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Abstract. A family of variable order nested hybrid multistep method for the numerical integration of stiff initial

value problems of an ordinary differential equation is presented in this paper. These methods possess high order

with A-stability properties making it suitable for solving stiff problems. The method has been implemented on

some non-linear problems.
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1. INTRODUCTION

Multistep methods with off-step points, variously known as hybrid methods for the system of

initial value problems (IVPs) for stiff ordinary differential equations (ODEs) of the form

(1)


y′(x) = f (x,y), x ∈ [x0,X ]

y(x0) = y0
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where f : Rn→Rn, were introduced by independent authors, some of which are [1, 2, 3]. These

hybrid methods were proposed in a bid to search for good numerical schemes for the numerical

solution of initial value problems (IVPs) in ODEs. Most ODEs arising from scientific modelling

exhibit a characteristics of high stability, which when solved by standard numerical methods,

instability sets in [4]. This kind of ODEs are called stiff ODEs. In solving stiff systems of

ODEs, the numerical method must have good accuracy and some reasonable wide region of

absolute stability [5], in which A-stable methods are very good choice. Hence, the need to de-

velop numerical methods with a wide region of absolute stability. However, this requirement of

A-stability puts a severe limitation on the choice of suitable multistep methods, which is fondly

known as the Dahlquist order barrier [6]. Hybrid methods are modified from the linear multi-

step methods by incorporating off-step points, this is done in an attempt to bypass the Dahlquist

order barrier that exist in the linear multistep methods.

In the quest of solving stiff ODEs, several authors have developed numerical methods that

circumvent the so called Dahlquist order barrier, som of which includes; the second derivative

multistep methods of [7], hybrid linear multistep method of [8, 9], high order numerical method

of [10], extended backward differentiation formulas of [11].

The paper presented is organized thus; in section 2 we discuss the derivation of the proposed

method, as well as give some examples of the method, section 3 considers the local truncation

error and order of the method proposed, we analyze the A-stability property of the proposed

method in section 4, in section 5, we implemented the schemes on some test problems and

compare with existing methods. The paper is concluded in section 6 with giving a brief sum-

mary.

Kulikov and Shindin [12, 13] considered nested implicit Runge-kutta formulas based on Gauss

quadrature formula. Here, we consider nested hybrid multistep methods.
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2. DERIVATION OF THE METHODS

The variable order nested hybrid multistep method (VONHM) considered in this paper for

the numerical integration of (1) is the second derivative hybrid multistep method defined as

(2) yn+k =
k−1

∑
j=0

α
(m)
j yn+ j +h

(
γ
(m)
k fn+k +β

(m)
vm fn+vm

)
+h2

Ω
(m)
k f ′n+k

where xn+ j = xn + jh (h being the step size), k the step number (k ∈ Z+), m = k− 1 and the

hybrid value vm is chosen as

vm = k− 1
2

In addition to (2), the hybrid point yn+vm is computed from the nested hybrid

yn+vl+1 = yn+k +h

(
k

∑
j=0

β
(l)
j fn+ j +β

(l)
vl fn+vl

)
l = 0(1)m−1(3)

The hybrid method (3) is nested in that we have k number of hybrid point, that is, from (3) we

have the set of hybrid points

yn+vl+1,yn+vl ,yn+vl−1,yn+vl−2, · · · ,yn+v2,yn+v1,yn+v0

where yn+v0 is the nested hybrid predictor. The hybrid value vl; l = 0(1)m− 1 is computed

using

(4) vl =
vl+1 + k

2
, l = 0(1)m−1

Two cases of hybrid predictors are considered, given as

(5) yn+v0 =


yn+k +h∑

k
j=0 β

(−1)
j fn+ j V1

yn+k +h∑
k
j=0 β

(−1)
j fn+ j +h2λ

−1
k f ′n+k V2

yn+k in (2) is the numerical approximation (output solution) to the exact solution y(xn+k). Two

cases of VONHM are considered above in which the first being the combination of (2), (3) and

V1, while the second is the combination of (2), (3) and V2. The implicitness of the VONHM is

on the output method (2)
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We derive the schemes based on the assumption of the polynomial interpolant

(6) y(x) =
N

∑
j=0

a jx j

where
{

a j
}N

j=0 are real parameter constants to be determined, differentiating (6), we have

(7) f (x,y) = y′(x) =
N

∑
j=0

ja jx j−1 and f ′(x,y) = y′′(x) =
N

∑
j=0

j( j−1)a jx j−2

we then collocate at x = xn+ j, j = 0(1)k and xn+vm , and interpolate at xn+k, as discussed in

[14, 15, 16]. The hybrid values vm and vl; l = 0(1)m− 1 are computed for the step number

k = 1(1)9 in table 1.

TABLE 1. Computed values of v for each k

k m l v = (v0,v1,v2, . . . ,vm−1) vm

1 0 - - 1
2

2 1 0 7
4

3
2

3 2 0,1
(23

8 ,
11
4

) 5
2

4 3 0(1)2
(63

16 ,
31
8 ,

15
4

) 7
2

5 4 0(1)3
(159

32 ,
79
16 ,

39
8 ,

19
4

) 9
2

6 5 0(1)4
(383

64 ,
191
32 ,

95
16 ,

47
8 ,

23
4

) 11
2

7 6 0(1)5
(895

128 ,
447
64 ,

223
32 ,

111
16 ,

55
8 ,

27
4

) 13
2

8 7 0(1)6
(2047

256 ,
1023
128 ,

511
64 ,

255
32 ,

127
16 ,

63
8 ,

31
4

) 15
2

9 8 0(1)7
(4607

512 ,
2303
256

1151
128 ,

575
64 ,

287
32 ,

143
16 ,

71
8 ,

35
4

) 17
2

2.1. Example Methods. For the step number k = 1, m = 0. The method has a single hybrid

predictor with hybrid value v0 =
1
2 given as

(8) yn+1 = yn +h
(

4
3

fn+ 1
2
− 1

3
fn+1

)
+

1
6

h2 f ′n+1
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with the hybrid predictor yn+ 1
2

given as

(9) yn+ 1
2
=


yn+1− 1

8h fn− 3
8h fn+1 V1

yn+1 +h
(
− 1

24 fn− 11
24 fn+1

)
+ 1

12h2 f ′n+1 V2

For the step number k = 2, m = 1, l = 0. The method has hybrid predictors with hybrid values

v1 =
3
2 , v0 =

7
4 , the method is thus;

(10) yn+2 =−
1

31
yn +

32
31

yn+1 +h
(

32
31

fn+ 3
2
− 2

31
fn+2

)
+

2
31

h2 f ′n+2

with the hybrid

(11) yn+ 3
2
= yn+2 +h

(
1

672
fn−

1
48

fn+1−
3
7

fn+ 7
4
− 5

96
fn+2

)
and the hybrid predictor yn+ 7

4
given as

(12) yn+ 7
4
= yn+2 +h

(
5

384
fn−

11
192

fn+1−
79

384
fn+2

)
V1

(13) yn+ 7
4
= yn+2 +h

(
13

12288
fn−

29
3072

fn+1−
2969
12288

fn+2

)
+

49
2048

h2 f ′n+2 V2

For the step number k = 3, m = 2, l = 0,1. The method has hybrid values are v2 =
5
2 , v1 =

11
4 ,

v0 =
23
8 . The method is thus given as

(14) yn+3 =
20

3773
yn−

243
3773

yn+1 +
3996
3773

yn+2 + h
(

3456
3773

fn+ 5
2
+

114
3773

fn+3

)
+

18
539

h2 f ′n+3

with the nested hybrid

(15) yn+ 5
2
= yn+3 +h

(
− 29

63360
fn +

7
1920

fn+1−
149
5760

fn+2−
208
495

fn+ 11
4
− 329

5760
fn+3

)

(16) yn+ 11
4
= yn+3 + h

(
− 209

2119680
fn +

329
460800

fn+1 −
769

215040
fn+2 −

8348
36225

fn+ 23
8
− 1529

92160
fn+3

)
and the hybrid predictor yn+ 23

8
given as

(17) yn+ 23
8
= yn+3 +h

(
− 75

32768
fn +

1027
98304

fn+1−
2147

98304
fn+2−

10943
98304

fn+3

)
V1
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(18) yn+ 23
8
= yn+3 +h

(
− 553

8847360
fn +

281
655360

fn+1−
591

327680
fn+2−

2186407
17694720

fn+3

)
+

19697
2949120

h2 f ′n+3 V2

Methods for step number k ≥ 4 can be constructed as discussed above.

3. ERROR AND ORDER

The general form of the local truncation error of the scheme (2) is

(19) LT Ea = y(xn+k) −
(k−1

∑
j=0

α
(m)
j y(xn+ j) + h

(
γ
(m)
k y′(xn+k) + β

(m)
vm y′(xn+vm)

)
+ h2

Ω
(m)
k y′′(xn+k)

)
The local truncation error of the nested hybrid scheme (3) is

(20) LT Eb = y(xn+vl+1)−

(
y(xn+k)+h

(
k

∑
j=0

β
(l)
j y′(xn+ j)+β

(l)
vl y′′(xn+vl)

))
l = 0(1)m−1

The local truncation error of the first case of hybrid predictor V1 is

(21) LT Ec = y(xn+v0)−

(
y(xn+k)+h

k

∑
j=0

β
(−1)
j y′(xn+ j)

)

The local truncation error of the first case of hybrid predictor V2 is

(22) LT Ed = y(xn+v0)−

(
y(xn+k)+h

k

∑
j=0

β
(−1)
j y′(xn+ j)+h2

λ
(−1)
k y′′(xn+k)

)

Proposition 1. The method (2) has order p = k+2 with the local truncation error given as

L[y(xn),h] ≤C(a)
k+3hk+3y(k+3)+O(hk+4)

=C(a)
p+1hp+1y(p+1)+O(hp+2)

Proof. Replacing y(xn+k) = y(xn+kh), y(xn+ j) = y(xn+ jh), y′(xn+k) = y′(xn+kh), y′′(xn+k) =

y′′(xn + kh) and y(xn+vm) = y(xn + vmh) in (19) and obtain the Taylor’s series expansion about

xn gives

L[y(xn),h] =C(a)
0 y(xn)+C(a)

1 hy′(xn)+C(a)
2 h2y′′(xn)+ · · ·+C(a)

k+2hk+2y(k+2)(xn)

+C(a)
k+3hk+3y(k+3)(xn)+O(hk+4)

(23)
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where

C(a)
0 = 1−

k−1

∑
j=0

α
(m)
j = 0

C(a)
1 = k−β

(m)
vm − γ

(m)
k −

k−1

∑
j=0

jα(m)
j = 0

C(a)
2 =

1
2!

(
k2−2vmβ

(m)
vm −2kγ

(m)
k −2Ω

(m)
k −

k−1

∑
j=0

j2
α
(m)
j

)
= 0

C(a)
3 =

1
3!

(
k3−3v2

mβ
(m)
vm −3k2

γ
(m)
k −6kΩ

(m)
k −

k−1

∑
j=0

j3
α
(m)
j

)
= 0

...

(24) C(a)
k+2 =

1
(k+2)!

(
kk+2− (k+2)vk+1

m β
(m)
vm − (k+2)kk+1

γ
(m)
k

− (k+1)(k+2)kk
Ω

(m)
k −

k−1

∑
j=0

jk+2
α
(m)
j

)
= 0

(25) C(a)
k+3 =

1
(k+3)!

(
kk+3− (k+3)vk+2

m β
(m)
vm − (k+3)kk+2

γ
(m)
k

− (k+2)(k+3)kk+1
Ω

(m)
k −

k−1

∑
j=0

jk+3
α
(m)
j

)
6= 0

therefore (23) becomes

(26)

L[y(xn),h] ≤C(a)
k+3hk+3y(k+3)+O(hk+4)

=C(a)
p+1hp+1y(p+1)+O(hp+2)

�

Hence, from (26), the method (2) has order p = k+ 2, where C(a)
p+1 is the error constant of

method (2).
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Corollary 1. The method (3) has order q = k+2 with the local truncation error given as

L[y(xn),h] ≤C(a)
k+3hk+3y(k+3)+O(hk+4)

=C(a)
q+1hq+1y(q+1)+O(hq+2)

Corollary 2. The method (5), case V1 has order r = k+1 with the local truncation error given

as
L[y(xn),h] ≤C(a)

k+2hk+2y(k+2)+O(hk+3)

=C(a)
r+1hr+1y(r+1)+O(hr+2)

Corollary 3. The method (5), case V2 has order s = k+2 with the local truncation error given

as
L[y(xn),h] ≤C(a)

k+3hk+3y(k+3)+O(hk+4)

=C(a)
s+1hs+1y(s+1)+O(hs+2)

The computed error constant and order of the example methods of VONHM given in section

2.1 is given in table 2 for step number k = 1(1)3.

TABLE 2. Error constant and order of the VONHM in section 2.1

k C(a)
p+1 C(b)

q+1 C(c)
r+1 C(d)

s+1 p q r s

1 − 1
72 - 1

24 − 5
1152 3 - 2 3

2 − 1
372 − 29

92160
49

6144 − 59
184320 4 4 3 4

3 − 3
3430 − 7

46080 , − 143
3686400

19697
11796480 − 25723

943718400 5 5, 5 4 5

4. STABILITY ANALYSIS

The first characteristics polynomial of VONHM (2) is expressed as

(27) ρ(w) = wk−
k−1

∑
j=0

α
(m)
j w j

where w represents the shift operator. The VONHM is zero stable if the roots w j, j = 1(1)k of

(27), has modulus w j < 1, where the |w j| = 1 is simple. The stability of the method VONHM
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for the cases V1 and V2 is investigated through the application to the scalar test problem defined

as

(28) y′(x) = λy(x) x≥ 0, Re(λ )< 0

which yields

(29) π(w,z)iyn = 0, i = 1,2

Theorem 1. The resultant stability polynomial of the VONHM for the case V1 is

(30) π(w,z)1 = wk−
k−1

∑
j=0

α
(m)
j w j− z

[
γ
(m)
k wk +β

(m)
vm (R(w,z)1)

]
− z2

Ω
(m)
k wk

where

(31) R(w,z)1 = wk+z
k

∑
j=0

β
(m−1)
j w j+β

(m−1)
vm−1

(
· · ·
(

wk+z
( k

∑
j=0

β
(1)
j +β

(0)
v0

(
wk+z

k

∑
j=0

β
(−1)
j w j

))))

Proof. Taking the right hand side (R.H.S) of (2) to the left hand side (L.H.S) and equating to

zero yields

(32) yn+k−
k−1

∑
j=0

α
(m)
j yn+ j−h

(
γ
(m)
k fn+k +β

(m)
vm fn+vm

)
−h2

Ω
(m)
k f ′n+k = 0

applying the scalar test problem (28) on (32) and taking z = λh, yields

(33) wk−
k−1

∑
j=0

α
(m)
j w j− z

(
γ
(m)
k wk +β

(m)
vm yn+vm

)
− z2

Ω
(m)
k wk = 0

where w is used as the shift operator, the stability polynomial is given as defined in (30). How-

ever, we need to prove that yn+vm = R(w,z)1 as given in (31), this is obtained by applying the

scalar test problem on (3) and (5). The scheme (3) is expanded as follows;

when l = 0

(34) yn+v1 = yn+k +h

(
k

∑
j=0

β
(0)
j fn+ j +β

(0)
v0 fn+v0

)
when l = 1

(35) yn+v2 = yn+k +h

(
k

∑
j=0

β
(1)
j fn+ j +β

(1)
v1 fn+v1

)
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the process continues till l = m−1

(36) yn+vm = yn+k +h

(
k

∑
j=0

β
(m−1)
j fn+ j +β

(m−1)
vm−1 fn+vm−1

)
Recall from (5) case V1 that

(37) yn+v0 = yn+k +h
k

∑
j=0

β
(−1)
j fn+ j

applying the scalar test problem (28) on the R.H.S of (34) to (37), using the shift operator and

taking z = λh, we have

(38) yn+v1 = wkyn + z

(
k

∑
j=0

β
(0)
j w jyn +β

(0)
v0 yn+v0

)
when l = 1

(39) yn+v2 = wkyn + z

(
k

∑
j=0

β
(1)
j w jyn +β

(1)
v1 yn+v1

)
this process continues till

(40) yn+vm = wkyn + z

(
k

∑
j=0

β
(m−1)
j w jyn +β

(m−1)
vm−1 yn+vm−1

)
and

(41) yn+v0 = wkyn + z
k

∑
j=0

β
(−1)
j w jyn

from above, the R.H.S of (41) is replaced with yn+v0 in (38) and the result of this R.H.S of (38)

is replaced with yn+v1 in (39), this process continues recursively. Hence, we obtain

(42)

yn+vm =R(w,z)1 =wk+z
k

∑
j=0

β
(m−1)
j w j+β

(m−1)
vm−1

(
· · ·
(

wk+z
( k

∑
j=0

β
(1)
j +β

(0)
v0

(
wk+z

k

∑
j=0

β
(−1)
j w j

))))
the · · · denotes some recursive terms obtained between 2 ≤ l ≤ m− 2 after the application of

the scalar test problem. Hence, the result of the stability polynomial given in (30) and (31). �

Theorem 2. The resultant stability polynomial of the case V2 is

(43) π(w,z)2 = wk−
k−1

∑
j=0

α
(m)
j w j− z

[
γ
(m)
k wk +β

(m)
vm (R(w,z)2)

]
− z2

Ω
(m)
k wk
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where

(44) R(w,z)2 = wk + z
k

∑
j=0

β
(m−1)
j w j +β

(m−1)
vm−1

(
· · ·
(

wk + z
( k

∑
j=0

β
(1)
j w j

+β
(0)
v0

(
wk + z

k

∑
j=0

β
(−1)
j w j + z2

λ
(−1)
k wk

))))
Definition 1. The region of absolute stability of the VONHM is the set

Ψ =
{

z ∈C : |w j| ≤ 1, j = 1(1)k
}

i.e. if the root of w j, j = 0(1)k of (30) and (43) are less or equal to one in absolute value, such

that those of magnitude one are not repeated.

Definition 2. The VONHM is Astable if the region of absolute stability lies in the entire left

half of the zplane (i.e.z ∈C−).

Definition 3. The VONHM is A(α)-stable for some α ∈
[
0, π

2

)
if the wedge

Sα = {z : |Arg(−z)|< α,z 6= 0}

is contained in its region of absolute stability.

The VONHM is Astable for the step number k = 1(1)5 and k = 2(1)5 for the cases V1 and

V2 respectively. However as at the time this research was carried out, the point at which insta-

bility sets in, was not investigated. The boundary locus plot of the VONHM, cases V1 and V2

for the step number k = 1(1)9 are shown figures 1 ans 2. Table 3 shows the angle of absolute

stability of the VONHM, where those of 900 indicate A stable methods.

5. NUMERICAL EXPERIMENTS

We implement the third order VONHM (2) on some non-linear stiff problems using fixed step

size and variable step size. Implementing the method leads to solving a system of non-linear

equations in yn+k. Hence, the need to resolve its implicitness by the Newton-Raphson scheme

(45) y[s+1]
n+k = y[s]n+k− J(y[s]n+k)

−1F(y[s]n+k)
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FIGURE 1. Boundary locus plot of the VONHM case V1

FIGURE 2. Boundary locus plot of the VONHM case V2
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TABLE 3. Angle (α) of absolute stability of the VONHM

k V1 V2

1 900 89.20

2 900 900

3 900 900

4 900 900

5 900 900

6 890 890

7 870 870

8 85.50 850

9 820 82.50

where

(46) F(y[s]n+k) = y[s]n+k−

(
k−1

∑
j=0

α
(m)
j yn+ j +h

(
γ
(m)
k f [s]n+k +β

(m)
vm f [s]n+vm

)
+h2

Ω
(m)
k f

′[s]
n+k

)

and J(y[s]n+k) is the Jacobian matrix defined by

(47) J(y[s]n+k) =
∂

∂y
F(y[s]n+k)

therefore, the Jacobian matrix is given as

(48) J(y[s]n+k) =
∂

∂y

(
I−hγ

(m)
k f (y[s]n+k)+hβ

(m)
vm f (y[s]n+vm

)+h2
Ω

(m)
k f ′(y[s]n+k)

)

where I is the unit matrix.

We use the second derivative explicit Euler method as the starting values for (45) defined as

(49) yn+1 = yn +h fn +
h2

2
f ′n



VONHMM FOR STIFF ODES 91

The non-linear problems in consideration is given below.

Problem 1 Non-linear problem [17].

(50)


y′1(x) =−0.1y1(x)−199.9y2(x); y1(0) = 2; y1(x) = e−0.1 + e−200x

y′2(x) =−200y2(x); y2(0) = 0; y2(x) = e−200x

x ∈ [0,10] ; h = 10−3

Problem 2 The Brusselator [5].

(51)


y′1(x) = 1+ y2

1(x)y2(x)−4y1(x); y1(0) = 1.5

y′2(x) = 3y1(x)− y2
1(x)y2(x); y2(0) = 3

x ∈ [0,20] ; h = 10−3

Implementing the third order VONHM on problem 1. We verify that the method does not suffer

order reduction using fixed step size. The global error is computed as

(52) ϖh =‖
{

y1(x)− y1,n(x)
}
,
{

y2(x)− y2,n(x)
}
‖

where y1(x) and y2(x) are the numerical result of the exact solution, y1,n(x) and y2,n(x) are the

numerical approximation obtained by the VONHM and ‖ · ‖ is taken as the maximum norm.

The relative error is computed as

(53) R̄e =
ϖh

ϖ h
2

then the order p is given by

(54) p+O(h) = log2 |R̄e|

The last column of Table 4 shows that the third order method does not suffer order reduction.

The VONHM is implemented using variable step size, alongside the second derivative linear

multistep method (SDLMM) [5]

(55) yn+1 = yn +
h
3
( fn +2 fn+1)−

h2

6
f ′n+1; C4 =

1
72

and the backward differentiation formula (BDF) [4]

(56) yn+3 =
2

11
yn−

9
11

yn+1 +
18
11

yn+2 +
6

11
h fn+3 C4 =−

3
22
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TABLE 4. Numerical results of Problem 1 (using fixed step size) for x ∈ [0,2]

h ϖ R̄e p (approx.)

0.001 1.110481203949743e-004 - -

0.0005 1.455972370728587e-005 7.627076078332752 2.93113 ≈ (3)

0.00025 1.866506438574778e-006 7.800521555341296 2.96357 ≈ (3)

0.000125 2.363607967126313e-007 7.896852881419614 2.98128 ≈ (3)

0.0000625 2.974006951816932e-008 7.947553605018632 2.99051 ≈ (3)

0.00003125 3.729839104238408e-009 7.973552930037692 2.99522 ≈ (3)

for the numerical integration of the non linear problems (50) and (51). We adopt the idea in [4]

to compute a new step size

(57) hnew = 0.9
(

TOL
ϖ

) 1
p

hold

where, hold is the last successful or failed step size, hnew is the new step size to be used if the last

step size is a failed attempt, TOL is the specified users tolerance (i.e. allowable error estimate),

p is the order of the method and ϖ is the maximum error, n f e represents the number of function

evaluation, ns represents the number of steps, and nrs represents the number of rejected steps.

We choose TOL = 10−6. In Tables 5 and 6, our method has a good maximum error than the

TABLE 5. Numerical result of Problem 1

VONHM SDLMM [5] BDF [4]

n f e 220000 114080 159970

ns 1000 1000 1000

nrs 0 2 5

ϖ 1.287858708565182e-014 9.9990050970576e-002 3.67879441171442e-001

SDLMM and BDF with no rejected steps. Hence, this shows that our method outperforms the

SDLMM and BDF for problems 1 and 2.
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TABLE 6. Numerical result of Problem 2

VONHM SDLMM [5] BDF [4]

n f e 440000 239978 288320

ns 20000 20000 2000

nrs 0 11 198

ϖ 3.159554022663061e-010 1.005387230111084e-006 8.20707935075017e-001

6. CONCLUSION

Second derivative variable order nested hybrid multistep method for the numerical integra-

tion of stiff initial value problems of ordinary differential equation is presented. The method

presented possess high order with A-stability properties for the step number k = 1(1)5. The

method is also implemented using fixed and variable step size. The fixed step size implemen-

tation on the non-linear problem 1 suggest that the method did not suffer from order reduction,

while the variable step size implementation of our method shows that the scheme presented

outperforms the SDLMM and BDF.
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