
 

______________ 

*Corresponding author 

E-mail address: dkrmitra@gmail.com 

Received June 30, 2019 

 

     Available online at http://scik.org 

     J. Math. Comput. Sci. 9 (2019), No. 6, 678-691 

https://doi.org/10.28919/jmcs/4196 

ISSN: 1927-5307 

 

 

COVERING 𝑳 −LOCALLY UNIFORM SPACES 

JWNGSAR MOSHAHARY AND DIPAK KUMAR MITRA* 

Department of Mathematical Sciences, Bodoland University, Kokrajhar 783370, India 

Copyright © 2019 the author(s).This is an open access article distributed under the Creative Commons Attribution License,which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract: In this paper, we develop the notion of covering 𝐿 −locally uniform spaces. Interior and closure 

operators were then introduced to show that every covering 𝐿 −local uniformity induced a regular 𝐿 −topology and 

vice-versa. Further, we have introduced the notion of weakly uniformly continuous functions in the class of covering 

𝐿 −local uniformities and studied some of its basic properties. We then established that the products of 𝐿 −regular 

topologies are generated by the product covering 𝐿 −locally uniform space. Towards the end of this paper, we have 

shown that every covering 𝐿 −locally uniform spaces with countable base is pseudo-metrisable. 
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1. INTRODUCTION 

To study about the uniform properties (such as completeness, uniform continuity and 

uniform convergence) in the setting of general topological spaces, uniform spaces were 

developed through entourage approach[23] and covering approach[21]. Efforts were made on 

reducing the conditions to develop weaker spaces, wherein results in uniform spaces could 
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possibly be developed. As a result various generalisation of uniform spaces such as 

quasi-uniform, locally uniform spaces, locally quasi-uniform spaces, semi-uniform, 

semi-quasi-uniform spaces were developed leading to a broad spectrum of theory and 

applications in related fields. 

One of the generalisation of uniform spaces namely locally uniform spaces were 

developed by James Williams [24] via localization of the triangle axiom through entourage 

approach. In [24], a topological space was shown to have a compatible local uniformity if and 

only if it is regular. Following this generalisation of uniform spaces many interesting and useful 

results on compactness, completeness and pseudo-metrizability were obtained in [24]. Further 

Vasudevan and Goel in [22] characterised James locally uniform spaces through covering 

approach. 

Consequent to the development of the theory fuzzy topology, many spectacular and 

creative work about the theory of uniformities on various categories of fuzzy topological spaces 

have been accomplished by several authors including Hutton, Katsarsas, Lowen, Hu 

Cheng-Ming et. al. [13, 1, 15, 4] in the category 𝐿 −TOP and 𝐼 −TOP. Garcia et. al. [18] have 

introduced uniform spaces in a unifying framework of GL-monoid to include both the categories 

of Lowen Uniformity and Hutton type uniformities. The notion of covering fuzzy uniform spaces 

was introduced by Soetens et al. [20], Chandrika et al. [5, 2] and covering 𝐿 −valued uniform 

space by García, at el. [14]. In a more recent development, in [7, 8, 6, 10, 12, 11, 9, 16, 17] 

Hazarika and Mitra have developed semi structure and localisaton of uniform and quasi-uniform 

spaces through entourage approach in the category 𝐿 − TOP and 𝐼 − TOP respectively. 

Subsequently, many interesting results on compactness, completeness were obtained. Problems 

regarding uniformly continuous and metrization are also considered. However, the localization of 

uniformity through covering approach has not been considered in the fuzzy settings. 

In this paper, we developed the notion of covering 𝐿 −locally uniform spaces. This 

generalised the notion of covering 𝐿 − uniform spaces in the sense of García, at el. [14]. 

Subsequently, several results on regular 𝐿 − topological space, uniformly continuous and 
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pseudo-metrization have been obtained. In our next article, we will study various important 

results related to compactness and uniform convergence. 

Throughout this paper (𝐿, ≤, ∧ ,∨ )  denotes a fuzzy lattice with order reversing 

involution ′; 0𝐿 and 1𝐿 are respectively inf and sup in 𝐿. 𝑋 is an arbitrary (ordinary) set 

and 𝐿𝑋 denotes the collection of all mappings 𝐴: 𝑋 → 𝐿. Any member of 𝐿𝑋  is an 𝐿 −fuzzy 

set. The 𝐿 −fuzzy sets 𝑥𝛼: 𝑋 → 𝐿 defined by 𝑥𝛼  (𝑦) = 0𝐿 if 𝑥 ≠ 𝑦 and 𝑥𝛼 (𝑦) = 𝛼 if 𝑥 = 𝑦 

are the 𝐿 −fuzzy points. The mappings 𝐴: 𝑋 → 𝐿 and 𝐵: 𝑋 → 𝐿 defined by 𝐴(𝑥) = 1𝐿 , ∀𝑥 ∈

𝑋 and 𝐵(𝑥) = 0𝐿 ,   ∀𝑥 ∈ 𝑋  are denoted by 1 and 0 respectively. For any 𝐴, 𝐵 ∈ 𝐿𝑋 , the 

union and intersection of 𝐴 and 𝐵 are defined as 𝐴 ∪ 𝐵(𝑥) = 𝐴(𝑥) ∨ 𝐵(𝑥) and 𝐴⋂ 𝐵(𝑥) =

𝐴(𝑥) ∧ 𝐵(𝑥) respectively. Further, we say that 𝐴 ⊆ 𝐵 if and only if 𝐴(𝑥) ≤ 𝐵(𝑥) and 𝑥𝛼 ∈ 𝐴 

if and only if 𝛼 < 𝐴(𝑥) , where 𝑥𝛼 is an L-fuzzy point; complement 𝐴′ of 𝐴 is defined as 

𝐴′(𝑥) = 𝐴(𝑥)′. An 𝐿 −topology 𝔽 on 𝐿𝑋 is a subset of 𝐿𝑋 closed under finite intersection 

and arbitrary union. In this case, the pair (𝐿𝑋 , 𝔽) is known as 𝐿-topological space. The elements 

of 𝔽 are called open sets and their complements are the closed sets. For any 𝐴 ∈ 𝐿𝑋 , the 

interior and closure of 𝐴 in 𝐿-topological space (𝐿𝑋 , 𝔽) are respectively denoted by 𝐴𝑜 and 

𝐴̅. For basic definitions and results of product of 𝐿 −topological spaces we refer to [3, 25]. 

Covering 𝐿 −valued Uniformity referred to in this paper is in the sense of García, at el. [14]. For 

the problem of metrisation, we have consider the metric in the sense of Erceg[19]. 

 

2. PRELIMINARIES 

This section includes basic definitions and results used in the subsequent sections.  

Definition 2.1 [25] For any ordinary mapping 𝑓: 𝑋 → 𝑌 , the induced 𝐿 −fuzzy mapping 

𝑓→: 𝐿𝑋 → 𝐿𝑌 and its 𝐿-fuzzy reverse mapping 𝑓←: 𝐿𝑌 → 𝐿𝑋 respectively are defined as: 

𝑓→ (𝐴)(𝑦) =∨ {𝐴(𝑥)|𝑥 ∈ 𝑋, 𝑓(𝑥) = 𝑦},   ∀ 𝐴 ∈ 𝐿𝑋 , ∀ 𝑦 ∈ 𝑌.  

𝑓← (𝐵)(𝑥) = 𝐵(𝑓(𝑥)),   ∀ 𝐵 ∈ 𝐿𝑌 , ∀ 𝑥 ∈ 𝑋.   

 Symbol 𝑓→  and 𝑓← always denote 𝑓→  to be the 𝐿-fuzzy mapping induced from 

an ordinary mapping 𝑓 and 𝑓← is the 𝐿-fuzzy reverse mapping of 𝑓→. Both the 𝐿 −fuzzy 
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mappings 𝑓→  and 𝑓←  are order preserving.  

 

Definition 2.2 [25] Let X be a nonempty ordinary set and 𝐿 be a fuzzy lattice. Then an 

operator 𝑖: 𝐿𝑋 → 𝐿𝑋  satisfying the following axioms is known as an interior operator on 𝐿𝑋 

(IO1) 𝑖(1) = 1. 

(IO2) 𝑖(𝐴) ⊆ 𝐴, ∀ 𝐴 ∈ 𝐿𝑋. 

(IO3) 𝑖(𝐴⋂𝐵) = 𝑖(𝐴)⋂𝑖(𝐵), ∀ 𝐴 ∈ 𝐿𝑋 

(IO4) 𝑖(𝑖(𝐴)) = 𝑖(𝐴), ∀ 𝐴 ∈ 𝐿𝑋 . 

Definition 2.3 [25] Let X be a nonempty ordinary set and L be a fuzzy lattice. Then an 

operator 𝑐: 𝐿𝑋 → 𝐿𝑋 satisfying the following axioms is known as a closure operator on 𝐿𝑋 

(CO1) 𝑐(0) = 0 

(CO2) 𝐴 ⊆ 𝑐(𝐴), ∀ 𝐴 ∈ 𝐿𝑋 . 

(CO3) 𝑐(𝐴 ⋃ 𝐵 ) = 𝑐(𝐴)⋃𝑐(𝐵), ∀ 𝐴, 𝐵 ∈ 𝐿𝑋. 

(CO4) 𝑐(𝑐(𝐴)) = 𝑐(𝐴), ∀ 𝐴 ∈ 𝐿𝑋. 

Definition 2.4 [25] Let (𝐿𝑋 , 𝔽) be an 𝐿 −topological space. Then (𝐿𝑋 , 𝔽)  is said to be regular, 

if for every 𝐺 ∈ 𝔽 and 𝑥𝛼 ≤ 𝐺, there is 𝐴 ∈ 𝔽 such that 𝑥𝛼 ⊆ 𝐴 ⊆ 𝐴 ⊆ 𝐺.   

Theorem 2.5 [25] Product of 𝐿 −topological spaces is regular if and only if each of the factor 

space is regular.  

Definition 2.6 [14] A collection 𝒜 of 𝐿𝑋  is called 𝐿 −cover of 𝐿𝑋  if ⋃𝒜 = 1. For any 

𝒜, ℬ ⊆ 𝐿𝑋  then 𝒜 refines ℬ if and only if for each 𝐴 ∈ 𝒜 there exits 𝐵 ∈ ℬ such that 

𝐴 ⊆ 𝐵. we write 𝒜 ≼ ℬ . The set of all 𝐿 −covers of 𝐿𝑋 , defined as 𝐿 − 𝐶𝑜𝑣(𝑋) , is a 

preordered set with respect to the relation ‘≼’.  

Proposition 2.7 [14] For every 𝐿 −covers 𝒜  and ℬof 𝐿𝑋 , we have 𝒜⋂ℬ = { 𝐴⋂𝐵: 𝐴 ∈

𝒜, 𝐵 ∈ ℬ} is also 𝐿 − cover of 𝐿𝑋 .  

Definition 2.8 [14] For each 𝐴 ∈ 𝐿𝑋  and 𝒜 ⊆ 𝐿𝑋, the star of A with respect to 𝒜 is defined 

as 𝑠𝑡(𝐴, 𝒜) ≔ { 𝐵 ∈ 𝒜: 𝐵⋂𝐴 ≠ 0}.  The collection 𝑠𝑡(𝐴): = {𝑠𝑡(𝐴, 𝒜): 𝐴 ∈ 𝐴},  is an 
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𝐿 −cover of 𝐿𝑋 whenever 𝒜 is cover.  

Proposition 2.9 [14] Let 𝒜, ℬ ⊆ 𝐿𝑋 and 𝐴, 𝐵 ∈ 𝐿𝑋 . Then   

 1.  If 𝒜 is an 𝐿 −cover of 𝐿𝑋 , then 𝐴 ⊆ 𝑠𝑡(𝐴, 𝒜) and, consequently, 𝒜 ≼ 𝑠𝑡(𝒜).  

 2.  If 𝐴 ⊆ 𝐵, then 𝑠𝑡(𝐴, 𝒜) ⊆ 𝑠𝑡(𝐵, 𝒜).  

 3.  If 𝒜 ≼ ℬ, then 𝑠𝑡(𝐴, 𝒜) ⊆ 𝑠𝑡(𝐴, ℬ).  

 4.  𝑠𝑡(⋃ ℬ , 𝒜) = ⋃ 𝑠𝑡(𝐵, 𝒜)𝐵∈ℬ  .  

 5.  If 𝒜 is an 𝐿 −cover, then 𝑠𝑡(𝑠𝑡(𝐴, 𝒜), 𝒜) ⊆ 𝑠𝑡(𝐴, 𝑠𝑡(𝒜)).  

 6.  Let 𝑓→: 𝐿𝑋 → 𝐿𝑌  be an 𝐿 −fuzzy mapping and ℬ ⊆ 𝐿𝑌.  Also, let 𝑓−1 (ℬ) =

{𝑓← (𝐵): 𝐵 ∈ ℬ} and 𝐶 ∈ 𝐿𝑌. Then, 𝑠𝑡(𝑓← (𝐶), 𝑓−1 (ℬ)) ⊆ 𝑓← (𝑠𝑡(𝐶, ℬ))  

Remark 2.10  Let 𝒜  and ℬ  be two 𝐿 −  covers of 𝐿𝑋  such that 𝑠𝑡(𝒜) ≼ ℬ,  then 

𝑠𝑡(𝐴, 𝑠𝑡(𝒜)) ⊆ 𝑠𝑡(𝐴, ℬ), ∀ 𝐴 ∈ 𝐿𝑋. 

Definition 2.11 [14] A pair (𝐿𝑋, 𝔘), consisting of 𝐿𝑋 and a non-empty family 𝔘of 𝐿 −covers 

of 𝐿𝑋, is said to be 𝐿 −uniform space whenever the following conditions are satisfied.   

 (C1) 𝒜 ≼ ℬ, 𝒜 ∈ 𝔘 ⇒ 𝒜 ∈ 𝔘.  

 (C2) For every 𝒜, ℬ ∈ 𝔘, 𝒜⋂ℬ ∈ 𝔘.  

 (C3) For each 𝒜 ∈ 𝔘, there exits ℬ ∈ 𝔘 such that 𝑠𝑡(ℬ) ≼ 𝒜.   

 

3. COVERING L-LOCALLY UNIFORM SPACES 

In this section, we introduce the notion of covering 𝐿 −locally uniform spaces generalising the 

notion of covering 𝐿 −uniform space in the sense of García et al.[14]. Interior operator and 

closure operators were then introduced for covering 𝐿 −locally uniform spaces. Every regular 

𝐿 −topological spaces are characterised in terms of the developed notion. 

Definition 3.1  A non-empty family 𝒰 of 𝐿 −covers of 𝐿𝑋  is said to be a covering 𝐿 − 

locally uniformity on 𝐿𝑋, if it satisfies the following axioms:   

    (LC1) 𝒜 ≼ ℬ, 𝒜 ∈ 𝔘 ⇒ 𝒜 ∈ 𝔘. .  

    (LC2) For every 𝒜, ℬ ∈ 𝔘, 𝒜⋂ℬ ∈ 𝔘 .  

    (LC3) For each 𝒜 ∈ 𝔘 and ∀ 𝑥𝛼 ∈ 𝐿𝑋, there exits ℬ ∈ 𝔘 such that  
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          𝑠𝑡(𝑥𝛼, 𝑠𝑡(ℬ)) ⊆ 𝑠𝑡(𝑥𝛼, 𝒜).  

In that case we called the pair (𝐿𝑋 , 𝔘) as covering 𝐿 − locally uniform space. Let 𝔘1 and 𝔘2 

be covering 𝐿 −uniform spaces on 𝐿𝑋 . If 𝔘1 ⊂ 𝔘2, then 𝔘2 is called finer than 𝔘1.  

Definition 3.2 A non-empty family 𝔅 of 𝐿 −covers of 𝐿𝑋  is said to be a base for some 

covering 𝐿 − locally uniformity on 𝐿𝑋  if it satisfies (LC2) and (LC3). 

Clearly, by Remark 2.10, it follows that every covering 𝐿 −  uniform space is covering 

𝐿 −locally uniform spaces. But the converse is not true as shown by the example cited below.  

Example 3.3 Let X = {a, b, c, d} and 𝐿 = [0, 1]. 

Let 𝒜 = {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}, ℬ = {{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}. 

Then 𝒜 ∩ ℬ = {{a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}. 

Let 𝔅 = {𝒜, ℬ, 𝒜 ∩ ℬ}. Then clearly, ℬ satisfies the axiom (LC2).  

Now, st(𝒜) = {a, b, c, d}, st(ℬ) = {a, b, c, d} and st(𝒜 ∩ ℬ) = {a, b, c, d}. 

Then, st(a, st(𝒜)) = st(b, st(𝒜)) = st(c, st(𝒜)) = st(d, st(𝒜)) = {a, b, c, d} 

st(a, st(ℬ)) = st(b, st(ℬ)) = st(c, st(ℬ)) = st(d, st(ℬ)) = {a, b, c, d}  

st(a, st(𝒜 ∩ ℬ)) = st(b, st(𝒜 ∩ ℬ)) = st(c, st(𝒜 ∩ ℬ)) = st(d, st(𝒜 ∩ ℬ)) = {a, b, c, d}. 

Also st(a, 𝒜) = st(b, 𝒜) = st(c, 𝒜) = st(d, 𝒜) = {a, b, c, d}. 

st(a, ℬ) = st(b, ℬ) = st(c, ℬ) = st(d, ℬ) = {a, b, c, d}. 

st(a, 𝒜 ∩ ℬ) = st(b, 𝒜 ∩ ℬ) = st(c, 𝒜 ∩ ℬ) = st(d, 𝒜 ∩ ℬ) = {a, b, c, d}. 

Thus 𝔅 satisfies the axioms (LC3) and consequently, 𝔅 is a base for some covering 𝐿 −local 

uniformity on 𝐿𝑋. But for 𝒜, there is no ℬ such that st(ℬ) ⪯ 𝒜. This implies ℬ is not a base 

for covering 𝐿 −uniformity on LX.  

Thus we may conclude that covering 𝐿 −locally uniform spaces is a generalisation of covering 

𝐿 −uniform spaces in the sense of García et at.[14]. 

       We now state the following Lemma in order to show that every covering 𝐿 −local 

uniformity generates an 𝐿 −topology. 

Lemma 3.4  Let (𝐿𝑋 , 𝔘) be covering 𝐿 −locally uniform space. Then the mapping, int: 𝐿𝑋 →

𝐿𝑋 defined by int(A): = ⋃{𝑥𝛼 ∈ 𝐿𝑋: 𝑠𝑡(𝑥𝛼, 𝒜) ⊆ 𝐴 for some 𝒜 ∈ 𝔘} , ∀ A ∈ 𝐿𝑋 is an interior 
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operator on 𝐿𝑋 .  

Proof. Clearly, (IO1) 𝑖𝑛𝑡(1) = 1 and (IO2) ∀ 𝐴 ∈ 𝐿𝑋, 𝑖𝑛𝑡(𝐴) ⊆ 𝐴 satisfied trivially.   

(IO3) Since 𝐿 is completely distributive complete lattice, therefore by Proposition 2.1.5(v) in 

[25], 𝐿𝑋  is also so. Hence, 𝑖𝑛𝑡(𝐴⋂𝐵) = 𝑖𝑛𝑡(𝐴) ⋂ 𝑖𝑛𝑡(𝐵) follows immediately form (LC2).  

(IO4) For any 𝐴 ∈ 𝐿𝑋 , let 𝑥𝛼 ⊆ 𝑖𝑛𝑡(𝐴), then there exits 𝒜 ∈ 𝔘 such that st(𝑥𝛼, 𝒜) ⊆ A. 

Since 𝔘is a covering 𝐿-local uniformity, therefor for 𝑥𝛼 ∈ 𝐿𝑋  and 𝒜 ∈ 𝔘, there exits ℬ ∈ 𝔘 

such that 𝑠𝑡(𝑥𝛼 , 𝑠𝑡(ℬ)) ⊆ 𝑠𝑡(𝑥𝛼 , 𝒜). Now by Proposition 2.9(6), we have 𝑠𝑡(𝑠𝑡(𝑥𝛼, ℬ), ℬ) ⊆

𝑠𝑡(𝑥𝛼, 𝑠𝑡(ℬ)) . This implies 𝑠𝑡(𝑠𝑡(𝑥𝛼, ℬ), ℬ) ⊆ 𝑠𝑡(𝑥𝛼, 𝒜) ⊆ 𝒜 .This further implies 

𝑠𝑡(𝑥𝛼, ℬ) ⊆ 𝑖𝑛𝑡(𝐴). Thus 𝑥𝛼 ⊆ 𝑖𝑛𝑡(𝑖𝑛𝑡(𝐴)) and consequently by (IO2), 

𝑖𝑛𝑡(𝐴) = 𝑖𝑛𝑡(𝑖𝑛𝑡(𝐴)).   

Now by Theorem 2.2.21 in [25], we may conclude that  

Theorem 3.5 Every covering 𝐿 −locally uniformity 𝔘 on 𝐿𝑋 , generates an 𝐿 −topology on 

𝐿𝑋.  

In that case, we shall use the symbol 𝔽(𝔘) to denote the respective generated 𝐿 −topology on 

𝐿𝑋.Subsequently, 𝐴𝑜 = 𝑖𝑛𝑡(𝐴), ∀𝐴 ∈ 𝐿𝑋, where Ao is the interior of A in (𝐿𝑋 , 𝔽(𝔘)).  

Theorem 3.6  Let 𝔘1 and 𝔘2 be two covering 𝐿 − local uniformities on 𝐿𝑋  such that 𝔘2 

is finer than 𝔘1. Then 𝔽(𝔘2) will finer than 𝔽(𝔘1).   

Proof. Straightforward.  

We now state the following important Lemmas:  

Lemma 3.7  Let (𝐿𝑋 , 𝔘) be covering 𝐿 −locally uniform space. Then the mapping, 𝑐𝑙: 𝐿𝑋 →

𝐿𝑋 defined by 𝑐𝑙(𝐴) = ⋂{st(A, 𝒜)|𝒜 ∈ 𝔘}, ∀A ∈ 𝐿𝑋  is a closure operator on 𝐿𝑋 .  

Proof. Clearly, (CO1) 𝑖𝑛𝑡(0) = 0 and (CO2) ∀ 𝐴 ∈ 𝐿𝑋 , 𝐴 ⊆ 𝑐𝑙(𝐴) satisfied trivially.   

(CO3) For any A, B ∈ 𝐿𝑋  , we have 𝑐𝑙(𝐴⋂𝐵) = (⋂ 𝑠𝑡(𝐴⋃𝐵, 𝒜)𝒜∈𝔘 ) =

 (⋂ 𝑠𝑡(𝐴, 𝒜) ⋃ 𝑠𝑡(𝐵, 𝒜)𝒜∈𝔘 )  [By Proposition 2.9 (5)]. Also since 𝐿 is completely distributive 

complete lattice, therefore by Proposition 2.1.5 (v) in [25], 𝐿𝑋 is also so. This implies 

 𝑐𝑙(𝐴⋂𝐵) = (⋂ 𝑠𝑡(𝐴, 𝒜)𝒜∈𝔘 ) ⋃(⋂ 𝑠𝑡(𝐵, 𝒜)𝒜∈𝔘 )  = 𝑐𝑙(𝐴)⋃ 𝑐𝑙(𝐵). 
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(CO4) For any 𝐴 ∈ 𝐿𝑋 , we have 𝑐𝑙(𝑐𝑙(𝐴)) = ⋂ 𝑠𝑡(𝑐𝑙(𝐴), 𝒜)𝐴∈𝒰  

= ⋂ 𝑠𝑡(⋂ 𝑠𝑡(𝐴, 𝒜), 𝒜) 𝒜∈𝔘𝒜∈𝔘 = ⋂ 𝑠𝑡(𝑠𝑡(𝐴, 𝒜), 𝒜)𝒜∈𝔘 .   

 ⊆ ⋂ 𝑠𝑡(𝐴, 𝑠𝑡(𝒜))𝒜∈𝔘  (By Proposition 2.9 (6)).  

= ⋂ 𝑠𝑡(⋃ 𝑥𝛼 , 𝑠𝑡(𝒜)𝑥𝛼∈𝐴 ) 𝒜∈𝔘  (Since for any 𝐴 ∈ 𝐿𝑋 , 𝐴 = ⋃ 𝑥𝛼𝑥𝛼∈𝐴 )  

= ⋂ ⋃ 𝑠𝑡(𝑥𝛼 , 𝑠𝑡(𝒜))𝑥𝛼∈𝐴𝒜∈𝔘    (By Proposition 2.9(5)). 

= ⋃ ⋂ 𝑠𝑡(𝑥𝛼, 𝑠𝑡(𝒜))𝒜∈𝔘𝑥𝛼∈𝐴 ⊆ ⋃ ⋂ 𝑠𝑡(𝑥𝛼, 𝒜)𝒜∈𝔘𝑥𝛼∈𝐴  (By LC3). 

= ⋂ ⋃ 𝑠𝑡(𝑥𝛼, 𝒜)𝑥𝛼∈𝐴𝒜∈𝔘 . 

= ⋂ 𝑠𝑡(⋃ 𝑥𝛼 , 𝒜𝑥𝛼∈𝐴  )𝒜∈𝔘  . 

= ⋂ 𝑠𝑡(𝐴, 𝒜)𝒜∈𝔘 = 𝑐𝑙(𝐴). 

Hence, by (CO2), we have 𝑐𝑙(𝑐𝑙(𝐴)) = 𝑐𝑙(𝐴), ∀ 𝐴 ∈ 𝐿𝑋. 

Lemma 3.8  For every 𝐿 − covers 𝒜  and for each 𝐴 ∈ 𝐿𝑋 , we have 𝑠𝑡(𝐴, 𝒜) =

⋂{𝐵|𝑠𝑡(𝐵′, 𝒜) ⊆ 𝐴} . 

Proof. It follows from the fact that for any 𝐵 ∈ 𝐿𝑋, 𝐵 ⊆ 𝑠𝑡(𝐴, 𝒜) if and only if A ⊆ 𝑠𝑡(𝐵, 𝒜) 

as 𝐴⋂𝐵 ≠ 0 if and only if 𝐵⋂𝐴 ≠ 0.   

Lemma 3.9  Let (𝐿𝑋 , 𝔘) is covering 𝐿 −locally uniform space, then (𝑐𝑙(𝐴))′ = 𝑖𝑛𝑡(𝐴′)  

Proof. For any A ∈ LX, we have 

𝑖𝑛𝑡(𝐴′) = ⋃{𝑥𝛼 ∈ 𝐿𝑋 |𝑠𝑡(𝑥𝛼, 𝒜) ⊆ 𝐴′  for some 𝒜 ∈ 𝔘}.  

            = ⋃{⋃{𝑥𝛼 ∈ 𝐿𝑋 |𝑠𝑡(𝑥𝛼, 𝒜) ⊆ 𝐴′}, 𝐴 ∈ 𝑈}.  

            = ⋃{𝑠𝑡(𝐴, 𝒜)′|𝒜 ∈ 𝔘}  [By Lemma3.8]. 

 Hence, 𝑖𝑛𝑡(𝐴′)′ = ⋂{𝑠𝑡(𝐴, 𝒜)|𝒜 ∈ 𝔘} = 𝑐𝑙(𝐴). 

Now by Lemma 3.7 and Lemma 3.9, we have the following:  

Theorem 3.10 Let (𝐿𝑋 , 𝔘) be covering 𝐿 −locally uniform space. Then for any A ∈ LX, 𝐴 =

⋂{𝑠𝑡(𝐴, 𝒜)|𝒜 ∈ 𝔘}, where A is the closure of A in (LX, 𝔽(𝔘)).  

Theorem 3.11  Let (LX, 𝒰)  be covering 𝐿 − locally uniform space. Then the topology 
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(𝑋, 𝔽(𝒰)) generated by covering 𝐿 −locally uniform space is regular.  

Proof. Let (𝑋, 𝔘) be a covering 𝐿 −locally uniform space. Now for any 𝑥𝛼 ∈ 𝐿𝑋 and 𝒜 ∈ 𝔘 

there exits ℬ such that 𝑠𝑡(𝑥𝛼, 𝑠𝑡(ℬ)) ⊆ 𝑠𝑡(𝑥𝛼, 𝒜). Again for 𝑥𝛼 ∈ 𝐿𝑋 and ℬ ∈ 𝔘 there exists 

𝒞 ∈ 𝔘 such that 𝑠𝑡(𝑥𝛼 , 𝑠𝑡(𝒞)) ⊆ 𝑠𝑡(𝑥𝛼, ℬ). Then by (CO3), we have 𝑐𝑙(𝑠𝑡(𝑥𝛼, 𝑠𝑡(𝒞))) ⊆

𝑐𝑙(𝑠𝑡(𝑥𝛼 , ℬ)) . But by definition of 𝑐l , we have 𝑐𝑙(𝑠𝑡(𝑥𝛼, ℬ)) ⊆ 𝑠𝑡(𝑠𝑡(𝑥𝛼, ℬ), ℬ) . So, by 

Proposition 2.9 (6), we have 𝑐𝑙(𝑠𝑡(𝑥𝛼, 𝑠𝑡(𝒞))) ⊆ 𝑠𝑡(𝑠𝑡(𝑥𝛼, 𝑠𝑡(ℬ)) . This implies 

𝑐𝑙(𝑠𝑡(𝑥𝛼 , 𝑠𝑡(𝒞))) ⊆ 𝑠𝑡(𝑥𝛼 , 𝒜), as 𝑠𝑡(𝑥𝛼, 𝑠𝑡(ℬ)) ⊆ 𝑠𝑡(𝑥𝛼, 𝒜). Hence for each 𝑥𝛼 ∈ 𝐿𝑋 there 

exists a neighbourhood base at 𝑥𝛼 consisting of closed sets and consequently the space is 

regular.  

Theorem 3.12  Any regular 𝐿 −topology generated by a covering 𝐿 −locally uniform space.  

Proof. Let (𝐿𝑋 , 𝔽) be a regular 𝐿 −topology and 𝔘 be the collection of all open covers in 𝐿𝑋, 

then it follows easily (LC1) and (LC2). The only thing left is for every 𝒜 ∈ 𝔄 there exits ℬ ∈

𝔘 such that 𝑠𝑡(𝑥𝛼, 𝑠𝑡(ℬ)) ⊆ 𝑠𝑡(𝑥𝛼 , 𝒜). Now by regularity of 𝐿𝑋, we have for 𝑥𝛼 ∈ 𝐿𝑋 and 

𝒜 ∈ 𝔘 there exits an 𝐿 −fuzzy open set G such that 𝑥𝛼 ⊆ 𝐺 ⊆ 𝐺 ⊆ 𝑠𝑡(𝑥𝛼 , 𝒜). Again since 𝐺 

is open and 𝑥𝛼 ⊆ 𝐺, therefore there exists an open cover ℬ such that, 𝑠𝑡(𝑥𝛼 , ℬ) ⊆ 𝐺. But then 

𝑠𝑡(𝑥𝛼, 𝑠𝑡(ℬ)) ⊆ 𝑠𝑡(𝐺, ℬ) (as 𝑥𝛼 ⊆ 𝐺). Thus 𝑠𝑡(𝑥𝛼, 𝑠𝑡(ℬ)) ⊆ 𝑠𝑡(𝐺, ℬ) = 𝐺 (as G is open) ⊆

𝐺 ⊆ 𝑠𝑡(𝑥𝛼, 𝒜) . Also, by the construction of 𝔘 , it follows from Lemma3.4 that the 

𝐿 −topologies 𝔽(𝔘) and 𝔽 are identical. Hence the result.  

By Theorem 2.5, we have the following Corollary.  

Corollary 3.13 Let {(𝐿𝑋𝑡 , 𝔽𝑡)|𝑡 ∈ 𝛬} be a family of 𝐿-topological spaces. Then the product 

topology of 𝐿-topologies {𝔽𝑡|𝑡 ∈ 𝛬} on 𝐿𝑋 is generated by a covering 𝐿-local uniformity if 

and only if for each 𝑡 ∈ 𝛬, (𝐿𝑋𝑡 , 𝔽𝑡) is generated by a covering 𝐿-local uniformity.  

4. FUZZY UNIFORM CONTINUOUS FUNCTIONS 

In this section we have established that every weakly uniform continuous function on 

covering 𝐿 −locally uniform spaces are continuous with respect to the induced 𝐿 −topologies. 

Towards the end of this section we have shown that the products of 𝐿 − regular topologies is 
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generated by the product covering 𝐿 −locally uniform spaces. 

Definition 4.1 Let (𝐿𝑋 , 𝔘1) and (𝐿𝑌, 𝔘2) be two covering 𝐿 −locally uniform spaces. Then a 

function 𝑓→: (𝐿𝑋 , 𝔘1) → (𝐿𝑌, 𝔘2) , is called weakly uniformly continuous if and only if 

𝑓−1(𝒞) ∈ 𝔘1, whenever 𝒞 ∈ 𝔘2, where 𝑓−1(𝒞) = {𝑓←(𝐶): 𝐶 ∈ 𝒞}.  

Theorem 4.2 Every weakly uniform continuous function is continuous. 

Proof. Let 𝑓→: (𝐿𝑋 , 𝒰1) → (𝐿𝑌, 𝔘2) be a weakly uniformly continuous functions and 𝐴 ∈ 𝐿𝑌 be 

any member. Then by definition of int, we have 𝑖𝑛𝑡(𝐴) = ⋃{𝑥𝛼: 𝑠𝑡(𝑥𝛼, 𝒜) ⊆ 𝐴, for some 𝐴 ∈

𝔘2}. This implies  

 𝑓←  (𝑖𝑛𝑡(𝐴)) = ⋃{𝑓← (𝑥𝛼): 𝑠𝑡(𝑥𝛼, 𝐴) ⊆ 𝐴  for some 𝒜 ∈ 𝔘2} (1) 

 [Since by  Theorem2.1.17(i)in[25], 𝑓←is arbitrary join preserving].  

 Since 𝑓← is order preserving, therefore  

 𝑠𝑡(𝑥𝛼, 𝒜) ⊆ 𝐴  implies  𝑓←(𝑠𝑡(𝑥𝛼, 𝒜)) ⊆ 𝑓←(𝐴) (2) 

 Then by Proposition2.9(6) and Line(2) we have 

𝑠𝑡(𝑓←(𝑥𝛼, 𝑓−1(𝒜)) ⊆ 𝑓←(𝑠𝑡(𝑥𝛼 , 𝒜)) ⊆ 𝑓←(𝐴). 

Now from line (1), we have  

𝑓←(𝑖𝑛𝑡(𝐴)) ⊆ ⋃{𝑓←(𝑥𝛼)| 𝑠𝑡(𝑓←(𝑥𝛼, 𝑓−1(𝒜)) ⊆ 𝑓−1(𝒜) for some 𝒜 ∈ 𝔘2}   (3) 

But since 𝑓→ is weakly uniformly continuous, therefore 𝒜 ∈ 𝔘2 implies 𝑓−1(𝒜) ∈ 𝔘1. 

So by Line (3), we have 𝑓←(𝑖𝑛𝑡(𝐴)) ⊆ 𝑖𝑛𝑡(𝑓←(𝑖𝑛𝑡(𝐴))). This implies 𝑓←(𝑖𝑛𝑡(𝐴)) ∈ 𝔽(𝔘1). 

Hence 𝑓→: (𝐿𝑋 , 𝔽(𝔘1)) → (𝐿𝑌, 𝔽(𝔘2)) is continuous.  

Theorem 4.3 The composition of weakly uniformly continuous function is weakly uniformly 

continuous.  

Proof. Let 𝑓→: (𝐿𝑋 , 𝔘1) → (𝐿𝑌, 𝔘2)  and 𝑔→: (𝐿𝑌, 𝔘2) → (𝐿𝑍, 𝔘3)  be two weakly uniformly 

continuous functions. Let 𝒞 ∈ 𝒰3 be any member. Then by Theorem 2.1.23(ii) in [25], we have 

(𝑔 ∘ 𝑓)←(𝒞) = 𝑓←(𝑔←(𝒞)) . Since 𝑔→  is weakly uniformly continuous, therefore 𝒞 ∈ 𝔘3 

implies 𝑔←(𝒞) ∈ 𝔘2 . This further implies 𝑓←(𝑔←(𝒞)) ∈ 𝔘1  as 𝑓→  is weakly uniformly 

continuous. Hence (𝑔 ∘ 𝑓)←(𝒞) ∈ 𝔘1 for every 𝒞 ∈ 𝔘3. Hence the result. 

Definition 4.4 Let {(𝐿𝑋𝑡 , 𝒰𝑡)|𝑡 ∈ 𝛬} be a family of covering 𝐿-locally uniform spaces, where 
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𝛬 is the index set. Let 𝑋 = 𝛱𝑡∈𝛬𝑋𝑡. The product covering 𝐿-local uniformity on 𝐿𝑋 is defined 

as the coarsest covering 𝐿-local uniformity such that for every 𝑡 ∈ 𝛬, projection 𝜋𝑡
→: 𝐿𝑋 → 𝐿𝑋𝑡  

is weakly uniformly continuous.  

By Theorem 3.6, the following Theorem is now obvious.  

Theorem 4.5 The 𝐿-topology generated by the product covering 𝐿-local uniformity is the 

product topology and conversely product of regular 𝐿 −topologies is generated by product 

covering 𝐿-local uniformity.  

 

5. PSEUDO METRIZABILITY IN COVERING L-LOCALLY UNIFORM SPACE 

Theorem 5.1  If (𝐿𝑋 , 𝔘)  is covering L-locally uniform space with countable base, then 

(𝑋, 𝔽(𝔘)) has countable base.  

Proof. Let 𝔘∗ = {𝒜𝑛: 𝑛 ∈ 𝑁} be countable base for the covering 𝐿 −locally uniform space. 

For fixed 𝑛, let us define,  

 𝐵𝑛 = 𝑠𝑡(𝑠𝑡(𝑥𝛼, 𝒜𝑛), 𝒜𝑚), for some  𝑚 ∈ 𝑁, 𝑥𝛼 ∈ 𝐿𝑋. 

By Lemma (3.4) it is clear that 𝑖𝑛𝑡(𝐵𝑛) = 𝐵𝑛. 

Let us denote the collection ℬ = {𝐵𝑛: 𝐵𝑛 = 𝑠𝑡(𝑠𝑡(𝑥𝛼 , 𝒜𝑛), 𝒜𝑚), 𝑚 ∈ 𝑁}. 

Let 𝑥𝛼 ∈ 𝐵 ⊆ 𝐿𝑋  be any open set. Then 𝑖𝑛𝑡(𝐵) = 𝐵 , and since 𝔘∗  is base for 𝔘∗ . By 

Covering 𝐿 − locally uniform space, for 𝒜𝑗  there exits 𝒜k  such that s𝑡(𝑥𝛼 , 𝑠𝑡(𝒜𝑘)) ⊆

𝑠𝑡(𝑥𝛼, 𝒜𝑗). 

Again by Proposition (2.9)(5) 𝑠𝑡(𝑠𝑡(𝑥𝛼 , 𝒜𝑘), 𝒜𝑘) ⊆ 𝑠𝑡(𝑥𝛼, 𝑠𝑡(𝒜𝑘)).  

⇒ 𝑠𝑡(𝑠𝑡(𝑥𝛼, 𝒜𝑘), 𝒜𝑘) ⊆ 𝑠𝑡(𝑥𝛼 , 𝒜𝑗) ⊆ 𝐵. 

⇒ 𝑥𝛼 ∈ 𝑠𝑡(𝑠𝑡(𝑥𝛼, 𝒜𝑘), 𝒜𝑘) ⊆ 𝐵. 

⇒ 𝑥𝛼 ∈ 𝐵𝑘 ⊆ 𝐵. 

On the other hand, each 𝐵𝑛 is assign to some member of 𝔘∗, 𝔘∗ is countable implies ℬ is 

countable.  

 

Now by Theorem 6.4 in [19], we have the following result.  
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Theorem 5.2 Every covering 𝐿 − locally uniform with countable base is pointwise 

pseudo-metrizable.  

 

6. CONCLUSION 

In this paper, we obtained covering L-locally uniform spaces by generalising covering L-uniform 

space in the sense García, at el. [14]. Interior and closure operators of covering L-local 

uniformity is topological in L- topology. We obatained one-one correspondance between regular 

L-topology and covering L-locally uniform spaces. Weakly uniformly continuous functions in the 

class of covering L-local uniformities and studied some of its basic properties. Further , we also 

obtained the products of L-regular topologies is generated by the product covering L-locally 

uniform space and every covering L-locally uniform spaces with countable base is 

pseudo-metrisable in the sense of Erceg [19]. 
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