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Abstract. Here we study the minimum distance of (duals of) Goppa codes on smooth curves C' C T,

where T C P? is a geometrically irreducible quadric surface defined over a finite field.
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1. Introduction

We work over a finite field K. Let C' be a smooth and geometrically connected curve
defined over K. For any line bundle A on C defined over K and any B C C(K) let
C(B,.A) denote the code obtained evaluating H°(C,.A) at the points of B; if A = O¢(D)
with D an effective divisor of C' defined over K and whose support contains no point of B,
then C(B,.A) \ {0} is the set of all rational functions f € K(C) defined over K and with
(f)+ D >0, ([8], Ch. 2, [10]) (it is the geometric Goppa code C,(B, D) defined in [8],
[1.2.1). The dual code C(B,O¢(D))* may be described in the same way ([8], Theorem
11.2.8).
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We first prove the following results concerning Goppa codes constructed using curves
contained in a hyperbolic quadric surface Q.
Theorem 1.1. Fix positive integers a,b,x,y such that x >y, vt < a—2 and y < b — 2.
Let Q C P? be a hyperbolic quadric surface defined over a finite field K and Y € |Og(a,b)|
a geometrically integral curve defined over K with only ordinary nodes or ordinary cusps
as singularities. Let u : C — Y be the normalization. Fix a a zero-dimensional scheme
E cC C\u(Sing(Y)) and a set B C C(K) \ (v '(Sing(Y)) U E,cq). Set n := #(B) and
k= (x+1)(y+1)—deg(E). Assumet(Sing(Y'))+deg(E) < y—1 and n+deg(E) > ay+bx.
Set C := C(B,O¢(z,y)(—FE)). Then C is an [n,k]-code and its dual C*+ has minimum
distance > y + 2 — deg(E).

Theorem 1.2. Fix positive integers a,b,x,y such that x >y, x < a—2 and y < b — 2.
Let Q be a hyperbolic quadric surface defined over a finite field K and C' € |Og(a,b)| a
smooth curve defined over K. Fir a a zero-dimensional scheme E C C' defined over K
and a set B C C(K) \ Ereq. Setn:=4#(B) and k := (z + 1)(y + 1) — deg(F). Assume
deg(E) <y —1 and n+deg(E) > ay + bzx. Set C := C(B,Oc(z,y)(—E)). Then C is an
[n, k]-code and its dual C*+ has minimum distance > y + 2 — deg(E).

(a) There is a codeword of Ct with weight y + 2 — deg(E) if and only if either there
is D € |Og(1,0)| with E C D and (BN D) > y+ 2 —deg(E) or x = y and there is
D' € |0q(0,1)] with EC D" and $(BND') >y + 2 — deg(E).

(b) Take D (resp. D" if x = y) and any S C DN B (resp. S C D' N B) such that
#(S) =y + 2 — deg(E). There is a unique (up to a scalar) codeword of C+ with S as its
support.

(¢) Each codeword with weight < 3y — 2 — deg(FE) (if any) has as support a set
S such that either there is D € |Og(1,0)| with deg((SU E)N D) > y+ 2 or there is
D" € |0g(0,1)] such that deg((EUS)ND") > x4+ 2 or there is A € |Og(1,1)| such that
deg((EUS)NA) >z +y+2.

See Propositions 3.8 and 3.9 for a description of the minimum weight codewords of C*
and a shortening of C*+ with better parameters (when Y is smooth). For smooth curves

on a elliptic quadric surface U we prove the following result.
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Theorem 1.3. Let U C P be an elliptic quadric surface defined over K. Let C C U
be a smooth curve of degree 2a defined over K, E a zero-dimensional subscheme of C
defined over K and B C C(K) \ E,eq a finite set. Fiz a positive integer x > deg(FE) — 1.
Assume n := #§(B) > ar — deg(E). Set k = (z 4+ 1)> —deg(F) if v < a and k =
(r+1)?—(x—a+1)*—deg(F) if v > a. Set C := C(B,O¢(z)(—FE)). Then C is an
[n, k]-code and its dual C* has minimum distance > 2x +2 —deg(F). If C*+ has minimum
distance 2x + 2 — deg(FE), then for each codeword w of C+ with minimum weight there is
a smooth linear section A of U defined over K and such that SUFE C A, where S C B is
the support of w.

Very few maximal curves are contained in a quadric surface ([7], §10.4) and, except very
small fields, all of them are on a quadric cone, T, and contains the vertex O of the cone
([7], Lemma 10.39 (iv), Theorem 10.41 and Proposition 10.44). Since the quadric cone
T C P? contains many curves with a large number of K-points, it is natural to study the
Goppa codes arising studying curves inside 7'. In section 5 we prove the following result.
Theorem 1.2. Let T C P? be a geometrically integral quadric cone defined over K. Let
C C T be a smooth and geometrically connected curve of degree 2a +¢, a > 1, e € {0,1},
defined over K. Fix an integer y > 3 and a zero-dimensional scheme E C C with
deg(E) < y. Fiz a set B C C(K) \ E,¢y such that n = §(B) > y - deg(C) — deg(E). Set
k:=(y+1)*—deg(E) ify<a, k:=(y+1)?>—(y—a+1)>—deg(F) ife=0 and y > a,
ki=(w+1)?2—(t—a)(t—a+1)—deg(E) ify >a ande=1. Set C :=C(B,Oc(y)(—F)).

(i) C is an [n, k]-code and C* has minimum distance > y + 2 — deg(E).

(i1) Let S be the set of all lines J C C such that deg((EU B)NJ) > y+ 2. Let
S’ be the set of all J € S such that the integer e := deg(E N J) > 0 is mazimal among
all lines in S. Let §'(B) be the set of all pairs (S,J), where J € &', S C JN B and
#(S) =y +2—e. Let S"(B) be the set of all S C B with (J,S) € §'(B). If S =0, then
Ct has minimum distance > 2y + 2 — deg(E). If S # 0, then C* has minimum distance
y+2—e, each codeword of C* is supported by a unique S € 8"(B) and each S € §"(B) is

the support of a unique (up to a mon-zero scalar) codeword of C* with minimum weight.
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For each codeword of C+ with weight < 2y + 1 — deg(E) (say with support S C B) there
is a unique J € S such that S C J and deg(JN(EUS)) > y+ 2.

2. Preliminaries

Let K denote the algebraic closure of K. Every variety or scheme X arising in this
paper is defined over K. Let X be any projective scheme over a field L; and F a coherent
sheaf on X defined over a field Ly O L;. Fix any field L3 O Ly. Then X and F are
defined over Ls; call them X, and F, as objects over L3. Since any extension of fields is
flat, the integers dimp,(H (X, Fr,)), ¢ € N, does not depend from the choice of L3 ([4],
Proposition I11.9.3). Set h*(X,F) := dimy,(H'(Xr,, Fr,) for any field L3 on which both
X and F are defined. Hence to compute each cohomology group it is sufficient to quote
references which state the corresponding result over an algebraically closed base field.
Lemma 2.1. Fiz an integer x > 0, a smooth curve C C P" such that h*(P",Z¢(z)) = 0,
a zero-dimensional scheme E C C such that deg(FE) < x + 1 and a finite subset B C C
such that BN Epeq = 0. Let C := C(O¢(z)(—FE)) the code on C obtained evaluating
the complete linear system |Oc(x)(—FE)| at the points of B. Set ¢ := deg(C'). Assume
#(B) + deg(E) > xc. Set n := #(B), and k := h°(C,Oc(x)) — deg(E). Then C is an
[n, k]-code and the minimum distance of C* is the minimal cardinality, s, of a subset of
B such that h*(P?, Zsur(x)) > 0 (or, equivalently, h'(C, Oc(—E —S)) > h'(C,Oc(—F)).
A codeword of C*+ has weight s if and only if it is supported by S C B such that $(B) = s
and W' (P", Zpus(x)) > W (P, Zg(z)).

Proof. We imposed that B does not intersect the support of E. Since h!(P", Zo(z)) = 0,
the restriction map p, : H'(P", Opr(x)) — H°(C,O¢(x)) is surjective. Hence C is ob-
tained evaluating a family of homogeneous degree x polynomials (the ones vanishing on
the scheme E) at the points of B. Since deg(FE) < z + 1, we have W (P",Zg(z)) = 0
([1], Lemma 34), i.e. E imposes deg(F) independent conditions to the set of all de-

gree & homogeneous polynomials. Hence the restriction map p, p : H°(P",Zg(z)) —



GOPPA CODES 41
H°(C,0¢(z)(—F)) is surjective. Hence a finite subset S C C\ E,.; imposes indepen-
dent condition to H°(C,O¢(z)(—E)) if and only if S imposes independent condition-
s to H(P",Zg(x)). S imposes independent conditions to H°(P",Zg(x)) if and only if
hY (P, Zpus(x)) = h'(P",Zr(x)) (here we use again that SN E = (). This completes the
proof.
Remark 2.2. Take the set-up of the proof of Lemma 2.1. Since the restriction maps p,
and p, g are surjective, the condition “ h*(P?, Zpys(x)) > h'(P?, Zg(z)) 7 is equivalent
to the condition “ h°(C,Oc(d)(—(E U S)) > h°(C,Oc(d)(—E)) — 4(S) or, equivalently
(Riemann-Roch) ' (C, Oc(d)(—(E U S)) > hY(C,0c(d)(—FE)). In the applications we
will usually have d < deg(C') — 2 and hence h'(C, Oc(d)) > 0.
Remark 2.3. Let W be any projective scheme and L a line bundle on it. Fix any
subscheme F C Z. Since Z is zero-dimensional, we have h'(Z,Zg z(x,y)) > 0. Hence
the restriction map H°(Z, L|Z) — H°(E, L|E) is surjective. Hence if h'(W, Zy, @ L) > 0,
then h'(W,Z, ® L) > 0.

3. On a hyperbolic quadric surface

In this paper @) is a smooth quadric surface defined over K and hyperbolic, i.e. @
isomorphic to P! x P! over K. See [4] and [6] for the geometry of quadric hypersurfaces
over a finite field, [7] for their use for curves over a finite field and [4], §V.2, for quadric
surfaces over an algebraically closed base field.

There are two rulings on @ defined over K and Pic(Q)(K) is freely generated by the two
rulings, which we call Og(1,0) and Og(0,1). Hence there is a bijection (a,b) — Og(a,b)
between Z? and Pic(Q)(K).

Remark 3.1. Since Q = P! x P!, Kiinneth formula gives
HY(Q, Og(a, b)) = HO(PL, Opa (a)) © HO(P, O (b)),

H°(Q, Og(a,b)) = H (P, Opi(a)) @ H (P', Op (b)) @ H (P!, Opi(a)) @ H°(P', Op1 (b))

in which the tensor powers are over the base field and all cohomology groups H', i = 0, 1,

are finite-dimensional over that field. Hence H°(Q, Og(a,b)) = 0 if either a < 0 or b < 0,
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h%(Q,Og(a,b)) = (a+1)(b+1)ifa > -1 and b > —1 and H'(Q, Og(a,b)) =0ifa > —1
and b > —1.

Remark 3.2. We have wg = Og(—2, —2) ([4], Example 11.8.20.3). Fix integers (a,b) €
N?\ {(0,0)} and any divisor Y € |Og(a,b)| defined over a field K. For all integers z,y

we have an exact sequence of coherent sheaves
(1) 0— Og(z—a,y—>b) = Og(z,y) = Oy(z,y) =0

The adjunction formula gives wy = Oy (a —2,b—2) ([4], Proposition V.1.5 and Example
V.1.5.2). Duality ([4], Corollary IT1.7.8) and Remark 3.1 gives h?(Q, Og(—2,—2)) = 1 and
h3(Q, Og(x,y)) =0if z > —2, y > —2 and (z,y) # (—2, —2). Hence Remark 3.1 and the
case x = a—2, y = a—2 of (1), give that the restriction map py : H*(Q, Og(a—2),b—2)) —
H°(Y,wy) is an isomorphism defined over K. Now assume that Y is geometrically integral
and let u : C — Y be the normalization map. The map u is defined over K and C'is a
geometrically smooth projective curve defined over K, because any finite field is perfect.
There is an ideal sheaf J of Og whose support is the union Sing(Y") of all singular points
of Y(K) such that there is an isomorphism oy : H(Q, J(a — 2,b — 2)) — H°(C,wc);
J is called the conductor of u or the conductor of Y. The sheaf [J, the set Sing(Y') and
the isomorphism oy are defined over K. However, if §(Sing(Y)) > 2, then a single point
of Sing(Y’) may be not defined over K; we are only sure of the existence of an extension
K' of K of degree < £(Sing(Y’)) such that each P € Sing(Y') is defined over F’. If each
singular point of Y is either an ordinary node or an ordinary cusp, then J is the ideal
sheaf TSing v, of the set Sing(Y’). We have deg(Og/J) = pa(Y) — pa(C). Since oy is an
isomorphism, h°(Y, wy) = p,(Y) and h°(C,we) = pa(C), we have H*(Q, J(a—2,b—2)) =
(a—1)(b—1) — pa(Y) + po(C) and h'(Q, T (a — 2,b —2)) = 0. For any (x,y) € Z? set
Oc(z,y)) := u*(Oc(z,y)). Notice that Oc(z,y) is a line bundle of degree ya + bx on C
defined over K. For any zero-dimensional scheme FE C Y4, u induces an isomorphism
between v~ !(E) and E. In particular for any P € Y,., and any integer e > 0 we may
identify the unique degree e zero-dimensional subscheme of Y with P as its support with

the effective divisor eu™!(P) of the smooth curve C'. Hence we may use u to study certain
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Goppa codes on C with certain data on Y (for instance, for a one-point code associated
to O € C' we require O ¢ u~!(Sing(Y)).

Remark 3.3. Fix integers m,m’ with (m,m/) € N*\ {(0,0)} and any divisor H €
|Og(m,m’)|. Let Resy(Z) be the residual scheme of Z with respect to H, i.e. the closed
subscheme of Q) with Z : Zy as its ideal sheaf. We have deg(Z) = deg(Resy(Z))+deg(HN
Z) (scheme-theoretic intersection) and for all (v,v’) € Z? there is an exact sequence of

sheaves on Q):
(2) 0 = TResy(z) (v — m, v = m') = Tz(v,0") = Zunzua(v,v') = 0

Remark 3.4. Fix (z,y) € N?, any D € |Og(1,0)], any D" € |Oq(0,1)| and any A €
|Og(1,1)]. We have D =2 P! =2 D', deg(Op(z,y)) = y and deg(Op/(z,y)) = x. Hence
h°(D,Op(z,y)) =y+1 and h°(D’, Op/(z,y)) = x + 1. Since h'(Q, Og(x —1,2—1)) =0
(Remark 3.1), we have h°(A, Oa(z,y)) = (z+1)(y+1) —zy =x+y+ 1. If W is a zero-
dimensional subscheme of D (resp. D', resp. A) and deg(W) > y + 2 (resp. deg(W) >
z+2, resp. deg(W) > z+y+2), then h' (D, Zyw p(x,y)) > 0 (vesp. h' (D', Ty.p(z,y)) > 0,
resp. h'(A,Zwa(z,y)) > 0). Fix any subscheme F C Z. Remark 2.3 gives that if
hNQ,Zg(z,y)) > 0, then h'(Q,Zz(z,y)) > 0. Hence if either deg(D N Z) > y + 2 or
deg(D'NZ) >z +2ordeg(ANZ) > x+y+ 2, then h(Q,Zz(x,y)) > 0.

Lemma 3.5. Fix positive integers x,y. Fiz D € |Og(1,0)| and D" € |Og(0,1)| and set
A:=DUD' Let Z C A be a zero-dimensional scheme. We have h'(A,Zz(x,y)) > 0 if
and only if either deg(Z) >z +y+2 ordeg(DNZ)>y+2 ordeg(D'NZ) > x+ 2.

Proof. Remark 3.4 gives the “ if 7 part. Now assume h'(A,Za(z,y)) > 0. Since
Y Q,O0p(x — 1,y — 1)) = 0 (Remark 3.1) and Z C A, our assumption is equivalent
to h'(Q,Zz(x,y)) > 0. Assume also deg(Z) < z+y + 1 and deg(Z N A) < y + 1.
See Z as a closed subscheme of ) to compute Resp(Z). Since deg(Z N D) < y + 1,
we have h'(D,Zznp p(z,y)) = 0. Hence (2) with H := D and (v,v') = (

hl(Q,IReSD(Z)(x —1,y)) > 0. Since A C D U D', we have Resp(Z) C D’. Hence
hl(Q,IReSD(Z)(x —1,y)) = hl(DlszesD(Z),D'(x —1,y)). Hence deg(Resp(Z)) > = + 1.
Since ZND C Resp(Z), we get deg(ZND') = deg(Resp(Z)) = v+ 1. Now we reverse the

x,y) gives
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role of D and D'. Since deg(D’' N Z) < x + 1, we have h' (D', Zznpr pr(z,y)) = 0. Hence
(2) with (m,m’) = (0,1) gives hl(Q,IReSD/(Z)(m,y — 1)) > 0. Since Resp/(Z) C D', the
first part of the proof gives deg(Resp/(Z)) > y + 1. Hence deg(Z) = deg(Resp/(Z)) +
deg(D'NZ) > x +y + 2. This completes the proof.

The proof of Lemma 3.5 gives the following result.
Lemma 3.6. Fiz positive integers x,y, D € |0Og(1,0)], D' € |0g(0,1)] and A €
|Oq(1,1)|. Fiz zero-dimensional schemes Z, C D, Zy C D' and Zs C A such that
deg(Z1) = y+ 2, deg(Zy) = x4+ 2 and deg(Z3) = = +y + 2. If A is reducible, say
A = DyU Dy with Dy € |Og(1,0)| and Dy € |Og(0,1)| then assume deg(Z3sND;) <y+1
and deg(Z3 N Dy) < x+ 1 (equivalently, assume ZsN Dy N Dy =0, deg(ZsNDy) =y+1
and deg(Z3 N Dy) =x +1). Then h'(Q,Zz,(x,y)) =1, 1=1,2,3.
Lemma 3.7. Fix non-negative integer x,y, z such that x >y >0 and x > 0. Let Z C @)
be any zero-dimensional scheme such that deg(Z) = z.

(i) If z <y +1, then h'(Q,Zz(x,y)) = 0.

(i) Assume y +2 < z < 3y — 1; if x = y, then assume z < 3y — 2. Then
h'(Q,Zz(x,y)) > 0 if and only if either there is a line D C Q of type (1,0) such
that deg(Z N D) > y+2 or z > = + 2 and there is a line D' C of type (0,1) such
that deg(D' N Z) > x4+ 2 or z > x4+ y + 2 and there is A € |Og(1,1)| such that

deg(ANZ)>x+y+2.

Proof. Remark 3.4 proves the “ if 7 part of (ii).

(a) Now we prove (i) and the ¢ only if 7 part of (ii). If z = 0, i.e. if Z = (), then
(i) is true (Remark 3.1). Hence we may assume z > 0 and prove simultaneously (i) and
the “ only if 7 part of (ii) by induction on z. We also use induction on x + y, the case
(z,y) = (1,0) being obvious.

Set Zy := Z and z := z. Fix D; € |Og(1,0)| such that a; := deg(Z N D;) is maximal
and set Z; := Resp,(Z) and z; := z — a;. For all integers i > 2 define recursively the
divisors D; € |Og(1,0)], the scheme Z; C Z;_; and the integers a;, z; in the following
way. Take as D; any divisor D; € |Og(1,0)| such that a; := deg(Z;_1 N D;) is maximal

and set Z; := Resp,(Z;—1) and z; :== z;_1 — a;. Notice that z; = deg(Z;) and in particular
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z; > 0. Since a; > 0, the sequence {z;} is non-increasing. Since Z # (), the maximality
of the integer a; implies a; > 0, i.e. 23 < z9. For the same reason if z; > 0 then a; > 0
and 0 < 2,1 < z. Hence z; = 0 and Z; = 0 if i > deg(Z). If 2y > y + 2, then
we are done. Hence we may assume 1 < a; < y + 1. Hence a; < y + 1 for all 2. Hence
hY(Di, Ip,nz,_y.p,(x,y)) = 0foralli > 0. Applying (2) for (m,m/,v,v) = (1,0,z—i+1,y)
we get h'(Q,Zz (x —i,y)) > h'(Q,Zz_,(x —i+ 1,y)). Starting from the case i = 1 we
get W' (Q,Zz (x —i,y)) > 0 for all 7. Let k be the first positive integer such that z, = 0.
Since h'(Q,Og(v,y)) = 0 for all v > —1, we get k > x + 2. Hence z > = + 2. Fix
Ry € |0g(0,1)] such that by := deg(Z N R,) is maximal. If w; > x4 2, then we are done.
Hence we may assume 1 < by < x + 1.

(b) Set My := Z and mg := z. Fix any A; € |Og(1,1)| such that e; := deg(Z N A)
is maximal among all elements of |Og(1,1)|. For all integers i > 2 define recursively the
divisors A; € |Og(0,1)], the scheme M; C M;_; and the integer e; in the following way.
Take as A; any divisor A; € |Og(1,1)| such that e; := deg(M,;_1 N 4;) is maximal and
set M; := Resa,(M;_1) and m; := m;_1 — e;. Notice that m; = deg(M;) and in particular
m; > 0. Since e; > 0, the sequence {m;} is non-increasing. Since h%(Q,Og(1,1)) = 4,
any degree < 3 zero-dimensional subscheme of @) is contained in some divisor of type
(1,1). Hence either e; > 3 or m; = 0. Hence the first integer, s, such that e, = 0 satisfies
s < [deg(Z)/3]. Since z < 3y, we have e, = 0. Since s < y < z, we have h'(Q, Og(z —
s,y — s)) = 0. Hence applying s times (2) with integers (m,m’) == (x +1—i,y+ 1 — i),
1 <i<s, with H= A; and taking M,_; instead of Z, we get the existence of an integer
te{1,...,s—1} such that h'(Ay, Za,n,_,(x —t+ 1,y —t+1)) > 0. Call ¢ the minimal
such an integer. Recall that t < .

(b1) First assume that A; is irreducible. Hence A; = P!. Since deg(O4,(z —t+ 1,y —
t+1) =z+y—2t+2, we get e, > x+y—2t+4. Since e, > ¢ for all ¢ < t, we
get z > t(x +y — 2t +4). The function ¢ : Z — Z defined by ¢(c) = c(z +y — 2c + 4)
is convex in the interval [1,(z + y + 4)/2] and it is increasing if ¢ < (z +y + 4)/4
and decreasing in the interval ((x +y +4)/4, (x + y + 4)/2]. First assume t = 1; we get
deg(ZNA;) > z+y+2, concluding this case. Now assume t = 2. We get z > 2(z+y) > 4y,



46 E. BALLICO*

absurd. Now assume x + y odd and ¢t = (x + y + 3)2. Since e; > 3 for all i < ¢, we get
z>3(x+y+1)/2+ (z+y+3)/2 > 3y, absurd. Now assume z+y even and t = (z+y)/2;
we get z > 3(r+y —2)/2+2 > 3y — 1 and equality only if z = y, a contradiction. Since
t <y, we do not need to test cases with ¢ > (z + y)/2 and hence we completed the proof
if A; is irreducible.

(b2) Now assume that A; is reducible and write A; = D U D’ with D € |Og(1,0)|
and D’ € |Og(0,1)]. By the proof of step (bl) we may assume e; < x+y—2t+3. Lemma
3.5 gives that either deg(D N M;_1) > y —t + 3 or deg(D' N M;_y) > = —t + 3. First
assume deg(D N M;_1) > y —t + 3; since e; > deg(D N M;_1), we get z > t(y — t + 3).
If 3 <t <y, weget z > 3y, absurd. Recall that ¢ < y. Assume ¢ = 2. Since
a; > deg(DNZ) > deg(D N M), we get a; = y+ 1. Since h*(Q,Zz (x —1,y)) > 0. Since
deg(Z1) = z —y — 1 < min{3(y — 1),3(x — 1)}, we may apply the lemma for (z — 1,y)
and get that either as > y + 2 (absurd) or there is a line D' € |Og(0,1)| such that
deg(D'NZy)) > x+1 or thereis F' € |Og(1, 1)| such that deg(FNResp(FNZ)) > x+y+1.
If F exists, then z > y+ 1+ (z+y — 1) > 3y, absurd. If D’ exists, then we are done,
because deg(Z N (DN D) =deg(ZND)+deg(Z1)ND') > x+y+2. Now assume t = 1.
Applying Lemma 3.5 to the reducible curve A; we get that either a; > y+2 or by > v+ 2
ordeg(ZNA) >x+y+2.

Now assume deg(D’' N M;_1) > x —t+ 3. Hence z > t(x — t + 3). Recall that ¢t < y.
If 3 <t <y, then we get z > 3y, absurd. Assume ¢ = 2. Since b; > deg(D'N Z) >
r—t+3=x+1,weget by = r+1 and deg(D'NZ) = x+1. Since h'(D', Zznp/(z,y)) = 0,
(2) with H = D’ gives hl(QvIResD,(z)(x7y — 1)) > 0. Assume for the moment z > 2.
Since deg(Resp/(Z)) = z —x —1 < 3y — 4, we may use the inductive assumption on x +y
and conclude. If z = 1, then z = 0 by our numerical assumptions. This completes the
proof.

Proposition 3.8. Tuake the set-up of Theorem 1.2. Assume E # 0. If x =y, then assume
deg(E) > 2. Assume that C* has minimum distance y + 2 — deg(E). The curve D or D'
is uniquely determined by E and that not both may occur. Call D" the one which occur

and w =§(D N B). Let S be the set of all S € BN D" such that §(S) =y + 2 — deg(E).
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There are ($(K) — 1)(y+2f§eg(E)) codewords with minimal weight, each of them having as
support an element of S, while any S € S is the support (up to a non-zero scalar) of a

codeword with minimum weight.

Proof. Each codeword of C* has as support some S € S (Lemma 2.1).The fact that
each S € S is the support of a codeword follows from Lemma 3.7, which also shows that
the codeword has minimal weight. The uniqueness (up to a non-zero constant) of the
codeword supported from each S € S follows from (and it is equivalent to) Lemma 3.6.
This completes the proof.

Proposition 3.9. Take the set-up of Proposition 3.8 and set By := B\ BN D" and
ny = #(By). Assume ny > by + a(x — 1) if D" € |Og(1,0)] and ny > b(y — 1) + ax if
D" € |0g(0,1)|. Set Cy :=C(B1,Oc(x,y)(—FE)). Then the code Cy is an [ny, k|-code and

its dual Ci+ has minimum distance >y +2 (case y # x) or >y +1 (case v = y).

Proof. The parameters n; and k := (y + 1)(z + 1) — deg(E) of the code are obvious,
because our assumptions imply £(B;) + deg(E) > ay + bx = deg(Oc(z,y)).

First assume D" € |Og(1,0)|. Set Cy := C(By, Oc(y,z—1)). Since ny; > by+a(x—1), Co
is an [ng, k1]-code with k; = (y 4+ 1)z (we are assuming z < a and y < b). Since E C D",
C; is a subcode of C. Hence it is sufficient to prove that 62L has minimum distance > y + 2
(case y # x) or > y+1 (case x = y). Apply Lemma 3.7 with Z = S, #(S5) = min{y, z—1},
i.e. use Proposition3.8 for the integers (z — 1,y) and the scheme () instead of E.

Now assume D” € |Og(0,1)|. Hence x = y. We repeat the proof of the case D" €
|O¢(1,0)| taking C(By, Oc(z,y — 1)) instead of Cy. This completes the proof.

4. On an elliptic quadric surface

Let U C P2 be a smooth and elliptic quadric surface. Hence Pic(U)(K) = Z, Oy(1) is a
generator of Pic(U)(K) and every curve on U defined over K is the complete intersection

of U with a surface of P? defined over K.

Proof of Theorem 1.3. The curve C' is the complete intersection of U and a surface of

degree a. Hence it is a complete intersection. Hence the restriction map H°(P3, Ops(z)) —
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H°(C,Oc¢(z)) is surjective. Hence the restriction map H°(U, Oy(x)) — H°(C, Oc(x)) is
surjective. Since h!'(U,Oy(z — a)) = 0 (Remark 3.1) we get h°(C, Oc(z)) = (z + 1)? if
z < aand h°(C,Oc(z)) = (x+1)*— (z —a+1)? if x > a. Since deg(F) < x+ 1, Lemma
3.7 gives h°(C, O¢(x)) — deg(FE). Since #(B) > ax — deg(E) = deg(Oc(z)(—FE)), we have
h%(C,Oc(z)(—FE — B)) = 0. Hence C is an [n, k]-code. Fix a set S C B which is the
support of a codeword of C* with minimal weight. Lemma 2.1 gives h'(P3?, Zp,s(z)) > 0
and W' (P?, Zg e (z)) = 0 for any S” C S. Hence h' (U, Zgus(x)) > 0 and h' (U, Zp s (z)) =
0 for any S" C S.

Let K4 be the quadratic extension of K. The surface U is defined over K7, but over Ky
the degree 2 surface Uk, is a hyperbolic quadric, (). We apply Lemma 3.7 with = = y.
We get the existence either of D € |Og(1,0)| such that deg((SUE)N D) > z+ 2 or
the existence of D' € |Og(1,0)| such that deg(D’' N (B U E)) > x + 2 or the existence of
A € |0g(1,1)] such that deg((SUE)NA) > 2z +2; the curves D (or D’ or A) are defined
over K.

We claim that neither D nor D’ may exist. To prove this claim we first assume deg(FE) <
x. Since 42 > 2+deg(FE), there would be P, P" € SND (or P, P' € SND’) with P # P'.
Each point of S is defined over K and hence the line D (or D’) spanned by P and P’ would
be a line of U defined over K. Since EUS is contained in D (or D) and z+2 > 2, Bezout
theorem implies that U is contained in the quadric surface U, contradicting the assumption
that U is an elliptic quadric surface. Now assume deg(F) = = + 1. Since deg(E) > 2, D
or D' is spanned by E. Hence D is defined over K. Again, Bezout theorem gives that U
contains a line, absurd. Hence our claim is true. Hence there is A € |Og(1,1)| such that
deg((SUE)NA) > 2x + 2. Hence §(S) > #(SNA) > 2z — 2 —deg(E).

Now assume that C* has minimum weight 2z + 2 — deg(F). Since h'(U,Zgus/(z)) =0
for any S C 5, Lemma 3.5 gives S C A and §(S) = 2z + 2 — deg(E). Assume for the
moment £ U S C Ay with A; € |Og(1,1)], A; defined over any extension of K, and
Ay # A. Since Og(1,1) - Og(1,1) =2 > deg(E U S), we get that A and A; are reducible
and with a common irreducible component, M. Write A = MUM' and A, = MUM” with
M" # M’ and, say, M of type (1,0). Since AN A; = M and §(S) > 22+ 2 —deg(E) > 2,
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M contains at least two points of S. Since each point of S is defined over K, the line M
must be defined over K. Since S C U(K) and U contains no line, we get a contradiction.
Hence A is the unique element of |Og(1,1)| containing SU E. Since SU E is defined over
K, A is defined over K. Since £(S) > 2 and U contains no line defined over K, as above
we get that A is geometrically irreducible. Hence A is a smooth hyperplane section of U

defined over K. This completes the proof.
5. On a quadric cone

Let T C P? be a quadric cone defined over K and O € T(K) its vertex. We will look at
integral curves Y C T defined over K and to their normalizations, C. Set ¢ := |deg(Y)/2].
In the statement of Theorem 1.4 we take Y smooth and a = c¢. We assume that Y is not a
line, i.e. we assume a > 0. We will always assume that either O ¢ Y or that Y is smooth
at O. We use the following classical fact: if O ¢ Y, then deg(Y') is even and Y is the
complete intersection of 7" and a surface of degree deg(Y")/2, while if O is a smooth point
of Y, then deg(Y) is odd and Y has very strong cohomological properties (see Lemmas
5.3, 5.4 and 5.5). An excellent source for the geometry of 7" is [4], V.2.11.4 and Ex. V.2.9.
Unfortunately, in the case in which Y is singular we cannot quote [4], Ex. V.2.9, but need
to use the following set-up implicit in its proof.

Let a : P2 — P? be the blowing-up of O. Since O € P3(K), P® and « are defined over
K. Let Ty C P? be the closure of a~}(T'\ {O}) in P®. Set u := a|Ts. T is a geometrically
integral smooth surface defined over K and u is defined over K. Set h := a~}(0O). We
have h = P! over K. The surface Tj is isomorphic over K to Hirzebruch surface Fy ([4]
§V.2) and hence it has a ruling 7 : Tp — P! and each fiber of 7 is mapped isomorphically
by u onto one of the lines of T. We call f any fiber of 7 seen as an effective divisor of T5.
The morphism 7|h : h — P! is an isomorphism, i.e. h intersects transversally each fiber
of 7 at exactly one point. We have Pic(Ty) = Z?, h and f are free generators of Pic(T3).
We have f2 =0, h- f =1 and h? = —2 (in the set-up of [4], §V.2 , we have e = 2 and
H =h+2f). Let Y C T be any geometrically integral curve defined over K. Let Y’ be

the closure of u='(Y \ {O}) inside T;. Y’ is a geometrically integral curve defined over
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K and ulY’: Y’ — Y is a birational morphism, which is an isomorphism, except perhaps
at the points of YN h. If O ¢ Y, then hNY = 0 and hence Y’ 2 Y over K. If O is a
smooth point of Y, then a|Y” is an isomorphism. Hence our standing assumptions imply
Y’ 2 Y. In particular if Y is smooth, then Y’ =Y over K. We recall that the morphism
w is induced by the complete linear system |Or, (h+2f)|, that u send isomorphically 75\ h
onto T'\ {O}. Let a,b be the only integers such that Y’ € |Or,(ah + bf)|.

Remark 5.1. Since T is a surface of P3, for each integer t the restriction map p; :
HO(P?, Ops(t)) — H(T, Or(t)) is surjective. Since Ker(p;) = H°(P?, Ops(t — 2)), we get
W(T,0r(t)) = ("5%) — ("5') for all t € N.

Remark 5.2. Fix integers y > 0 and = > 2y. We have h'(Ty, Or,(yh + wf)) = 0 if and
only if w > 2y—1 ([4], Lemma V.2.4, and the cohomology of line bundles on P! as in [4], p.
380). We recall the existence of an integral A € |Or,(yh+zf)| ([4], Corollary V.2.18) and
that h°(Ty, Or,(yh+xf) = >V (x —2i+1) = ([4], Lemma V.2.4). In particular we have
hO(Ty, Oy (yh+ (2y) f)) = (y+1)?%, i.e. every section of Or,(yh+ (2y)f) is the pull-back of
a section of Or,(y). For all (z,y) € N* we have h°(Ty, O, (yh+ 2 f)) = >0 (x + 1 — 20).
In particular we have h®(Ty, Or,(th + 2tf)) = (t + 1)? and h°(Ty, O, (th + (2t + 1) f)) =
(t+1)(t+2) for all t > 0.

Lemma 5.3. IfO ¢ Y, thena=c andb=2c. IfO €Y andY is smooth at O, then
a=candb=2c+ 1.

Proof. Since u*(O7(1)) = Or,(h+2f), we have deg(Y') = Op,(ah+bf)-Op,(h+2f) = b.
The integer Or,(h) - Op,(ah 4+ bf) = b — 2a measures the multiplicity of Y at O. Hence
this integer is 0 if O ¢ Y, while it is 1 if O is a smooth point of Y. Hence a = ¢ and
b=2cif O ¢ T, while a =cand b=2c+ 1if O is a smooth point of Y. This completes
the proof.

Lemma 5.4. Assume O ¢ Y. Then deg(Y') = 2¢ is even, Y' =Y, Y is the complete
intersection of T and a surface of degree ¢, Y' € |Orp,(ch+2cf)|, po(Y) = pa(Y'). For each
integert such that 1 <t < ¢ we have h°(Y, Oy (t)) = (t4+1)? and h* (Y, Oy (t)) = (c—1—1)2.
For each integer t > ¢ we have h°(Y, Oy (t)) = (t+1)> — (t —c+1)? and h* (Y, Oy (t)) = 0.
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Proof. Lemma 5.3 gives deg(Y) = 2¢ and Y’ = Y. This isomorphism sends Oy (t)
isomorphically onto Oy (th+ (2t)f). Remark 5.2 gives that Y is the complete intersection
of T, and a degree ¢ surface. The cohomological properties of complete intersection
curves (even the non-smooth ones. We have wy = Oy(c —2). Hence h'(Y,Oy(t)) =
R*(Y,O0y(c—2—1)) for all i € {0,1} and ¢ € Z by duality. Since h' (T, Or(z)) = 0 for

all x € Z, the exact sequence of sheaves on T

(3) 0— Or(t—c) = Or(t) = Oy(t) = 0

gives hO(Y, Oy (t)) = 0 if t < 0, hO(Y, Oy (t)) = (t +1)?if 0 < ¢t < c and h°(Y, Oy (t)) =
(t+1)2 — (t +1 — ¢)* for all t > c. This completes the proof.

Lemma 5.5. Assume O € Y and Y smooth at O. Then deg(Y) = 2c + 1, po(Y') =
p(Y) = % —c and Y is arithmetically Cohen-Macaulay. Take any line L C T. Then
Y U L is the complete intersection of T and a surface of degree (c + 1)/2. We have
Y' € |Op,(ch + (2¢+ 1)f)|. Since wr, = Orn,(—2h — 4f), the adjunction formula gives
wyr =2 Oy ((c—2)h+(2¢—3f)). Hence 2p,(Y')—2 = deg(wy') = (ch+(2¢c+1)f)-((c—2)h+
(2¢=3)f)) = —2¢(c—2)+(2¢+1)(c—2)+c(2¢—3) = 2 —2c¢—2. Hence p,(Y) = p(Y') =
—c. If0 <t <ec, then R°(Y,Oy(t)). If 0 < t < ¢, then h°(Y', Oy (th+2tf)) = (t+1)2.
Ift > c, then h°(Y', Oy:(th +2tf)) = (t+1)> = (t —c)(t —c+ 1).

Proof. We have Y’ € |Or,(ch + (2¢+ 1) f)|. Since wr, = Op,(—2h —4f), the adjunction
formula gives wys = Oy ((c —2)h+ (2¢ —3f)). Hence 2p,(Y') — 2 = deg(wy') = Or,(ch+
(2c+1)f)-Op ((c—=2)h+(2¢=3)f)) = —2¢(c—2)+ (2c+1)(c—2) +¢(2¢—3) = 22 —2¢—2.
Hence p,(Y) = p,(Y') = ¢ —c. Take F € |f| such that u(F) = L. We have Y'U(FUh) €
|Or, ((c+1)h+(2¢+2) f)|. Since u* : H(T, Or((c+1))) — H(Ty, Or,((c+1)h+(2¢+2) f))
is an isomorphism (case u = ¢ + 1 of Remark 5.2) we get that Y U L is a complete
intersection of 7' and a degree ¢ + 1 surface. Recall that a curve (even not integral)
D C P3 is said to be arithmetically Cohen-Macaulay if for all integers ¢ > 0 the restriction
map H°(D,Op(t)) is surjective. Any line is arithmetically Cohen-Macaulay. Since L is
arithmetically Cohen-Macaulay and the scheme Y’ U L is a complete intersection, Y

is arithmetically Cohen-Macaulay ([3], part (b) of Theorem 21.23, [9], Theorem A.9.1).
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Hence for all integers ¢ > 0 the restriction map H(T, Or(t)) — H°(Y, Oy (t)) is surjective.
Since Y/ 2 Y and u* : HY(T,O7(t)) — H®(Ty, Or,(th + 2tf)) is surjective, we get the
surjectivity of the restriction map H%(Ty, O, (th + 2tf)) — H°(Y', Oy (th + 2tf)). Since
Y’ € |Op,(ch+ (2¢+1)f))], for all y, z € Z we have an exact sequence

0= On((y—c)h+(z—2c—1)f) = Op(yh +zf) = Oy (yh + zf) —

Hence h°(Y", Oy (th+2tf)) = h%(Ty, O, (th+2tf)) — hY(Ty, Or,((t —¢) f+ (t —2c— 1) f))
for all t. If ¢ < 0, then we get h°(Y',Oy/(th + 2tf)) = 0. If 0 < t < ¢, then we get
WY, Oy (th + 2tf)) = (t +1)2. Now assume ¢ > ¢. Since Og,(h) - Op ((t — ¢) f + (t —
2c—1)) = =2(t—c¢)+t—2c—1= -1 <0, his in the base locus of the linear system
|01, ((t —c)h+ (t—2c—1) f)|. Hence h(Ty, Op,((t—c)f+(t—2c—1)f)) = h(T, Op, ((t —
c—1)f+(t—2c—1)f)). Hence h°(Y', Oy (th+2tf)) = (t +1)> — (t —¢)(t —c+ 1) for

all £ > ¢. This complete the proof.

Proof of Theorem 1.4. Since C' is arithmetically Cohen-Macaulay (Lemma 5.5), we
have h'(P?,Zc(y)) = 0. We computed the integer h°(C, Oc(y)) in lemmas ?? and ?7.
Since deg(E) < y + 1, we have h'(P3 Zg(y)) = 0 ([1], Lemma 34). Hence E gives
deg(F) independent conditions to H°(P3, Ops(y)). Since E C C C P3, E imposes deg(E)
independent conditions to h°(C, O¢(y)). Hence in all cases we have h°(C, Oc(y)(—E)) =
hO(C, Oc(y)) —deg(E). Since #(B) > deg(C)-y—deg(E) = deg(Oc(y)(—F)), no non-zero
section of O¢(y)(—F) vanishes at all points of B. Hence C is an [n, k| code. Assume that
C+ and take a codeword w of C*+ with minimal weight. Let S be the support of w. Since C*
is linear and w has minimum weight, all non-zero codewords of C* with support contained
in S are of the form Aw for some A € K \ {0}. Lemma 2.1 gives h'(P3, Zg s(y)) > 0.
Since deg(E U S) < 2y + 1, there is a line L C P? such that deg(LN(EUS)) > y + 2.
Since EUS C C C T and y + 2 > deg(T'), Bezout theorem gives L C T. Hence L € S.
Fix any J € § and take S C BN J such that deg((EUS)NJ) =y + 2. Lemma 2.1 gives
the existence of a non-zero codeword v of C*+ whose support is contained in S. Fix any
S" C S. Since deg((FUS)NJ) =y +2 > deg(F), we have deg((EU S )NJ) <y+ 1.
Hence h'(P?, Z pushny (y)) = 0.
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Claim: h'(P3, Zgus (y)) = 0.

Proof of the Claim: Assume h'(P3 Zp,s(y)) > 0. Let H C P3 be any plane con-
taining J. Since S” C J C H is a finite set, we have Resy(E U S’) = Resy(F) C E.
Since deg(Resy(E) < deg(F) < y, we have hl(]P>3,IReSH(E)(y — 1)) = 0. Hence (2) gives
h'(H,Zgnpus),u(y)) > 0. See J as an effective divisor of H and set E’ := Res;(H N E).

Since S’ C J, the exact sequence (2) gives the following exact sequence on H = P

(4) 0—=Zp(y—1) = Zipus,u(y) = Leusynss(y) = 0

Since deg(E’) < deg(E) < y, we have W' (H,Zp/(y — 1)) = 0 ([1], Lemma 34). Since
J =PIl and deg((EUS")NJ) < y+ 1, we have h'(J, Z(pusnnss(y)) = 0. Hence (4) gives
h'(H,Zgnpus),u(y)) = 0, absurd. The contradiction proves the Claim.

By the Claim and Lemma 2.1 S’ is not the support of a non-zero codeword of C*.

Hence S is the support of v. This completes the proof.
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