{2} \backslash(-\operatorname{int} K(\bar{u}))
$$

Therefore

$$
\left\langle N(p, q, r), \frac{1}{\gamma}\left(e^{\gamma \eta(v, g(\bar{u}))}-1\right)\right\rangle+F(g(\bar{u}), v) \not \not_{\mathrm{int} K\left(u_{n}\right)} \alpha_{g}(v-\bar{u}) .
$$

Thus, $\bar{u} \in W(v)$. This shows that $W(v), \forall v \in C$ is weakly closed. Furthermore, E_{1} is reflexive and $C \subset E_{1}$ is a nonempty closed convex and bounded. Therefore, C is weakly compact subset of E_{1} and so $W(v)$ is also weakly compact. Therefore from Lemma 2 and Theorem 5, it follows that

$$
\bigcap_{v \in C} W(v) \neq \emptyset
$$

Thus, there exists $\bar{u} \in C$ such that
$\left\langle N(p, q, r), \frac{1}{\gamma}\left(e^{\gamma \eta(v, g(\bar{u}))}-1\right)\right\rangle+F(g(\bar{u}), v) \not \not_{\operatorname{int} K\left(u_{n}\right)} \alpha_{g}(v-\bar{u}), \forall v \in C, p \in A_{1}(v), q \in A_{2}(v), r \in A_{3}(v)$.
Hence from Theorem 5, we can conclude that there exists $\bar{u} \in C$ and $\bar{x} \in A_{1}(\bar{u}), \bar{y} \in A_{2}(\bar{u}), \bar{z} \in$ $A_{3}(\bar{u})$ such that

$$
\left\langle N(\bar{x}, \bar{y}, \bar{z}), \frac{1}{\gamma}\left(e^{\gamma \eta(v, g(\bar{u}))}-1\right)\right\rangle+F(g(\bar{u}), v) \not \not_{\operatorname{int} K(\bar{u})} 0, \forall v \in C,
$$

that is (2) is solvable.

Theorem 7. Let C be a nonempty closed convex bounded subset of a real Euclidean space E_{1} with $0 \in C$ and $\left(E_{2}, K\right)$ be an ordered Euclidean space induces by a pointed closed convex cone $K(u)$. Let $K: C \rightarrow 2^{E_{2}}$ be a closed convex pointed cone valued mapping with int $K(u) \neq \emptyset$. Let $g: C \rightarrow C$ be a closed convex and continuous single valued mapping and $\eta: C \times C \rightarrow$ E_{1} be an affine in the first argument with $\eta(u, u)=0$, for all $u \in C$. Let $F: C \times C \rightarrow E_{2}$ be a completely continuous in the first argument and affine in the second argument with the condition $F(u, u)=0$, for all $u \in C$. Let $\alpha_{g}: E_{1} \rightarrow E_{2}$ be a weakly lower semicontinuous. Let $N: L\left(E_{1}, E_{2}\right) \times L\left(E_{1}, E_{2}\right) \times L\left(E_{1}, E_{2}\right) \rightarrow L^{c}\left(E_{1}, E_{2}\right)$ be a Lipschitz continuous mapping with all arguments, where $L^{c}\left(E_{1}, E_{2}\right)$ be a space of all completely continuous linear mapping from E_{1} to $E_{2}, A_{1}, A_{2}, A_{3}: C \rightarrow L\left(E_{1}, E_{2}\right)$ be the nonempty compact valued mappings which are H hemicontinuous and α_{g}-relaxed exponentially (γ, η)-monotone with respect to first argument of N and g. If there exists one $r>0$ such that

$$
\begin{align*}
& \left\langle N(p, q, s), \frac{1}{\gamma}\left(e^{\gamma \eta(g(0), v)}-1\right)\right\rangle+F(v, g(0)) \not Z_{\operatorname{int} K(0)} 0, \\
& \forall v \in C, p \in A_{1}(v), q \in A_{2}(v), s \in A_{3}(v) \text { with }\|v\|=r \tag{21}
\end{align*}
$$

Then (2) is solvable that is there exists $u \in C$ and $x \in A_{1}(u), y \in A_{2}(u), z \in A_{3}(u)$ such that

$$
\left\langle N(x, y, z), \frac{1}{\gamma}\left(e^{\gamma \eta(v, g(u))}-1\right)\right\rangle+F(g(u), v) \not_{\operatorname{int} K(u)} 0, \forall v \in C .
$$

Proof. For $r>0$, assume that $C_{r}=\left\{u \in E_{1}:\|u\| \leq r\right\}$. From Theorem 6, we know that (2) is solvable over C_{r} that is there exist $u_{r} \in C \bigcap C_{r}$ and $x_{r} \in A_{1}\left(u_{r}\right), y_{r} \in A_{2}\left(u_{r}\right), z_{r} \in A_{3}\left(u_{r}\right)$ such that

$$
\begin{equation*}
\left\langle N\left(x_{r}, y_{r}, z_{r}\right), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{r}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{r}\right), v\right) \not \mathbb{Z}_{\mathrm{int} K\left(u_{r}\right)} 0, \forall v \in C \cap C_{r} . \tag{22}
\end{equation*}
$$

Putting $v=0$ in (22), we get

$$
\begin{equation*}
\left\langle N\left(x_{r}, y_{r}, z_{r}\right), \frac{1}{\gamma}\left(e^{\gamma \eta\left(0, g\left(u_{r}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{r}\right), 0\right) \not Z_{\operatorname{int} K\left(u_{r}\right)} 0 . \tag{23}
\end{equation*}
$$

If $\left\|u_{r}\right\|=r$, for all r then it contradicts to (21). Hence $\left\|u_{r}\right\|<r$. For any $w \in C$, let us choose $\lambda \in(0,1)$ small enough such that $(1-\lambda) u_{r}+\lambda w \in C \cap C_{r}$. Putting $v=(1-\lambda) u_{r}+\lambda w$ in (22), we get

$$
\begin{equation*}
\left\langle N\left(x_{r}, y_{r}, z_{r}\right), \frac{1}{\gamma}\left(e^{\gamma \eta\left((1-\lambda) u_{r}+\lambda w, g\left(u_{r}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{r}\right),(1-\lambda) u_{r}+\lambda w\right) \not \not_{\operatorname{int} K\left(u_{r}\right)} 0 . \tag{24}
\end{equation*}
$$

Since η and F are affine in the first and second variable, we have

$$
\begin{align*}
& \left\langle N\left(x_{r}, y_{r}, z_{r}\right), \frac{1}{\gamma}\left(e^{\gamma \eta\left((1-\lambda) u_{r}+\lambda w, g\left(u_{r}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{r}\right),(1-\lambda) u_{r}+\lambda w\right) \\
& =\left\langle N\left(x_{r}, y_{r}, z_{r}\right), \frac{1}{\gamma}\left(e^{(1-\lambda) \gamma \eta\left(u_{r}, g\left(u_{r}\right)\right)+\lambda \gamma \eta\left(w, g\left(u_{r}\right)\right)}-1\right)\right\rangle+\lambda F\left(g\left(u_{r}\right), w\right) \\
& \left.\leq_{K\left(u_{r}\right)}\left\langle N\left(x_{r}, y_{r}, z_{r}\right), \frac{1}{\gamma}(1-\lambda)\left(e^{\gamma \eta\left(u_{r}, g\left(u_{r}\right)\right)}-1\right)+\frac{1}{\gamma} \lambda e^{\gamma \eta\left(w, g\left(u_{r}\right)\right)}-1\right)\right\rangle+\lambda F\left(g\left(u_{r}\right), w\right) \\
& \left.=\lambda\left\{\left\langle N\left(x_{r}, y_{r}, z_{r}\right), \frac{1}{\gamma} e^{\gamma \eta\left(w, g\left(u_{r}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{r}\right), w\right)\right\} . \tag{25}
\end{align*}
$$

Hence from (24), (25) and Lemma 1, we get

$$
\begin{equation*}
\left.\left\langle N\left(x_{r}, y_{r}, z_{r}\right), \frac{1}{\gamma} e^{\gamma \eta\left(w, g\left(u_{r}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{r}\right), w\right) \not \sum_{\mathrm{int} K\left(u_{r}\right)} 0, \forall w \in C . \tag{26}
\end{equation*}
$$

Thus, (2) is solvable.

If $N(x, y, z)=N(x, y)$ and $A_{3} \equiv 0$, a zero mapping, then Theorem 5 reduces to the following corollary:

Corollary 8. Let C be a nonempty closed convex bounded subset of a real Euclidean space E_{1} and $\left(E_{2}, K\right)$ be an ordered Euclidean space induces by a pointed closed convex cone K. Let $K: C \rightarrow 2^{E_{2}}$ be a closed convex pointed cone valued mapping with int $K(u) \neq \emptyset$. Let $g: C \rightarrow C$ be a closed convex and continuous single valued mapping and $\eta: C \times C \rightarrow E_{1}$ be an affine in the first argument with $\eta(u, u)=0$, for all $u \in C$. Let $F: C \times C \rightarrow E_{2}$ be a $K(u)$-convex in the second argument with the condition $F(u, u)=0$, for all $u \in C$. Let $N: L\left(E_{1}, E_{2}\right) \times L\left(E_{1}, E_{2}\right) \rightarrow L\left(E_{1}, E_{2}\right)$ be a Lipschitz continuous mapping with all arguments, $A_{1}, A_{2}: C \rightarrow L\left(E_{1}, E_{2}\right)$ be the nonempty compact valued mappings which are H-hemicontinuous and α_{g}-relaxed exponentially (γ, η) monotone with respect to first argument of N and g. Then the following two statements (i) and (ii) are equivalent:
(i) there exists $u_{0} \in C$ and $x \in A_{1}\left(u_{0}\right), y \in\left(A_{2}\left(u_{0}\right)\right)$ such that

$$
\left\langle N(x, y), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{0}\right), v\right) \not \AA_{\mathrm{int} K\left(u_{0}\right)} 0, \forall v \in C,
$$

(ii) there exists $u_{0} \in C$ such that

$$
\begin{aligned}
& \left\langle N(r, s), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{0}\right), v\right) \not Z_{\operatorname{intK}\left(u_{0}\right)} \alpha_{g}\left(v-u_{0}\right), \\
& \forall v \in C, r \in A_{1}(v), s \in A_{2}(v)
\end{aligned}
$$

If $N(x, y, z)=N(x, y)$ and $A_{3} \equiv 0$, a zero mapping, and $g \equiv I$, an identity mapping then Theorem 5 reduces to the following corollary:

Corollary 9. Let C be a nonempty closed convex bounded subset of a real Euclidean space E_{1} and $\left(E_{2}, K\right)$ be an ordered Euclidean space induces by a pointed closed convex cone K. Let $K: C \rightarrow 2^{E_{2}}$ be a closed convex pointed cone valued mapping with int $K(u) \neq \emptyset$. Let η : $C \times C \rightarrow E_{1}$ be an affine in the first argument with $\eta(u, u)=0$, for all $u \in C$. Let $F: C \times C \rightarrow E_{2}$ be a $K(u)$-convex in the second argument with the condition $F(u, u)=0$, for all $u \in C$. Let $N: L\left(E_{1}, E_{2}\right) \times L\left(E_{1}, E_{2}\right) \rightarrow L\left(E_{1}, E_{2}\right)$ be a Lipschitz continuous mapping with all arguments, $A_{1}, A_{2}: C \rightarrow L\left(E_{1}, E_{2}\right)$ be the nonempty compact valued mappings which are H-hemicontinuous and α-relaxed exponentially (γ, η)-monotone with respect to first argument of N. Then the following two statements (i) and (ii) are equivalent:
(i) there exists $u_{0} \in C$ and $x \in A_{1}\left(u_{0}\right), y \in A_{2}\left(u_{0}\right)$ such that

$$
\left\langle N(x, y), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, u_{0}\right)}-1\right)\right\rangle+F\left(u_{0}, v\right) \not \not_{\operatorname{int} K\left(u_{0}\right)} 0, \forall v \in C
$$

(ii) there exists $u_{0} \in C$ such that

$$
\begin{aligned}
& \left\langle N(r, s), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, u_{0}\right)}-1\right)\right\rangle+F\left(u_{0}, v\right) \not \not_{\mathrm{int} K\left(u_{0}\right)} \alpha\left(v-u_{0}\right), \\
& \forall v \in C, r \in A_{1}(v), s \in A_{2}(v) .
\end{aligned}
$$

If $N(x, y, z)=N(x)$ and $A_{2}, A_{3} \equiv 0$, a zero mapping then Theorem 5 reduces to the following corollary:

Corollary 10. Let C be a nonempty closed convex bounded subset of a real Euclidean space E_{1} and $\left(E_{2}, K\right)$ be an ordered Euclidean space induces by a pointed closed convex cone K. Let $K: C \rightarrow 2^{E_{2}}$ be a closed convex pointed cone valued mapping with $\operatorname{int} K(u) \neq \emptyset$. Let $g: C \rightarrow C$ be a closed convex and continuous single valued mapping and $\eta: C \times C \rightarrow E_{1}$ be an affine in the first argument with $\eta(u, u)=0$, for all $u \in C$. Let $F: C \times C \rightarrow E_{2}$ be a $K(u)$-convex in the
second argument with the condition $F(u, u)=0$, for all $u \in C$. Let $N: L\left(E_{1}, E_{2}\right) \rightarrow L\left(E_{1}, E_{2}\right)$ be a Lipschitz continuous mapping, $A_{1}: C \rightarrow L\left(E_{1}, E_{2}\right)$ be the nonempty compact valued mapping which is H-hemicontinuous and α_{g}-relaxed exponentially (γ, η)-monotone with respect to first argument of N and g. Then the following two statements (i) and (ii) are equivalent:
(i) there exists $u_{0} \in C$ and $x \in A_{1}\left(u_{0}\right)$ such that

$$
\left\langle N(x), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{0}\right), v\right) \not \Varangle_{\operatorname{int} K\left(u_{0}\right)} 0, \forall v \in C,
$$

(ii) there exists $u_{0} \in C$ such that

$$
\left\langle N(r), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, g\left(u_{0}\right)\right)}-1\right)\right\rangle+F\left(g\left(u_{0}\right), v\right) \not \leq_{\operatorname{int} K\left(u_{0}\right)} \alpha_{g}\left(v-u_{0}\right), \forall v \in C, r \in A_{1}(v) .
$$

If $N(x, y, z)=N(x), A_{2}, A_{3} \equiv 0$, zero mappings and $g \equiv I$, an identity mapping then Theorem 5 reduces to the following corollary:

Corollary 11. Let C be a nonempty closed convex bounded subset of a real Euclidean space E_{1} and $\left(E_{2}, K\right)$ be an ordered Euclidean space induces by a pointed closed convex cone K. Let $K: C \rightarrow 2^{E_{2}}$ be a closed convex pointed cone valued mapping with $\operatorname{int} K(u) \neq \emptyset$. Let η : $C \times C \rightarrow E_{1}$ be an affine in the first argument with $\eta(u, u)=0$, for all $u \in C$. Let $F: C \times C \rightarrow$ E_{2} be a $K(u)$-convex in the second argument with the condition $F(u, u)=0$, for all $u \in C$. Let $N: L\left(E_{1}, E_{2}\right) \rightarrow L\left(E_{1}, E_{2}\right)$ be a Lipschitz continuous mapping, $A_{1}: C \rightarrow L\left(E_{1}, E_{2}\right)$ be the nonempty compact valued mapping which is H-hemicontinuous and α-relaxed exponentially (γ, η)-monotone with respect to first argument of N. Then the following two statements (i) and (ii) are equivalent:
(i) there exist $u_{0} \in C$ and $x \in A_{1}\left(u_{0}\right)$ such that

$$
\left\langle N(x), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, u_{0}\right)}-1\right)\right\rangle+F\left(u_{0}, v\right) \not \Varangle_{\operatorname{int} K\left(u_{0}\right)} 0, \forall v \in C,
$$

(ii) there exists $u_{0} \in C$ such that

$$
\left\langle N(r), \frac{1}{\gamma}\left(e^{\gamma \eta\left(v, u_{0}\right)}-1\right)\right\rangle+F\left(u_{0}, v\right) \not \leq_{\mathrm{int} K\left(u_{0}\right)} \alpha\left(v-u_{0}\right), \forall v \in C, r \in A_{1}(v)
$$

4. Acknowledgements

The author gratefully acknowledge Deanship of Scientific Research, Qassim University, on the material support for this research under grant number 3611-qec-2018-1-14-s, $1439 \mathrm{AH} / 2018$ AD .

Conflict of Interests

The author declares that there is no conflict of interests.

REFERENCES

[1] T. Antczak, (p, r)-invexity in multiobjective programming, Eur. J. Oper. Res., 152 (2004), 72-87.
[2] L. Brouwer, Zur invarianz des n-dimensional gebietes, Math. Ann., 71(3)(1912), 305-313.
[3] L. C. Ceng and J. C. Yao, On generalized variational-like inequalities with generalized monotone multivalued mappings, Appl. Math. Lett., 22(3) (2009), 428-434.
[4] G. Y. Chen and G. M. Cheng, Vector variational inequality and vector optimizations, SpringerVerlag, 285, Lecture Notes in Economics and Mathematical Systems, 1967.
[5] K. Fan, A generalization of tychonoffs fixed point theorem, Math. Ann., 142 (1961),305-310.
[6] A. Farajzadeh, M. A. Noor and K. I. Noor, Vector nonsmooth variational-like inequalities and optimization problems, Nonlinear Anal., 71 (2009), 3471-3476.
[7] F. Giannessi, Theorems of alternative, quadratic programs, and complementarity problems, In Variational Inequalities and Complementarity Problems, (Edited by R. W. Cottle, F. Giannessi and J. L. Lions), John Wiley Sons, Chichester, England, 1980.
[8] S. C. Ho and H. C. Lai, Optimality and duality for nonsmooth minimax fractional programming problem with exponential (p, r)-invexity, J. Nonlinear Convex Anal. Oper. Res., 13 (2012), 433-447.
[9] A. Jayswal, S. Choudhury and R. U. Verma, Expenential type vector variational-like inequalities and vector optimization problems with exponential type invexities, J. Appl. Math. Comput., 45(1-2) (2014), 87-97.
[10] A. Jayswal and S. Choudhury, Expenential type vector variational-like inequalities and nonsmooth vector optimization problems, J. Appl. Math. Comput., 49(1-2) (2015), 127-143.
[11] S. B. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30(2)(1969), 475-488.
[12] M. Oveisiha and J. Zafarani, Generalized Minty vector variational-like inequalities and vector optimization problems in Asplund spaces, Optim. Lett., 7 (2013), 709-721.
[13] T. W. Reiland, Nonsmooth invexity, Bull. Aust. Math. Soc., 42 (1990), 437-446.
[14] M. Rezaie and J. Zafarani, Vector optimization and variational-like inequalities, J. Glob. Optim., 43 (2009), 47-66.
[15] F. Usman and S. A. Khan, A generalized mixed vector variational-like inequality problem, Nonlinear Anal., Theory Methods Appl., 71(11) (2009), 5354-5362.
[16] K. Q. Wu and N. J. Huang, Vector variational-like inequalities with relaxed $\eta-\alpha$-pseudomonotone mappings in Banach spaces, J. Math. Inequal, 1 (2007), 281-290.

[^0]: *Corresponding author
 E-mail address: mohdfrd55@gmail.com
 Received May 23, 2019

