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Abstract. Here we study the minimum distance of (duals of) Goppa codes on smooth curves C ⊂ T ,
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1. Introduction

We work over a finite field K. Let C be a smooth and geometrically connected curve

defined over K. For any line bundle A on C defined over K and any B ⊆ C(K) let

C(B,A) denote the code obtained evaluating H0(C,A) at the points of B; if A ∼= OC(D)

with D an effective divisor of C defined over K and whose support contains no point of B,

then C(B,A) \ {0} is the set of all rational functions f ∈ K(C) defined over K and with

(f) + D ≥ 0, ([8], Ch. 2, [10]) (it is the geometric Goppa code CL(B,D) defined in [8],

II.2.1). The dual code C(B,OC(D))⊥ may be described in the same way ([8], Theorem

II.2.8).
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We first prove the following results concerning Goppa codes constructed using curves

contained in a hyperbolic quadric surface Q.

Theorem 1.1. Fix positive integers a, b, x, y such that x ≥ y, x ≤ a − 2 and y ≤ b − 2.

Let Q ⊂ P3 be a hyperbolic quadric surface defined over a finite field K and Y ∈ |OQ(a, b)|

a geometrically integral curve defined over K with only ordinary nodes or ordinary cusps

as singularities. Let u : C → Y be the normalization. Fix a a zero-dimensional scheme

E ⊂ C \ u−1(Sing(Y )) and a set B ⊂ C(K) \ (u−1(Sing(Y )) ∪ Ered). Set n := ](B) and

k := (x+1)(y+1)−deg(E). Assume ](Sing(Y ))+deg(E) ≤ y−1 and n+deg(E) > ay+bx.

Set C := C(B,OC(x, y)(−E)). Then C is an [n, k]-code and its dual C⊥ has minimum

distance ≥ y + 2− deg(E).

Theorem 1.2. Fix positive integers a, b, x, y such that x ≥ y, x ≤ a − 2 and y ≤ b − 2.

Let Q be a hyperbolic quadric surface defined over a finite field K and C ∈ |OQ(a, b)| a

smooth curve defined over K. Fix a a zero-dimensional scheme E ⊂ C defined over K

and a set B ⊂ C(K) \ Ered. Set n := ](B) and k := (x + 1)(y + 1) − deg(E). Assume

deg(E) ≤ y − 1 and n + deg(E) > ay + bx. Set C := C(B,OC(x, y)(−E)). Then C is an

[n, k]-code and its dual C⊥ has minimum distance ≥ y + 2− deg(E).

(a) There is a codeword of C⊥ with weight y + 2− deg(E) if and only if either there

is D ∈ |OQ(1, 0)| with E ⊂ D and ](B ∩ D) ≥ y + 2 − deg(E) or x = y and there is

D′ ∈ |OQ(0, 1)| with E ⊂ D′ and ](B ∩D′) ≥ y + 2− deg(E).

(b) Take D (resp. D′ if x = y) and any S ⊆ D ∩ B (resp. S ⊆ D′ ∩ B) such that

](S) = y + 2 − deg(E). There is a unique (up to a scalar) codeword of C⊥ with S as its

support.

(c) Each codeword with weight ≤ 3y − 2 − deg(E) (if any) has as support a set

S such that either there is D ∈ |OQ(1, 0)| with deg((S ∪ E) ∩ D) ≥ y + 2 or there is

D′ ∈ |OQ(0, 1)| such that deg((E ∪ S) ∩D′) ≥ x + 2 or there is A ∈ |OQ(1, 1)| such that

deg((E ∪ S) ∩ A) ≥ x+ y + 2.

See Propositions 3.8 and 3.9 for a description of the minimum weight codewords of C⊥

and a shortening of C⊥ with better parameters (when Y is smooth). For smooth curves

on a elliptic quadric surface U we prove the following result.
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Theorem 1.3. Let U ⊂ P3 be an elliptic quadric surface defined over K. Let C ⊂ U

be a smooth curve of degree 2a defined over K, E a zero-dimensional subscheme of C

defined over K and B ⊆ C(K) \ Ered a finite set. Fix a positive integer x ≥ deg(E)− 1.

Assume n := ](B) > ax − deg(E). Set k = (x + 1)2 − deg(E) if x < a and k =

(x + 1)2 − (x − a + 1)2 − deg(E) if x ≥ a. Set C := C(B,OC(x)(−E)). Then C is an

[n, k]-code and its dual C⊥ has minimum distance ≥ 2x+ 2−deg(E). If C⊥ has minimum

distance 2x+ 2− deg(E), then for each codeword w of C⊥ with minimum weight there is

a smooth linear section A of U defined over K and such that S ∪E ⊂ A, where S ⊆ B is

the support of w.

Very few maximal curves are contained in a quadric surface ([7], §10.4) and, except very

small fields, all of them are on a quadric cone, T , and contains the vertex O of the cone

([7], Lemma 10.39 (iv), Theorem 10.41 and Proposition 10.44). Since the quadric cone

T ⊂ P3 contains many curves with a large number of K-points, it is natural to study the

Goppa codes arising studying curves inside T . In section 5 we prove the following result.

Theorem 1.2. Let T ⊂ P3 be a geometrically integral quadric cone defined over K. Let

C ⊂ T be a smooth and geometrically connected curve of degree 2a+ ε, a > 1, ε ∈ {0, 1},

defined over K. Fix an integer y ≥ 3 and a zero-dimensional scheme E ⊂ C with

deg(E) < y. Fix a set B ⊂ C(K) \ Ereg such that n := ](B) > y · deg(C)− deg(E). Set

k := (y+ 1)2− deg(E) if y < a, k := (y+ 1)2− (y− a+ 1)2− deg(E) if ε = 0 and y ≥ a,

k := (y+ 1)2− (t−a)(t−a+ 1)−deg(E) if y ≥ a and ε = 1. Set C := C(B,OC(y)(−E)).

(i) C is an [n, k]-code and C⊥ has minimum distance ≥ y + 2− deg(E).

(ii) Let S be the set of all lines J ⊂ C such that deg((E ∪ B) ∩ J) ≥ y + 2. Let

S ′ be the set of all J ∈ S such that the integer e := deg(E ∩ J) ≥ 0 is maximal among

all lines in S. Let S ′(B) be the set of all pairs (S, J), where J ∈ S ′, S ⊆ J ∩ B and

](S) = y + 2− e. Let S ′′(B) be the set of all S ⊂ B with (J, S) ∈ S ′(B). If S = ∅, then

C⊥ has minimum distance ≥ 2y + 2− deg(E). If S 6= ∅, then C⊥ has minimum distance

y+2−e, each codeword of C⊥ is supported by a unique S ∈ S ′′(B) and each S ∈ S ′′(B) is

the support of a unique (up to a non-zero scalar) codeword of C⊥ with minimum weight.
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For each codeword of C⊥ with weight ≤ 2y + 1− deg(E) (say with support S ⊂ B) there

is a unique J ∈ S such that S ⊂ J and deg(J ∩ (E ∪ S)) ≥ y + 2.

2. Preliminaries

Let K denote the algebraic closure of K. Every variety or scheme X arising in this

paper is defined over K. Let X be any projective scheme over a field L1 and F a coherent

sheaf on X defined over a field L2 ⊇ L1. Fix any field L3 ⊇ L2. Then X and F are

defined over L3; call them XL3 and FL3 as objects over L3. Since any extension of fields is

flat, the integers dimL3(H
i(XL3 ,FL3)), i ∈ N, does not depend from the choice of L3 ([4],

Proposition III.9.3). Set hi(X,F) := dimL3(H
i(XL3 ,FL3) for any field L3 on which both

X and F are defined. Hence to compute each cohomology group it is sufficient to quote

references which state the corresponding result over an algebraically closed base field.

Lemma 2.1. Fix an integer x > 0, a smooth curve C ⊂ Pr such that h1(Pr, IC(x)) = 0,

a zero-dimensional scheme E ⊂ C such that deg(E) ≤ x + 1 and a finite subset B ⊂ C

such that B ∩ Ered = ∅. Let C := C(OC(x)(−E)) the code on C obtained evaluating

the complete linear system |OC(x)(−E)| at the points of B. Set c := deg(C). Assume

](B) + deg(E) > xc. Set n := ](B), and k := h0(C,OC(x)) − deg(E). Then C is an

[n, k]-code and the minimum distance of C⊥ is the minimal cardinality, s, of a subset of

B such that h1(P2, IS∪E(x)) > 0 (or, equivalently, h1(C,OC(−E−S)) > h1(C,OC(−E)).

A codeword of C⊥ has weight s if and only if it is supported by S ⊆ B such that ](B) = s

and h1(Pr, IE∪S(x)) > h1(Pr, IE(x)).

Proof. We imposed that B does not intersect the support of E. Since h1(Pr, IC(x)) = 0,

the restriction map ρx : H0(Pr,OPr(x)) → H0(C,OC(x)) is surjective. Hence C is ob-

tained evaluating a family of homogeneous degree x polynomials (the ones vanishing on

the scheme E) at the points of B. Since deg(E) ≤ x + 1, we have h1(Pr, IE(x)) = 0

([1], Lemma 34), i.e. E imposes deg(E) independent conditions to the set of all de-

gree x homogeneous polynomials. Hence the restriction map ρx,E : H0(Pr, IE(x)) →
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H0(C,OC(x)(−E)) is surjective. Hence a finite subset S ⊂ C \ Ered imposes indepen-

dent condition to H0(C,OC(x)(−E)) if and only if S imposes independent condition-

s to H0(Pr, IE(x)). S imposes independent conditions to H0(Pr, IE(x)) if and only if

h1(Pr, IE∪S(x)) = h1(Pr, IE(x)) (here we use again that S ∩ E = ∅). This completes the

proof.

Remark 2.2. Take the set-up of the proof of Lemma 2.1. Since the restriction maps ρx

and ρx,E are surjective, the condition “ h1(P2, IE∪S(x)) > h1(P2, IE(x)) ” is equivalent

to the condition “ h0(C,OC(d)(−(E ∪ S)) > h0(C,OC(d)(−E)) − ](S) or, equivalently

(Riemann-Roch) h1(C,OC(d)(−(E ∪ S)) > h1(C,OC(d)(−E)). In the applications we

will usually have d ≤ deg(C)− 2 and hence h1(C,OC(d)) > 0.

Remark 2.3. Let W be any projective scheme and L a line bundle on it. Fix any

subscheme E ⊆ Z. Since Z is zero-dimensional, we have h1(Z, IE,Z(x, y)) > 0. Hence

the restriction map H0(Z,L|Z)→ H0(E,L|E) is surjective. Hence if h1(W, IW ⊗L) > 0,

then h1(W, IZ ⊗ L) > 0.

3. On a hyperbolic quadric surface

In this paper Q is a smooth quadric surface defined over K and hyperbolic, i.e. Q

isomorphic to P1 × P1 over K. See [4] and [6] for the geometry of quadric hypersurfaces

over a finite field, [7] for their use for curves over a finite field and [4], §V.2, for quadric

surfaces over an algebraically closed base field.

There are two rulings on Q defined over K and Pic(Q)(K) is freely generated by the two

rulings, which we call OQ(1, 0) and OQ(0, 1). Hence there is a bijection (a, b) 7→ OQ(a, b)

between Z2 and Pic(Q)(K).

Remark 3.1. Since Q ∼= P1 × P1, Künneth formula gives

H0(Q,OQ(a, b)) ∼= H0(P1,OP1(a))⊗H0(P1,OP1(b)),

H0(Q,OQ(a, b)) ∼= H0(P1,OP1(a))⊗H1(P1,OP1(b))⊕H1(P1,OP1(a))⊗H0(P1,OP1(b))

in which the tensor powers are over the base field and all cohomology groups H i, i = 0, 1,

are finite-dimensional over that field. Hence H0(Q,OQ(a, b)) = 0 if either a < 0 or b < 0,
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h0(Q,OQ(a, b)) = (a+ 1)(b+ 1) if a ≥ −1 and b ≥ −1 and H1(Q,OQ(a, b)) = 0 if a ≥ −1

and b ≥ −1.

Remark 3.2. We have ωQ
∼= OQ(−2,−2) ([4], Example II.8.20.3). Fix integers (a, b) ∈

N2 \ {(0, 0)} and any divisor Y ∈ |OQ(a, b)| defined over a field K. For all integers x, y

we have an exact sequence of coherent sheaves

(1) 0→ OQ(x− a, y − b)→ OQ(x, y)→ OY (x, y)→ 0

The adjunction formula gives ωY
∼= OY (a− 2, b− 2) ([4], Proposition V.1.5 and Example

V.1.5.2). Duality ([4], Corollary III.7.8) and Remark 3.1 gives h2(Q,OQ(−2,−2)) = 1 and

h2(Q,OQ(x, y)) = 0 if x ≥ −2, y ≥ −2 and (x, y) 6= (−2,−2). Hence Remark 3.1 and the

case x = a−2, y = a−2 of (1), give that the restriction map ρY : H0(Q,OQ(a−2), b−2))→

H0(Y, ωY ) is an isomorphism defined over K. Now assume that Y is geometrically integral

and let u : C → Y be the normalization map. The map u is defined over K and C is a

geometrically smooth projective curve defined over K, because any finite field is perfect.

There is an ideal sheaf J of OQ whose support is the union Sing(Y ) of all singular points

of Y (K) such that there is an isomorphism σY : H0(Q,J (a − 2, b − 2)) → H0(C, ωC);

J is called the conductor of u or the conductor of Y . The sheaf J , the set Sing(Y ) and

the isomorphism σY are defined over K. However, if ](Sing(Y )) ≥ 2, then a single point

of Sing(Y ) may be not defined over K; we are only sure of the existence of an extension

K ′ of K of degree ≤ ](Sing(Y )) such that each P ∈ Sing(Y ) is defined over F ′. If each

singular point of Y is either an ordinary node or an ordinary cusp, then J is the ideal

sheaf ISing(Y )
of the set Sing(Y ). We have deg(OQ/J ) = pa(Y )− pa(C). Since σY is an

isomorphism, h0(Y, ωY ) = pa(Y ) and h0(C, ωC) = pa(C), we have H0(Q,J (a−2, b−2)) =

(a − 1)(b − 1) − pa(Y ) + pa(C) and h1(Q,J (a − 2, b − 2)) = 0. For any (x, y) ∈ Z2 set

OC(x, y)) := u∗(OC(x, y)). Notice that OC(x, y) is a line bundle of degree ya + bx on C

defined over K. For any zero-dimensional scheme E ⊂ Yreg, u induces an isomorphism

between u−1(E) and E. In particular for any P ∈ Yreg and any integer e > 0 we may

identify the unique degree e zero-dimensional subscheme of Y with P as its support with

the effective divisor eu−1(P ) of the smooth curve C. Hence we may use u to study certain
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Goppa codes on C with certain data on Y (for instance, for a one-point code associated

to O ∈ C we require O /∈ u−1(Sing(Y )).

Remark 3.3. Fix integers m,m′ with (m,m′) ∈ N2 \ {(0, 0)} and any divisor H ∈

|OQ(m,m′)|. Let ResH(Z) be the residual scheme of Z with respect to H, i.e. the closed

subscheme ofQ with IZ : IH as its ideal sheaf. We have deg(Z) = deg(ResH(Z))+deg(H∩

Z) (scheme-theoretic intersection) and for all (v, v′) ∈ Z2 there is an exact sequence of

sheaves on Q:

(2) 0→ IResH(Z)
(v −m, v′ −m′)→ IZ(v, v′)→ IH∩Z,H(v, v′)→ 0

Remark 3.4. Fix (x, y) ∈ N2, any D ∈ |OQ(1, 0)|, any D′ ∈ |OQ(0, 1)| and any A ∈

|OQ(1, 1)|. We have D ∼= P1 ∼= D′, deg(OD(x, y)) = y and deg(OD′(x, y)) = x. Hence

h0(D,OD(x, y)) = y+ 1 and h0(D′,OD′(x, y)) = x+ 1. Since h1(Q,OQ(x− 1, x− 1)) = 0

(Remark 3.1), we have h0(A,OA(x, y)) = (x+ 1)(y + 1)− xy = x+ y + 1. If W is a zero-

dimensional subscheme of D (resp. D′, resp. A) and deg(W ) ≥ y + 2 (resp. deg(W ) ≥

x+2, resp. deg(W ) ≥ x+y+2), then h1(D, IW,D(x, y)) > 0 (resp. h1(D′, IW,D′(x, y)) > 0,

resp. h1(A, IW,A(x, y)) > 0). Fix any subscheme E ⊆ Z. Remark 2.3 gives that if

h1(Q, IE(x, y)) > 0, then h1(Q, IZ(x, y)) > 0. Hence if either deg(D ∩ Z) ≥ y + 2 or

deg(D′ ∩ Z) ≥ x+ 2 or deg(A ∩ Z) ≥ x+ y + 2, then h1(Q, IZ(x, y)) > 0.

Lemma 3.5. Fix positive integers x, y. Fix D ∈ |OQ(1, 0)| and D′ ∈ |OQ(0, 1)| and set

A := D ∪D′. Let Z ⊂ A be a zero-dimensional scheme. We have h1(A, IZ(x, y)) > 0 if

and only if either deg(Z) ≥ x+ y + 2 or deg(D ∩ Z) ≥ y + 2 or deg(D′ ∩ Z) ≥ x+ 2.

Proof. Remark 3.4 gives the “ if ” part. Now assume h1(A, IA(x, y)) > 0. Since

h1(Q,OQ(x − 1, y − 1)) = 0 (Remark 3.1) and Z ⊂ A, our assumption is equivalent

to h1(Q, IZ(x, y)) > 0. Assume also deg(Z) ≤ x + y + 1 and deg(Z ∩ A) ≤ y + 1.

See Z as a closed subscheme of Q to compute ResD(Z). Since deg(Z ∩ D) ≤ y + 1,

we have h1(D, IZ∩D,D(x, y)) = 0. Hence (2) with H := D and (v, v′) = (x, y) gives

h1(Q, IResD(Z)
(x − 1, y)) > 0. Since A ⊂ D ∪ D′, we have ResD(Z) ⊂ D′. Hence

h1(Q, IResD(Z)
(x − 1, y)) = h1(D′, IResD(Z),D′(x − 1, y)). Hence deg(ResD(Z)) ≥ x + 1.

Since Z∩D ⊆ ResD(Z), we get deg(Z∩D′) = deg(ResD(Z)) = x+1. Now we reverse the
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role of D and D′. Since deg(D′ ∩ Z) ≤ x + 1, we have h1(D′, IZ∩D′,D′(x, y)) = 0. Hence

(2) with (m,m′) = (0, 1) gives h1(Q, IResD′ (Z)
(x, y − 1)) > 0. Since ResD′(Z) ⊂ D′, the

first part of the proof gives deg(ResD′(Z)) ≥ y + 1. Hence deg(Z) = deg(ResD′(Z)) +

deg(D′ ∩ Z) ≥ x+ y + 2. This completes the proof.

The proof of Lemma 3.5 gives the following result.

Lemma 3.6. Fix positive integers x, y, D ∈ |OQ(1, 0)|, D′ ∈ |OQ(0, 1)| and A ∈

|OQ(1, 1)|. Fix zero-dimensional schemes Z1 ⊂ D, Z2 ⊂ D′ and Z3 ⊂ A such that

deg(Z1) = y + 2, deg(Z2) = x + 2 and deg(Z3) = x + y + 2. If A is reducible, say

A = D1∪D2 with D1 ∈ |OQ(1, 0)| and D2 ∈ |OQ(0, 1)| then assume deg(Z3∩D1) ≤ y+ 1

and deg(Z3 ∩D2) ≤ x+ 1 (equivalently, assume Z3 ∩D1 ∩D2 = ∅, deg(Z3 ∩D1) = y + 1

and deg(Z3 ∩D2) = x+ 1). Then h1(Q, IZi
(x, y)) = 1, i = 1, 2, 3.

Lemma 3.7. Fix non-negative integer x, y, z such that x ≥ y ≥ 0 and x > 0. Let Z ⊂ Q

be any zero-dimensional scheme such that deg(Z) = z.

(i) If z ≤ y + 1, then h1(Q, IZ(x, y)) = 0.

(ii) Assume y + 2 ≤ z ≤ 3y − 1; if x = y, then assume z ≤ 3y − 2. Then

h1(Q, IZ(x, y)) > 0 if and only if either there is a line D ⊂ Q of type (1, 0) such

that deg(Z ∩ D) ≥ y + 2 or z ≥ x + 2 and there is a line D′ ⊂ of type (0, 1) such

that deg(D′ ∩ Z) ≥ x + 2 or z ≥ x + y + 2 and there is A ∈ |OQ(1, 1)| such that

deg(A ∩ Z) ≥ x+ y + 2.

Proof. Remark 3.4 proves the “ if ” part of (ii).

(a) Now we prove (i) and the “ only if ” part of (ii). If z = 0, i.e. if Z = ∅, then

(i) is true (Remark 3.1). Hence we may assume z > 0 and prove simultaneously (i) and

the “ only if ” part of (ii) by induction on z. We also use induction on x + y, the case

(x, y) = (1, 0) being obvious.

Set Z0 := Z and z0 := z. Fix D1 ∈ |OQ(1, 0)| such that a1 := deg(Z ∩D1) is maximal

and set Z1 := ResD1(Z) and z1 := z − a1. For all integers i ≥ 2 define recursively the

divisors Di ∈ |OQ(1, 0)|, the scheme Zi ⊆ Zi−1 and the integers ai, zi in the following

way. Take as Di any divisor Di ∈ |OQ(1, 0)| such that ai := deg(Zi−1 ∩ Di) is maximal

and set Zi := ResDi
(Zi−1) and zi := zi−1 − ai. Notice that zi = deg(Zi) and in particular
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zi ≥ 0. Since ai ≥ 0, the sequence {zi} is non-increasing. Since Z 6= ∅, the maximality

of the integer a1 implies a1 > 0, i.e. z1 < z0. For the same reason if zi > 0 then ai > 0

and 0 ≤ zi+1 < zi. Hence zi = 0 and Zi = ∅ if i ≥ deg(Z). If z1 ≥ y + 2, then

we are done. Hence we may assume 1 ≤ a1 ≤ y + 1. Hence ai ≤ y + 1 for all i. Hence

h1(Di, IDi∩Zi−1,Di
(x, y)) = 0 for all i > 0. Applying (2) for (m,m′, v, v′) = (1, 0, x−i+1, y)

we get h1(Q, IZi
(x − i, y)) ≥ h1(Q, IZi−1

(x − i + 1, y)). Starting from the case i = 1 we

get h1(Q, IZi
(x− i, y)) > 0 for all i. Let k be the first positive integer such that zk = 0.

Since h1(Q,OQ(v, y)) = 0 for all v ≥ −1, we get k ≥ x + 2. Hence z ≥ x + 2. Fix

R1 ∈ |OQ(0, 1)| such that b1 := deg(Z ∩R1) is maximal. If w1 ≥ x+ 2, then we are done.

Hence we may assume 1 ≤ b1 ≤ x+ 1.

(b) Set M0 := Z and m0 := z. Fix any A1 ∈ |OQ(1, 1)| such that e1 := deg(Z ∩ A)

is maximal among all elements of |OQ(1, 1)|. For all integers i ≥ 2 define recursively the

divisors Ai ∈ |OQ(0, 1)|, the scheme Mi ⊆ Mi−1 and the integer ei in the following way.

Take as Ai any divisor Ai ∈ |OQ(1, 1)| such that ei := deg(Mi−1 ∩ Ai) is maximal and

set Mi := ResAi
(Mi−1) and mi := mi−1 − ei. Notice that mi = deg(Mi) and in particular

mi ≥ 0. Since ei ≥ 0, the sequence {mi} is non-increasing. Since h0(Q,OQ(1, 1)) = 4,

any degree ≤ 3 zero-dimensional subscheme of Q is contained in some divisor of type

(1, 1). Hence either ei ≥ 3 or mi = 0. Hence the first integer, s, such that es = 0 satisfies

s ≤ ddeg(Z)/3e. Since z < 3y, we have ey = 0. Since s ≤ y ≤ x, we have h1(Q,OQ(x −

s, y − s)) = 0. Hence applying s times (2) with integers (m,m′) := (x+ 1− i, y + 1− i),

1 ≤ i ≤ s, with H = Ai and taking Mi−1 instead of Z, we get the existence of an integer

t ∈ {1, . . . , s− 1} such that h1(At, IAt∩Mt−1(x− t+ 1, y − t+ 1)) > 0. Call t the minimal

such an integer. Recall that t ≤ y.

(b1) First assume that At is irreducible. Hence At
∼= P1. Since deg(OAt(x− t+1, y−

t + 1)) = x + y − 2t + 2, we get et ≥ x + y − 2t + 4. Since ec ≥ et for all c ≤ t, we

get z ≥ t(x + y − 2t + 4). The function φ : Z → Z defined by φ(c) = c(x + y − 2c + 4)

is convex in the interval [1, (x + y + 4)/2] and it is increasing if c ≤ (x + y + 4)/4

and decreasing in the interval ((x + y + 4)/4, (x + y + 4)/2]. First assume t = 1; we get

deg(Z∩A1) ≥ x+y+2, concluding this case. Now assume t = 2. We get z ≥ 2(x+y) ≥ 4y,
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absurd. Now assume x + y odd and t = (x + y + 3)2. Since ei ≥ 3 for all i < t, we get

z ≥ 3(x+y+1)/2+(x+y+3)/2 ≥ 3y, absurd. Now assume x+y even and t = (x+y)/2;

we get z ≥ 3(x+ y − 2)/2 + 2 ≥ 3y − 1 and equality only if x = y, a contradiction. Since

t ≤ y, we do not need to test cases with t > (x+ y)/2 and hence we completed the proof

if At is irreducible.

(b2) Now assume that At is reducible and write At = D ∪ D′ with D ∈ |OQ(1, 0)|

and D′ ∈ |OQ(0, 1)|. By the proof of step (b1) we may assume et ≤ x+y−2t+3. Lemma

3.5 gives that either deg(D ∩Mt−1) ≥ y − t + 3 or deg(D′ ∩Mt−1) ≥ x − t + 3. First

assume deg(D ∩Mt−1) ≥ y − t + 3; since et ≥ deg(D ∩Mt−1), we get z ≥ t(y − t + 3).

If 3 ≤ t ≤ y, we get z ≥ 3y, absurd. Recall that t ≤ y. Assume t = 2. Since

a1 ≥ deg(D∩Z) ≥ deg(D∩M1), we get a1 = y+ 1. Since h1(Q, IZ1(x− 1, y)) > 0. Since

deg(Z1) = z − y − 1 < min{3(y − 1), 3(x − 1)}, we may apply the lemma for (x − 1, y)

and get that either a2 ≥ y + 2 (absurd) or there is a line D′ ∈ |OQ(0, 1)| such that

deg(D′∩Z1)) ≥ x+1 or there is F ∈ |OQ(1, 1)| such that deg(F∩ResD(F∩Z)) ≥ x+y+1.

If F exists, then z ≥ y + 1 + (x + y − 1) ≥ 3y, absurd. If D′ exists, then we are done,

because deg(Z ∩ (D ∩D′) = deg(Z ∩D) + deg(Z1)∩D′) ≥ x+ y+ 2. Now assume t = 1.

Applying Lemma 3.5 to the reducible curve A1 we get that either a1 ≥ y+ 2 or b1 ≥ x+ 2

or deg(Z ∩ A1) ≥ x+ y + 2.

Now assume deg(D′ ∩Mt−1) ≥ x − t + 3. Hence z ≥ t(x − t + 3). Recall that t ≤ y.

If 3 ≤ t ≤ y, then we get z ≥ 3y, absurd. Assume t = 2. Since b1 ≥ deg(D′ ∩ Z) ≥

x− t+3 = x+1, we get b1 = x+1 and deg(D′∩Z) = x+1. Since h1(D′, IZ∩D′(x, y)) = 0,

(2) with H = D′ gives h1(Q, IResD′ (Z)
(x, y − 1)) > 0. Assume for the moment x ≥ 2.

Since deg(ResD′(Z)) = z−x− 1 < 3y− 4, we may use the inductive assumption on x+ y

and conclude. If x = 1, then z = 0 by our numerical assumptions. This completes the

proof.

Proposition 3.8. Take the set-up of Theorem 1.2. Assume E 6= ∅. If x = y, then assume

deg(E) ≥ 2. Assume that C⊥ has minimum distance y + 2− deg(E). The curve D or D′

is uniquely determined by E and that not both may occur. Call D′′ the one which occur

and w = ](D ∩ B). Let S be the set of all S ⊆ B ∩D′′ such that ](S) = y + 2− deg(E).
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There are (](K)− 1)
(

w
y+2−deg(E)

)
codewords with minimal weight, each of them having as

support an element of S, while any S ∈ S is the support (up to a non-zero scalar) of a

codeword with minimum weight.

Proof. Each codeword of C⊥ has as support some S ∈ S (Lemma 2.1).The fact that

each S ∈ S is the support of a codeword follows from Lemma 3.7, which also shows that

the codeword has minimal weight. The uniqueness (up to a non-zero constant) of the

codeword supported from each S ∈ S follows from (and it is equivalent to) Lemma 3.6.

This completes the proof.

Proposition 3.9. Take the set-up of Proposition 3.8 and set B1 := B \ B ∩ D′′ and

n1 := ](B1). Assume n1 > by + a(x − 1) if D′′ ∈ |OQ(1, 0)| and n1 > b(y − 1) + ax if

D′′ ∈ |OQ(0, 1)|. Set C1 := C(B1,OC(x, y)(−E)). Then the code C1 is an [n1, k]-code and

its dual C⊥1 has minimum distance ≥ y + 2 (case y 6= x) or ≥ y + 1 (case x = y).

Proof. The parameters n1 and k := (y + 1)(x + 1) − deg(E) of the code are obvious,

because our assumptions imply ](B1) + deg(E) > ay + bx = deg(OC(x, y)).

First assume D′′ ∈ |OQ(1, 0)|. Set C2 := C(B1,OC(y, x−1)). Since n1 > by+a(x−1), C2

is an [n1, k1]-code with k1 = (y + 1)x (we are assuming x ≤ a and y ≤ b). Since E ⊂ D′′,

C1 is a subcode of C. Hence it is sufficient to prove that C⊥2 has minimum distance ≥ y+2

(case y 6= x) or ≥ y+1 (case x = y). Apply Lemma 3.7 with Z = S, ](S) = min{y, x−1},

i.e. use Proposition3.8 for the integers (x− 1, y) and the scheme ∅ instead of E.

Now assume D′′ ∈ |OQ(0, 1)|. Hence x = y. We repeat the proof of the case D′′ ∈

|OQ(1, 0)| taking C(B1,OC(x, y − 1)) instead of C2. This completes the proof.

4. On an elliptic quadric surface

Let U ⊂ P3 be a smooth and elliptic quadric surface. Hence Pic(U)(K) ∼= Z, OU(1) is a

generator of Pic(U)(K) and every curve on U defined over K is the complete intersection

of U with a surface of P3 defined over K.

Proof of Theorem 1.3. The curve C is the complete intersection of U and a surface of

degree a. Hence it is a complete intersection. Hence the restriction map H0(P3,OP3(x))→
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H0(C,OC(x)) is surjective. Hence the restriction map H0(U,OU(x)) → H0(C,OC(x)) is

surjective. Since h1(U,OU(x − a)) = 0 (Remark 3.1) we get h0(C,OC(x)) = (x + 1)2 if

x < a and h0(C,OC(x)) = (x+ 1)2− (x− a+ 1)2 if x ≥ a. Since deg(E) ≤ x+ 1, Lemma

3.7 gives h0(C,OC(x))− deg(E). Since ](B) > ax− deg(E) = deg(OC(x)(−E)), we have

h0(C,OC(x)(−E − B)) = 0. Hence C is an [n, k]-code. Fix a set S ⊆ B which is the

support of a codeword of C⊥ with minimal weight. Lemma 2.1 gives h1(P3, IE∪S(x)) > 0

and h1(P3, IE∪S′(x)) = 0 for any S ′ ( S. Hence h1(U, IE∪S(x)) > 0 and h1(U, IE∪S′(x)) =

0 for any S ′ ( S.

Let K1 be the quadratic extension of K. The surface U is defined over K1, but over K1

the degree 2 surface UK1 is a hyperbolic quadric, Q. We apply Lemma 3.7 with x = y.

We get the existence either of D ∈ |OQ(1, 0)| such that deg((S ∪ E) ∩ D) ≥ x + 2 or

the existence of D′ ∈ |OQ(1, 0)| such that deg(D′ ∩ (B ∪ E)) ≥ x + 2 or the existence of

A ∈ |OQ(1, 1)| such that deg((S∪E)∩A) ≥ 2x+2; the curves D (or D′ or A) are defined

over K1.

We claim that neither D nor D′ may exist. To prove this claim we first assume deg(E) ≤

x. Since x+2 ≥ 2+deg(E), there would be P, P ′ ∈ S∩D (or P, P ′ ∈ S∩D′) with P 6= P ′.

Each point of S is defined over K and hence the line D (or D′) spanned by P and P ′ would

be a line of U defined over K. Since E∪S is contained in D (or D′) and x+2 > 2, Bezout

theorem implies that U is contained in the quadric surface U , contradicting the assumption

that U is an elliptic quadric surface. Now assume deg(E) = x + 1. Since deg(E) ≥ 2, D

or D′ is spanned by E. Hence D is defined over K. Again, Bezout theorem gives that U

contains a line, absurd. Hence our claim is true. Hence there is A ∈ |OQ(1, 1)| such that

deg((S ∪ E) ∩ A) ≥ 2x+ 2. Hence ](S) ≥ ](S ∩ A) ≥ 2x− 2− deg(E).

Now assume that C⊥ has minimum weight 2x+ 2− deg(E). Since h1(U, IE∪S′(x)) = 0

for any S ′ ( S, Lemma 3.5 gives S ⊂ A and ](S) = 2x + 2 − deg(E). Assume for the

moment E ∪ S ⊂ A1 with A1 ∈ |OQ(1, 1)|, A1 defined over any extension of K, and

A1 6= A. Since OQ(1, 1) · OQ(1, 1) = 2 > deg(E ∪ S), we get that A and A1 are reducible

and with a common irreducible component, M . Write A = M∪M ′ and A1 = M∪M ′′ with

M ′′ 6= M ′ and, say, M of type (1, 0). Since A∩A1 = M and ](S) ≥ 2x+ 2− deg(E) ≥ 2,
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M contains at least two points of S. Since each point of S is defined over K, the line M

must be defined over K. Since S ⊆ U(K) and U contains no line, we get a contradiction.

Hence A is the unique element of |OQ(1, 1)| containing S ∪E. Since S ∪E is defined over

K, A is defined over K. Since ](S) ≥ 2 and U contains no line defined over K, as above

we get that A is geometrically irreducible. Hence A is a smooth hyperplane section of U

defined over K. This completes the proof.

5. On a quadric cone

Let T ⊂ P3 be a quadric cone defined over K and O ∈ T (K) its vertex. We will look at

integral curves Y ⊂ T defined overK and to their normalizations, C. Set c := bdeg(Y )/2c.

In the statement of Theorem 1.4 we take Y smooth and a = c. We assume that Y is not a

line, i.e. we assume a > 0. We will always assume that either O /∈ Y or that Y is smooth

at O. We use the following classical fact: if O /∈ Y , then deg(Y ) is even and Y is the

complete intersection of T and a surface of degree deg(Y )/2, while if O is a smooth point

of Y , then deg(Y ) is odd and Y has very strong cohomological properties (see Lemmas

5.3, 5.4 and 5.5). An excellent source for the geometry of T is [4], V.2.11.4 and Ex. V.2.9.

Unfortunately, in the case in which Y is singular we cannot quote [4], Ex. V.2.9, but need

to use the following set-up implicit in its proof.

Let α : P̃3 → P3 be the blowing-up of O. Since O ∈ P3(K), P̃3 and α are defined over

K. Let T2 ⊂ P̃3 be the closure of α−1(T \{O}) in P̃3. Set u := α|T2. T2 is a geometrically

integral smooth surface defined over K and u is defined over K. Set h := α−1(O). We

have h ∼= P1 over K. The surface T2 is isomorphic over K to Hirzebruch surface F2 ([4]

§V.2) and hence it has a ruling π : T2 → P1 and each fiber of π is mapped isomorphically

by u onto one of the lines of T . We call f any fiber of π seen as an effective divisor of T2.

The morphism π|h : h → P1 is an isomorphism, i.e. h intersects transversally each fiber

of π at exactly one point. We have Pic(T2) ∼= Z2, h and f are free generators of Pic(T2).

We have f 2 = 0, h · f = 1 and h2 = −2 (in the set-up of [4], §V.2 , we have e = 2 and

H = h + 2f). Let Y ⊂ T be any geometrically integral curve defined over K. Let Y ′ be

the closure of u−1(Y \ {O}) inside T2. Y
′ is a geometrically integral curve defined over
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K and u|Y ′ : Y ′ → Y is a birational morphism, which is an isomorphism, except perhaps

at the points of Y ′ ∩ h. If O /∈ Y , then h ∩ Y = ∅ and hence Y ′ ∼= Y over K. If O is a

smooth point of Y , then α|Y ′ is an isomorphism. Hence our standing assumptions imply

Y ′ ∼= Y . In particular if Y is smooth, then Y ′ ∼= Y over K. We recall that the morphism

u is induced by the complete linear system |OT2(h+2f)|, that u send isomorphically T2\h

onto T \ {O}. Let a, b be the only integers such that Y ′ ∈ |OT2(ah+ bf)|.

Remark 5.1. Since T is a surface of P3, for each integer t the restriction map ρt :

H0(P3,OP3(t))→ H0(T,OT (t)) is surjective. Since Ker(ρt) ∼= H0(P3,OP3(t− 2)), we get

h0(T,OT (t)) =
(
t+3
3

)
−
(
t+1
3

)
for all t ∈ N.

Remark 5.2. Fix integers y > 0 and x ≥ 2y. We have h1(T2,OT2(yh + wf)) = 0 if and

only if w ≥ 2y−1 ([4], Lemma V.2.4, and the cohomology of line bundles on P1 as in [4], p.

380). We recall the existence of an integral A ∈ |OT2(yh+xf)| ([4], Corollary V.2.18) and

that h0(T2,OT2(yh+xf) =
∑y

i=0(x− 2i+ 1) = ([4], Lemma V.2.4). In particular we have

h0(T2,OY (yh+(2y)f)) = (y+1)2, i.e. every section of OT2(yh+(2y)f) is the pull-back of

a section of OT2(y). For all (x, y) ∈ N2 we have h0(T2,OT2(yh+ xf)) =
∑y

i=0(x+ 1− 2i).

In particular we have h0(T2,OT2(th + 2tf)) = (t + 1)2 and h0(T2,OT2(th + (2t + 1)f)) =

(t+ 1)(t+ 2) for all t ≥ 0.

Lemma 5.3. If O /∈ Y , then a = c and b = 2c. If O ∈ Y and Y is smooth at O, then

a = c and b = 2c+ 1.

Proof. Since u∗(OT (1)) ∼= OT2(h+2f), we have deg(Y ) = OT2(ah+bf) ·OT2(h+2f) = b.

The integer OT2(h) · OT2(ah + bf) = b − 2a measures the multiplicity of Y at O. Hence

this integer is 0 if O /∈ Y , while it is 1 if O is a smooth point of Y . Hence a = c and

b = 2c if O /∈ T , while a = c and b = 2c+ 1 if O is a smooth point of Y . This completes

the proof.

Lemma 5.4. Assume O /∈ Y . Then deg(Y ) = 2c is even, Y ′ ∼= Y , Y is the complete

intersection of T and a surface of degree c, Y ′ ∈ |OT2(ch+2cf)|, pa(Y ) = pa(Y
′). For each

integer t such that 1 ≤ t < c we have h0(Y,OY (t)) = (t+1)2 and h1(Y,OY (t)) = (c−1−t)2.

For each integer t ≥ c we have h0(Y,OY (t)) = (t+1)2− (t− c+1)2 and h1(Y,OY (t)) = 0.
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Proof. Lemma 5.3 gives deg(Y ) = 2c and Y ′ ∼= Y . This isomorphism sends OY (t)

isomorphically onto OY ′(th+(2t)f). Remark 5.2 gives that Y is the complete intersection

of T2 and a degree c surface. The cohomological properties of complete intersection

curves (even the non-smooth ones. We have ωY
∼= OY (c − 2). Hence hi(Y,OY (t)) =

h1−i(Y,OY (c− 2− t)) for all i ∈ {0, 1} and t ∈ Z by duality. Since h1(T,OT (x)) = 0 for

all x ∈ Z, the exact sequence of sheaves on T :

(3) 0→ OT (t− c)→ OT (t)→ OY (t)→ 0

gives h0(Y,OY (t)) = 0 if t < 0, h0(Y,OY (t)) = (t + 1)2 if 0 ≤ t < c and h0(Y,OY (t)) =

(t+ 1)2 − (t+ 1− c)2 for all t ≥ c. This completes the proof.

Lemma 5.5. Assume O ∈ Y and Y smooth at O. Then deg(Y ) = 2c + 1, pa(Y
′) =

pa(Y ) = c2 − c and Y is arithmetically Cohen-Macaulay. Take any line L ⊂ T . Then

Y ∪ L is the complete intersection of T and a surface of degree (c + 1)/2. We have

Y ′ ∈ |OT2(ch + (2c + 1)f)|. Since ωT2
∼= OT2(−2h − 4f), the adjunction formula gives

ωY ′
∼= OY ′((c−2)h+(2c−3f)). Hence 2pa(Y

′)−2 = deg(ωY ′) = (ch+(2c+1)f)·((c−2)h+

(2c−3)f)) = −2c(c−2)+(2c+1)(c−2)+c(2c−3) = 2c2−2c−2. Hence pa(Y ) = pa(Y
′) =

c2− c. If 0 ≤ t < c, then h0(Y,OY (t)). If 0 ≤ t < c, then h0(Y ′,OY ′(th+2tf)) = (t+1)2.

If t ≥ c, then h0(Y ′,OY ′(th+ 2tf)) = (t+ 1)2 − (t− c)(t− c+ 1).

Proof. We have Y ′ ∈ |OT2(ch+ (2c+ 1)f)|. Since ωT2
∼= OT2(−2h− 4f), the adjunction

formula gives ωY ′
∼= OY ′((c− 2)h+ (2c− 3f)). Hence 2pa(Y

′)− 2 = deg(ωY ′) = OT2(ch+

(2c+1)f)·OT2((c−2)h+(2c−3)f)) = −2c(c−2)+(2c+1)(c−2)+c(2c−3) = 2c2−2c−2.

Hence pa(Y ) = pa(Y
′) = c2−c. Take F ∈ |f | such that u(F ) = L. We have Y ′∪(F ∪h) ∈

|OT2((c+1)h+(2c+2)f)|. Since u∗ : H0(T,OT ((c+1)))→ H0(T2,OT2((c+1)h+(2c+2)f))

is an isomorphism (case u = c + 1 of Remark 5.2) we get that Y ∪ L is a complete

intersection of T and a degree c + 1 surface. Recall that a curve (even not integral)

D ⊂ P3 is said to be arithmetically Cohen-Macaulay if for all integers t ≥ 0 the restriction

map H0(D,OD(t)) is surjective. Any line is arithmetically Cohen-Macaulay. Since L is

arithmetically Cohen-Macaulay and the scheme Y ′ ∪ L is a complete intersection, Y

is arithmetically Cohen-Macaulay ([3], part (b) of Theorem 21.23, [9], Theorem A.9.1).
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Hence for all integers t ≥ 0 the restriction map H0(T,OT (t))→ H0(Y,OY (t)) is surjective.

Since Y ′ ∼= Y and u∗ : H0(T,OT (t)) → H0(T2,OT2(th + 2tf)) is surjective, we get the

surjectivity of the restriction map H0(T2,OT2(th+ 2tf))→ H0(Y ′,OY ′(th+ 2tf)). Since

Y ′ ∈ |OT2(ch+ (2c+ 1)f))|, for all y, x ∈ Z we have an exact sequence

0→ OT2((y − c)h+ (x− 2c− 1)f)→ OT2(yh+ xf)→ OY ′(yh+ xf)→

Hence h0(Y ′,OY ′(th+2tf)) = h0(T2,OT2(th+2tf))−h0(T2,OT2((t− c)f +(t−2c−1)f))

for all t. If t < 0, then we get h0(Y ′,OY ′(th + 2tf)) = 0. If 0 ≤ t < c, then we get

h0(Y ′,OY ′(th + 2tf)) = (t + 1)2. Now assume t ≥ c. Since OT2(h) · OT2((t − c)f + (t −

2c − 1)) = −2(t − c) + t − 2c − 1 = −1 < 0, h is in the base locus of the linear system

|OT2((t−c)h+(t−2c−1)f)|. Hence h0(T2,OT2((t−c)f+(t−2c−1)f)) = h0(T2,OT2((t−

c− 1)f + (t− 2c− 1)f)). Hence h0(Y ′,OY ′(th+ 2tf)) = (t+ 1)2 − (t− c)(t− c+ 1) for

all t ≥ c. This complete the proof.

Proof of Theorem 1.4. Since C is arithmetically Cohen-Macaulay (Lemma 5.5), we

have h1(P3, IC(y)) = 0. We computed the integer h0(C,OC(y)) in lemmas ?? and ??.

Since deg(E) ≤ y + 1, we have h1(P3, IE(y)) = 0 ([1], Lemma 34). Hence E gives

deg(E) independent conditions to H0(P3,OP3(y)). Since E ⊂ C ⊂ P3, E imposes deg(E)

independent conditions to h0(C,OC(y)). Hence in all cases we have h0(C,OC(y)(−E)) =

h0(C,OC(y))−deg(E). Since ](B) > deg(C) ·y−deg(E) = deg(OC(y)(−E)), no non-zero

section of OC(y)(−E) vanishes at all points of B. Hence C is an [n, k] code. Assume that

C⊥ and take a codeword w of C⊥ with minimal weight. Let S be the support of w. Since C⊥

is linear and w has minimum weight, all non-zero codewords of C⊥ with support contained

in S are of the form λw for some λ ∈ K \ {0}. Lemma 2.1 gives h1(P3, IE∪S(y)) > 0.

Since deg(E ∪ S) ≤ 2y + 1, there is a line L ⊂ P3 such that deg(L ∩ (E ∪ S)) ≥ y + 2.

Since E ∪ S ⊂ C ⊂ T and y + 2 > deg(T ), Bezout theorem gives L ⊂ T . Hence L ∈ S.

Fix any J ∈ S and take S ⊆ B ∩ J such that deg((E ∪ S)∩ J) = y+ 2. Lemma 2.1 gives

the existence of a non-zero codeword v of C⊥ whose support is contained in S. Fix any

S ′ ( S. Since deg((E ∪ S) ∩ J) = y + 2 > deg(E), we have deg((E ∪ S ′) ∩ J) ≤ y + 1.

Hence h1(P3, I(E∪S′)∩J)(y)) = 0.
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Claim: h1(P3, IE∪S′(y)) = 0.

Proof of the Claim: Assume h1(P3, IE∪S′(y)) > 0. Let H ⊂ P3 be any plane con-

taining J . Since S ′ ⊂ J ⊂ H is a finite set, we have ResH(E ∪ S ′) = ResH(E) ⊆ E.

Since deg(ResH(E) ≤ deg(E) ≤ y, we have h1(P3, IResH(E)
(y − 1)) = 0. Hence (2) gives

h1(H, IH∩(E∪S′),H(y)) > 0. See J as an effective divisor of H and set E ′ := ResJ(H ∩E).

Since S ′ ⊂ J , the exact sequence (2) gives the following exact sequence on H ∼= P2:

(4) 0→ IE′(y − 1)→ I(E∪S′,H(y)→ I(E∪S′)∩J,J(y)→ 0

Since deg(E ′) ≤ deg(E) ≤ y, we have h1(H, IE′(y − 1)) = 0 ([1], Lemma 34). Since

J ∼= P1 and deg((E ∪ S ′) ∩ J) ≤ y + 1, we have h1(J, I(E∪S′)∩J,J(y)) = 0. Hence (4) gives

h1(H, IH∩(E∪S′),H(y)) = 0, absurd. The contradiction proves the Claim.

By the Claim and Lemma 2.1 S ′ is not the support of a non-zero codeword of C⊥.

Hence S is the support of v. This completes the proof.
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