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Abstract. In this paper, we introduce and prove the Generalized Hyers-Ulam stability of Quadratic (s1,s2)-

functional inequality in Fuzzy Normed space using the fixed point method.
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1. INTRODUCTION

Nearly two decades ago, Glányi [8] proved that any h satisfies the Jordan-von Neumann

functional equation

2h(x)+2h(y) = h(xy)+h(xy−1)

if h satisfies the functional inequality

||2h(x)+2h(y)−h(xy−1)|| ≤ ||h(xy)||.(1)
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Glányi [9] and Fechner [5] proved the HU stability of the functional inequality (1). Park,

Cho and Han [18] investigated and proved the HU Stability of the Cauchy additive functional

inequality

||h(x)+h(y)+h(z)|| ≤ ||h(x+ y+ z)||.(2)

and the Cauchy-Jensen additive functional inequality

||h(x)+h(y)+2h(z)|| ≤ ||2h
(x+ y

2
+ z
)
||.(3)

The HU Stability is consequence of study of Ulam’s [1] problem regarding stability of group

homomorphism. A number of mathematicians namely Hyers [10], Aoki [2], Th.M.Rassias

[19],Găvruta [7] studied HU Stability under various adaptations. Park [16],[17] introduced

additive ρ-functional inequalities and proved their HU stability in Banach spaces and non-

Archimedean Banach spaces. In this paper,we introduce and prove HU stability of quadratic

(s1,s2)-functional inequality

F(F1(x,y), t)≤ min{F(s1F2(x,y), t),F(s2F3(x,y), t)}(4)

where

F1(x,y) = f (kx+ y)− f (x+ ky)− (k2−1)[ f (x)− f (y)]

F2(x,y) = (k+1)2 f ( (kx+y)
(k+1) )− f (x+ ky)− (k2−1)[ f (x)− f (y)]

F3(x,y) = (k+1)2 f ( (kx+y)
(k+1) )− f (x+ ky)− (k+1)2(k2−1)[ f ( x

(k+1))− f ( y
(k+1))]

in Fuzzy Normed space, where k is a non zero positive integer; s1 and s2 are fixed non-zero

real numbers with
(

1
s1
+ 1

s2

)
< 2 .

2. PRELIMINARIES

The concept of fuzzy norm on a linear space was given by Katsaras [11] in 1984. Since

then until now, the fuzzy norm has been defined in different ways by various mathematicians

[3],[20],[6],[12].

2.1. Definition ([3],[15]). Let X be a real vector space. A function F : X×R→ [0,1] is called

a fuzzy norm on X if for all a,b ∈ X and all r,m,n ∈ R,

FN1: F(a, n) = 0 for n≤ 0;



386 SHALINI TOMAR, NAWNEET HOODA

FN2: a=0 iff F(a,n) = 1 for all n > 0;

FN3: F(ra, n) = F(a, n
|r|) if r 6= 0;

FN4: F(a+b,m+n ) ≥ min{F(a,m),F(b,n)};

FN5: limn→∞F(a,n) =1,where F(a,.) is a non-decreasing function of R.

FN6: F(a,.) is continuous on R, for a 6= 0

The pair (X,F) is called a fuzzy normed vector space.

2.2. Definition ([3],[15]).

1. Let (X,F) be a fuzzy normed vector space. A sequence {an} in X is said to be convergent

if ∃ an a ∈ X such that lim
n→∞

F(an− a,r) = 1 for all r > 0,where a is the limit of the

sequence {an}, denoted by F− lim
n→∞

an = a.

2. Let (X,F) be a fuzzy normed vector space. A sequence {an} in X is said to be cauchy

if for each ε > 0 and each r > 0 there exists an n0 ∈ N such that for all n ≥ n0 and all

m > 0,we have F(an+m−an,r)> 1− ε.

3. The fuzzy norm is said to be complete if every cauchy sequence is convergent and the

fuzzy normed vector space is called a fuzzy Banach space.

4. A mapping f : X → Y where X and Y are fuzzy normed vector spaces is continuous at

a point a0 ∈ X if for each sequence {an} converging to a0 ∈ X , the sequence { f (an)}

converges to f (a0).If f : X → Y is continuous at each a ∈ X , then f : X → Y is said to

be continuous on X.

2.3. Definition [13]. Let X be a set. A function d : X ×X → [0,∞) is called a generalized

metric on X if d satisfies the following conditions:

(1) d(x,y) = 0 if and only if x = y for all x,y ∈ X ;

(2) d(x,y) = d(y,x)for all x,y ∈ X ;

(3) d(x,z)≤ d(x,y)+d(y,z) for all x,y,z ∈ X .

2.4. Theorem [4]. Let (X ,d) be a complete generalized metric space and J : X → X a strictly

contractive mapping with Lipschitz constant L< 1. Then, for all x∈X , either d(Jnx,Jn+1x) =∞

for all non-negative integers n or there exists a positive integer n0 such that

(1) d(Jnx,Jn+1x)< ∞ for all n≥ n0;
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(2) the sequence {Jnx} converges to a fixed point y? of J;

(3) y?n is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0x,y)< ∞};

(4) d(y,y?)≤ (1/(1−L))d(y,Jy) for all y ∈ Y .

Throughout the paper, suppose that s1 and s2 are fixed nonzero real numbers with
(

1
s1
+ 1

s2

)
< 2

and k is a non zero positive integer. Also X and Y be real fuzzy normed space and fuzzy banach

space respectively with norm F(.,t).

3. QUADRATIC (s1,s2)-FUNCTIONAL INEQUALITY

3.1. Lemma. Let f : X → Y be a mapping with f(0)=0 and satisfies (4) for all x,y ∈ X and all

t > 0.Then f is Quadratic.

Proof: Suppose that function f satisfies (4). By letting x=y in (4), we get

1≤ min{F(s1((k+1)2 f (x)− f ((k+1)x)), t),(s2((k+1)2 f (x)− f ((k+1)x)), t)}

≤ F((s1 + s2)((k+1)2 f (x)− f ((k+1)x)),2t) = F
(
(k+1)2 f (x)− f ((k+1)x),

2t
(s1 + s2)

)
Therefore,

(k+1)2 f (x) = f ((k+1)x)(5)

Now from (4) and (5) we get

F(F1(x,y), t)≤ min{F(s1F1(x,y), t),F(s2F1(x,y), t)}

= min{F(F1(x,y),
t
|s1|

),F(F1(x,y),
t
|s2|

)}

≤ F
(

F1(x,y),(
1
|s1|

+
1
|s2|

)
t
2

)
i.e.

F(F1(x,y), t)≥ F(F1(x,y),
t
ζ
)

where ζ =
{

1
2

(
1
s1
+ 1

s2

)}
. Putting t

|ζ |n−1 instead of t, we get

F
(

F1,
t

|ζ |n−1

)
≥ F

(
F1,

t
|ζ |n

)
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Thus,for all n ∈ Z+ we have, F(F1, t)) ≥ F
(

F1,
t
|ζ |n
)

. Since ζ < 1, therefore by taking limit

n→ ∞ and using (FN5) , we get F(F1(x,y), t) = 1 for all x,y ∈ X , and hence F1(x,y) = 0.So,

f : X → Y is Quadratic.

3.2. Theorem. Let Ψ : X2→ [0,∞) be a function such that

Ψ(x,y)≤ L
(k+1)2 Ψ((k+1)x,(k+1)y)

for some L < 1 and for all x,y ∈ X. Let f : X→Y be a mapping with f(0)=0 and satisfying

min{F(F1(x,y), t), t
t+Ψ(x,y)} ≤

min{F(s1F2(x,y), t),F(s2F3(x,y), t)}(6)

where

F1(x,y) = f (kx+ y)− f (x+ ky)− (k2−1)[ f (x)− f (y)]

F2(x,y) = (k+1)2 f ( (kx+y)
(k+1) )− f (x+ ky)− (k2−1)[ f (x)− f (y)]

F3(x,y) = (k+1)2 f ( (kx+y)
(k+1) )− f (x+ ky)− (k+1)2(k2−1)[ f ( x

(k+1))− f ( y
(k+1))] for all x,y ∈ X

and all t > 0. Then Q(x) = F − lim
n→∞

(k+ 1)2n f
( x
(k+1)n

)
exists for all x ∈ X and defines a

Quadratic mapping Q : X → Y such that

F( f (x)−Q(x), t)≥ (2−2L)(k+1)t
(2−2L)(k+1)t +ηΨ(x,x)

(7)

for all x ∈ X , t > 0, where η =
{

1
|s1| +

1
|s2|

}
.

Proof: Let x = y in (6), we get

t
t +Ψ(x,x)

≤ min{F(s1((k+1)2 f (x)− f ((k+1)x)), t),F(s2((k+1)2 f (x)− f ((k+1)x)), t)}

≤ min
{

F
(
(k+1)2 f (x)− f ((k+1)x),

t
|s1|

)
,F
(
(k+1)2 f (x)− f ((k+1)x),

t
|s2|

)}
≤ F

(
(k+1)2 f (x)− f ((k+1)x),

( 1
|s1|

+
1
|s2|

) t
2

)
i.e.

F
(

f (x)− (k+1)2 f
( x
(k+1)

)
,

ηt
2(k+1)

)
≥ t

t +Ψ(x,x)
(8)

Now let us consider the set

S = {g : X → Y}
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and a generalized metric on S,such that

d(g,h) = in f
(

ε ∈ R+ : F(g(x)−h(x),εt)≥ t
t +Ψ(x,x)

, f or all x ∈ X , f or all t > 0
)
,

where in f (Ψ) = +∞. Next, using lemma 2.1([14]) we can say that (S,d) is Complete.Now,let

us consider a linear mapping A : S→ S such that

Ag(x) = (k+1)2g
( x
(k+1)

)
for all x ∈ X . Let g,h ∈ S with d(g,h) = γ . Then

F(g(x)−h(x),γt)≥ t
t +Ψ(x,x)

for all x ∈ X , t > 0. Therefore,

F(Ag(x)−Ah(x),Lγt) = F
(
(k+1)2g

( x
(k+1)

)
− (k+1)2h

( x
(k+1)

)
,Lγt

)

= F
(

g
( x
(k+1)

)
−h
( x
(k+1)

)
,

Lγt
(k+1)2

)
≥

Lt
(k+1)2

Lt
(k+1)2 +Ψ( x

(k+1) ,
x

(k+1))

≥
Lt

(k+1)2

Lt
(k+1)2 +

L
(k+1)2 Ψ(x,x)

=
t

t +Ψ(x,x)

for all x ∈ X , t > 0. Hence d(Ag,Ah) = Lγ , i.e. d(Ag,Ah) = Ld(g,h) for all g,h ∈ S. Also using

(8), we can say that

d( f ,A f )≤ η

2(k+1)
.

Now, by Theorem (2.4), there exists a mapping Q : X → Y such that:

1. Q is a fixed point of A, i.e.,

Q(x) = (k+1)2Q
( x
(k+1)

)
(9)

for all x ∈ X . Since the mapping Q is a unique fixed point of A in the set

T = (g ∈ S : d( f ,g)< ∞),

thus Q is a unique mapping satisfying (9) such that there exists a ε ∈ (0,∞) satisfying

F( f (x)−Q(x),εt)≥ t
t +Ψ(x,x)

for all x ∈ X .
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2. d(An f ,Q)→ 0 as n→ ∞.This implies

Q(x) = F− lim
n→∞

(k+1)2n f
( x
(k+1)n

)
f or all x ∈ X .

3. d( f ,Q)≤ 1
1−Ld( f ,A f ), which implies d( f ,Q)≤ η

2(k+1)−2(k+1)L .And thus inequality (7)

is proved.Now by

min
{

F
(
(k+1)2nF1

( x
(k+1)n ,

y
(k+1)n

)
,(k+1)2nt

)
,

t
t +Ψ( x

(k+1)n ,
y

(k+1)n )

}
≤ min

{
F
(
(k+1)2ns1F2

(
x

(k+1)n ,
y

(k+1)n

)
,(k+1)2nt

)
,

F
(
(k+1)2ns2F3

(
x

(k+1)n ,
y

(k+1)n

)
,(k+1)2nt

)}
for all x, y ∈ X, all t > 0 and all n ∈ N. Now,by (6)

min
{

F
(
(k+1)2nF1

(
x

(k+1)n ,
y

(k+1)n

)
, t
)
, t/(k+1)2n

(t/(k+1)2n)+(Ln/(k+1)2n)Ψ(x,y)

}
≤ min

{
F
(
(k+1)2ns1F2

( x
(k+1)n ,

y
(k+1)n

)
, t
)
,(10)

F
(
(k+1)2ns2F3

( x
(k+1)n ,

y
(k+1)n

)
, t
)}

Since lim
n→∞

t/(k+1)2n

(t/(k+1)2n)+(Ln/(k+1)2n)Ψ(x,y)
= 1 for all x,y ∈ X, all t > 0,therefore

by lemma (3.1) the mapping C : X → Y is Quadratic.

3.3. Corollary. Let ς ≥ 0 and p be a real number with p > 2.Let X be a normed vector space

with norm ||.|| and (Y,N) be a fuzzy normed vector space. Let f : X → Y be a mapping with

f (0) = 0 and

min
{

F(F1(x,y), t),
t

t + ς(||x||p + ||y||p)

}
≤ min{F(s1F2(x,y), t),F(s2F3(x,y), t)

}
(11)

where F1(x,y),F2(x,y) and F3(x,y) are as defined earlier for all x,y ∈ X and all t > 0. Then

Q(x) = F− lim
n→∞

(k+1)2n f
( x
(k+1)n

)
exists for all x ∈ X and a Quadratic mapping C : X → Y

such that

F( f (x)−Q(x), t)≥ ((k+1)p− (k+1)2)(k+1)t
((k+1)p− (k+1)2)(k+1)t +ης ||(k+1)x||p

(12)

for all x ∈ X , t > 0, where η = 1
|s1| +

1
|s2| .

Proof: The proof follows from above Theorem by taking Ψ(x,y) = ς(||x||p + ||y||p) for all

x,y ∈ X and L = |k+1|2−p and we get desired result.
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3.4. Theorem. Let Ψ : X2→ [0,∞) be a function such that

Ψ(x,y)≤ (k+1)2LΨ(
x

(k+1)
,

y
(k+1)

)

for some L < 1 and for all x,y ∈ X. Let f : X → Y be a mapping with f(0)=0 and satisfying

(6). Then Q(x) = F − lim
n→∞

1
(k+1)2n f ((k+ 1)nx) exists for all x ∈ X and defines a Quadratic

mapping C : X → Y such that

F( f (x)−Q(x), t)≥ (2−2L)(k+1)2t
(2−2L)(k+1)2t +ηΨ(x,x)

(13)

for all x ∈ X , t > 0, where η = 1
|s1| +

1
|s2| .

Proof: It follows from (8) that, F
(

f (x)− 1
(k+1)2 f ((k+1)x), ηt

2(k+1)2

)
≥ t

t+Ψ(x,x)

for all x ∈ X and all t > 0. Now consider linear mapping A : S→ S such that

Ag(x) =
1

(k+1)2 f ((k+1)x)

for all x ∈ X ,where (S,d) is the generalized metric space as defined in previous theorem. Then

d( f ,A f )≤ η

2(k+1)2 .Hence

d( f ,C)≤ η

2(k+1)2−2(k+1)2L

which proves inequality (13).Rest of the proof can be generated from (3.2).

3.5. Corollary. Let ς ≥ 0 and p be a real number with 0 < p < 2.Let X be a normed vector

space with norm ||.|| and (Y,N) be a fuzzy normed vector space. Let f : X → Y be a mapping

with f (0) = 0 and satisfying (11). Then Q(x) = F− lim
n→∞

1
(k+1)2n f ((k+1)nx) exists for all x

∈ X and a Quadratic mapping C : X → Y such that

F( f (x)−Q(x), t)≥ ((k+1)2− (k+1)p)t
((k+1)2− (k+1)p)t +ης ||x||p

(14)

for all x ∈ X , t > 0, where η = 1
|s1| +

1
|s2| .

Proof: The proof follows from above Theorem by taking Ψ(x,y) = ς(||x||p + ||y||p) for all

x,y ∈ X and L = |k+1|p−2 and we get desired result.
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