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Abstract: The distinct qualitative behavior exhibited by neuron at externally applied current stimuli is well known 

in the Hodgkin-Huxley model (HH model). The resting state and periodic firings in neuron correspond to solutions 

of the HH model having stable fixed points and unstable fixed point (periodic solutions through Hopf bifurcation 

points). The one-parameter bifurcation with respect to externally applied current stimuli suggests a periodic window 

between two stable fixed point solutions in the HH model. The externally applied sinusoidal current stimuli generate 

periodic firings at very low current and a large periodic region is observed. The generations of limit cycles and 

possible chaotic behavior in the HH model is explored through numerical simulations extensively. 
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1. INTRODUCTION 

The network of neurons in the brain is very complex and study about its dynamics is also very 

complicated. A human brain consists of approximately 1011 neurons [1]. The neuron is like a 

signal converter since it receives stimulus via dendrites at the synapse and transmits through the 

axon to other neurons [2]. This process continues as the firing of the action potential. A sufficient 

input is required for firing of action potential because below that threshold values no firing of the 

action potential is possible [3]. This period of no action potential is called the refractory period 

[2,4]. 

The cell membrane has a lipid structure which is completely stable from inside and outside. 

These are ion channels inside the cell which allow the specific type of ions to pass through it. 

When ions pass across the cell membrane, it creates a potential difference between inside and 

outside of the cell membrane. Therefore the cell membrane can behave as a capacitor. The 

behavior of neurons depends on voltage-dependent ionic channels [5]. Hence Hodgkin and 

Huxley proposed a model by an equivalent circuit. 

 

FIGURE 1. An electrical equivalent circuit for cell membrane  

 

According to Ohm’s law, the current through a conductor between two points is directly 

proportional to the voltage across the two points. Using the voltage-clamped method 

Hodgkin-Huxley made the cell membrane isopotential, where the same potential is measured 
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across the cell membrane. For the different ion channels (Na, K and leakage ions), the transverse 

current is given as follows 

( ) , (1)i i m iI g V G where i Na K and L= − =  

Kirchhoff’s current law states that the sum of all currents in a closed system equals to zero. 

       0 (2)J

j

I for j=   

The ionic current for sodium, potassium, and leakage ions are considered at maximum 

corresponding conductance which is given as 

3 ( )Na Na NaI g m h V V= − −
,

4( )K K KI g n V V= − −
, and 

( )L L LI g V V= − −
 

 Hodgkin-Huxley model of a cell membrane is important to model for the study of nonlinear 

dynamics. It is highly nonlinear ODEs [6, 7, 8, 9, 10] and given by system four differential 

equations (system 3) and six voltage-dependent coefficients (system 4) as follows: 
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TABLE 1. Notations of Variables and parameters 

Variable & Parameters Representations     Units 

    Membrane potential V  mV  

Potential for sodium (Na) NaV  mV  

Potential for potassium (K) KV  mV  

Potential for leakage current LV  mV  

Membrane capacitance C  2/F cm  

External Applied Current I  2/A cm  

Sodium activation m  - 

Potassium activation n  - 

Sodium inactivation h  - 

Rate constants 
hmn and ,  - 

Rate constants 
hmn and  ,  

- 

Maximum conductance for 

Sodium ions 

Nag  
2/mS cm  

Maximum conductance for 

Potassium ions 

Kg  
2/mS cm  

Maximum conductance for 

Leakage ions 

Lg  2/mS cm  

 

The system (3) and (4) are so complex that they are mathematically intractable. Hence, extensive 

numerical simulations are carried out by MATLAB, Mathematica and XPPAUT. 
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2. PRELIMINARIES 

If the neuron is at rest then there is no transmission of information within or in between neurons. In 

the following subsections we describe the voltage time series and the effects of external stimuli 

when it is constant and when it is periodic specifically sinusoidal:  

No Stimulus to neuron 

  

(a) (b) 

FIGURE 2. Responses of membrane potential (left) and gated variable (right) without an external current (I=0 

µA/cm2) 

The equilibrium state is followed by a single spike when there is no external stimulus given to 

neurons (Fig. 2).  Since the system is very complex so at all initial conditions, it always gives a 

single spike. In this manuscript we are analyzing the effect of external current, so firstly constant 

external current is applied to the system (3) and behavior has been observed. 

Constant Stimulus 

 

(a) (b) 

FIGURE 3: Responses of membrane potential (left) and gated variable (right) with a constant external current value, 

I=5 µA/cm2 
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As the external current is increased to some positive value (say 5 µA/cm2) then it has been 

observed that new disturbance in voltage is arising with very low amplitude. But immediately it 

goes back to the equilibrium state (Fig. 3). 

 

(a) (b) 

FIGURE 4: Responses of membrane potential (left) and gated variable (right) with a constant external current value, 

I=8.8 µA/cm2 

 

When the external current is increased to value I=8.8 µA/cm2, then it has been found that 

smooth oscillations occur but it disappears after 150 milliseconds (Fig. 4).  

 

For the external current values, I=50 µA/cm2, continuous oscillation with high spike has been 

observed for membrane potential and gating variables (Fig. 5). For sodium activation gated 

variable (m), spikes are very high as compared to potassium activation gated variable (n) and 

sodium inactivation gated variable (h). 

 

(a) (b) 

FIGURE 5: Responses of membrane potential (left) and gated variable (right) with a constant external current value, 

I=50 µA/cm2 
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But as the external current is increased up to I=100 µA/cm2, the amplitude of spikes decreased 

as compared to initial spike but the oscillations go on and not disappear in the case of membrane 

potential (Fig.6). But for the gated variables, the amplitude of spike decreases very little as 

compared to membrane potential (Fig. 6). 

 

(a) (b) 

 

FIGURE 6: Responses of membrane potential (left) and gated variable (right) with a constant external current value, 

I=100 µA/cm2 

 

However, when the external current is increased to the value I=160 µA/cm2 then it has been 

observed that after a single spike again oscillations disappear within 100 millisecond time period 

for both membrane potential and gated variables (Fig. 7). 

 

(a) (b) 

 

FIGURE 7: Responses of membrane potential (left) and gated variable (right) with a constant external current value, 

I=160 µA/cm2 
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Therefore, it has been observed that for constant external current neurons behave in two ways 

such as stable and oscillatory in the case of constant stimulation. Now for better understanding, we 

have explored the behavior of neurons for varying external current that is when the external current 

becomes a function of time. 

Sinusoidal Stimulus 

Now, an external current is being varied by a sine function with period 2  that is sinI a t=  and 

sin 2I a t= with period 1 (Fig. 8). 

 

(a) (b) 

FIGURE 8: Graph of external current with respect to time sinI a t=  (left) and sin 2I a t=  (right) 

 

With varying external current, we have analyzed the behavior of the HH model and found that it 

shows chaotic behavior for membrane potential with high spikes (Fig. 9(a)). In case of gating 

variables, the behavior is also chaotic but spikes of sodium activation (m) are high as compared to 

sodium inactivation (h) and potassium activation (n) for lower amplitude a=5 (Fig. 9(b)). 

 

(a) (b) 

FIGURE 9: Responses of membrane potential (left) and gated variable (right) with a sinusoidal external current, I=5 

sin (t) µA/cm2 
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As we increase the value from 5 to 50, we have found a change in the behavior of the system. It 

shows double periodic in both the case of membrane potential and gating variables (Fig. 10). 

 

(a) (b) 

 

FIGURE 10: Responses of membrane potential (left) and gated variable (right) with a sinusoidal external current, 

I=50 sin (t) µA/cm2 

 

For higher values of a system shows continuous oscillations with high spikes in both the cases 

of membrane potential and gating variables with high spikes (Fig. 11). 

 

(a) (b) 

 

FIGURE 11: Responses of membrane potential (left) and gated variable (right) with a sinusoidal external current, 

I=100 sin (t) µA/cm2 
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But for the value, a=150 spikes of membrane potential are low as compared to figure 11, 

although it shows continuous oscillations for both membrane potential and gating variables (Fig. 

12). 

 

(a) (b) 

 

FIGURE 12: Responses of membrane potential (left) and gated variable (right) with a sinusoidal external current, 

I=150 sin (t) µA/cm2 

 

Now we are changing the frequency of sinusoidal current as sin(2 ).I a t= In this case, we have 

found a continuous periodic solution for both membrane potential and gating variables for lower 

and higher values of a (Fig. 13). We can clearly observe from zoom picture of the behavior of 

membrane potential (Fig. 13(a)) and gating variables (Fig. 14) that the solutions are periodic. 

 

(a) (b) 

 

FIGURE 13: (a) Response of membrane potential with a sinusoidal external current, I=5 sin (2 t) µA/cm2 and (b) 

Responses of gating variables with a sinusoidal external current, I=5 sin (2 t) µA/cm2. 
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FIGURE 14: Magnified picture of figure 13 (responses of gating variables with a sinusoidal external current, I=5 sin 

(2 t) µA/cm2) 

 

Different behavior has been observed for higher values of a. This shows that system (3) exhibits 

continuous periodic solutions for the applied external current given by sin(2 ).I a t=  

 

         

(a) (b) 

FIGURE 15: (a) Response of membrane potential with a sinusoidal external current, I=120 sin (2 t) µA/cm2and (b) 

Responses of gating variables with a sinusoidal external current, I=120 sin (2 t) µA/cm2. 
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3. MAIN RESULTS 

It has been observed in the above section with the help of time series analysis that model 

behaves differently for different values of externally applied current. Bifurcation will occur at 

equilibrium points of the system when the externally applied current is injected into the neurons 

[10]. Since the system is very complex so we will study the model analytically for external current

0I = . Stability of models can be analyzed easily with the help of equilibrium points.  Let 

1 1, 1 1( , , )E v m h n=  be the equilibrium point of the model (1) which obtained by equating right-hand 

sides of the system (1) equal to zero. 

 Now we have Jacobian matrix after linearization of the system (1) as [11]:  

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

(5)

f f f f

f f f f
J

f f f f

f f f f

 
 
 =
 
 
 

 

Where,   

3 4

11
Na K Lg m h g n g

f
C

+ +
= −  

2

12

3 ( )Na Nag m h V V
f

C

−
= −

 

3

13

( )Na Nag m V V
f

C

−
= −

 

3

14

4 ( )K Kg n V V
f

C

−
= −

21

2

(2mexp(- v/18 - 65/18))/9 + (m - 1)/(10(exp(- v - 40)/10 - 1)) + (6)

 (exp(- v - 40)(v/10 + 4)(m - 1))/(10(exp(- v - 40)/10 - 1) )

f =
 

22 (v/10 + 4)/(exp(- v - 40)/10 - 1) - 4exp(- v/18 - 65/18)f =
 

23 0f =
, 24 0f =

 

 31 (7exp(- v/20 - 13/4)(h - 1))/2000 - (hexp(- v - 35))/(10(exp(- v - 35)/10 + 1)^2)f =
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 32 0f =
 

33 - (7exp(- v/20 - 13/4))/100 - 1/(exp(- v - 35)/10 + 1)f =
 

34 0f =
 

41

2

(3n exp(- v/80 - 13/16))/2000 + (n - 1)/(100(exp(- v - 55)/10 - 1)) +

 (exp(- v - 55) (v/100 + 11/20)(n - 1))/(10(exp(- v - 55)/10 - 1) )

f =

 

42 0f =
, 43 0f =

  

44 (v/100 + 11/20)/(exp(- v - 55)/10 - 1) - (3exp(- v/80 - 13/16))/25f =
 

 

And the characteristic equation of matrix J with is given as: 

                                                    

4

1 2 3 4 0 (7)a a a a   + + + + =  

1 11 22 33 44

,

( )

where

a f f f f= − + + +

 
2 11 22 33 44 22 33 44 33 44 12 21 13 31 14 41( ) ( ) (8)a f f f f f f f f f f f f f f f= + + + + + − − −  

3 12 21 33 44 13 31 22 44 14 41 22 33

11 22 33 44 11 22 33 44

( ) ( ) ( )

( ) ( )

a f f f f f f f f f f f f

f f f f f f f f

= + + + + +

− + − +  

4 11 22 33 44 12 21 33 44 13 22 31 44 14 22 33 41a f f f f f f f f f f f f f f f f= − − −
 

 

According to Rourth-Hurwitz Criterion, roots of equation (7) have negative real roots, if 

 
2 2

1 1 2 4 1 2 3 3 1 40, , 0a a a c a and a a a a a a    +
.  

Otherwise, roots have non-negative real parts. 

By putting all the values fixed we may have E= (-54.4, 8.6800e-11, 1, 3.7836-04) 
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-0.3789 0.0000 0.0000 -610.8728

0.0000  -2.2198 0 0
(9)

 -0.0000 0  -0.0412 0

0.0121 0 0 -0.1115

A

 
 
 =
 
 
 

 

 

The characteristic polynomial of matrix A is given by 

                          
4 3 2 2.7514  8.6341 16.8527 0.6799=0 (10)   + + + +  

1 2 3 4, 2.7514, 8.6341, 16.8527, 0.6799where a a a a= = = =
 

 

According to Routh- Hurwitz Criterion, since 

                         

1

1 2

4

2 2

1 2 3

2.7514 0

23.7557 ( 16.8527) (11)

0.6799 0

400.3483 ( 289.1602)

a

a a c

a

a a a c a d

= 

=  =

= 

=  + =

 

Therefore, roots of polynomial equation (10) have negative real parts. Also from matrix A, we 

have eigenvalues with negative real parts: 

1 2

3 4

-0.2452 + 2.7155i,   -0.2452 - 2.7155i

-2.2198 + 0.0000i, -0.0412 + 0.0000i

 

 

= =

= =
 

Bifurcation Analysis 

We have observed the behavior of the HH model on the dependence of externally applied 

current. The action potential is produced by neurons when the external current is applied 

continuously. The behavior of the HH model can be observed in two ways for the lower value of 

current and for higher values of current. So here the region in figure 16 is divided into three parts 

(Region 1, Region 2 and Region 3) to make a clear understanding. Regions for the current values 

less than I1 (I=7.9 µA/cm2), I1< I < I2 and for greater than I2 (I=154.5 µA/cm2) are represented by 

Region 1, Region 2 and Region 3 respectively. For I>9.7 µA/cm2 system shows an equilibrium 

point and a stable limit cycle in region 2, which disappears at I2 (I=154.5 µA/cm2) after a Hopf 

bifurcation HB2. Region 3 shows stable equilibrium point higher values of currents. At HB1 

sub-critical Hopf bifurcation emanates unstable limit cycle whereas at HB1 super-critical Hopf 
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bifurcation emanates stable limit cycles (Fig. 17). It can be observed clearly from region 1, that 

multistability occurs around HB1. Saddle-node bifurcation occurs at DC1 and DC2 and also it 

generates a pair of the stable and unstable limit cycle at DC3 (Fig. 17). As the external applied 

current increases, the amplitude of stable limit cycles decrease and abort at I2. 

 

FIGURE 16: Stable (green filled circles) and unstable (blue vacant circles) branches of periodic solution of the HH 

model showing different dynamical behavior 

 

Coexisting of periodic solutions has occurred at I=9.7 µA/cm2 in which one is stable and the 

other three are unstable periodic solutions in region 1. Period-doubling bifurcations occurred at 

PD1 and PD2 (Fig. 17(b)). Region 1 shows interesting and complex behaviors of dynamics. Firstly 

neuron is at resting state but as the external current is applied to it then it fires an action potential. 

Stable and periodic solutions correspond to the resting and firing state of neurons (Fig. 17).  

               

(a) (b) 

FIGURE 17: (a) Magnification of the figure in Fig. 16 and (b) Magnification of (a) 
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Now we have analyzed the influence of resting potential of Na on equilibrium points and 

bifurcation of the model. It has been observed that membrane potential slowly changes with 

respect to Na potential. The system goes under subcritical-Hopf bifurcation at HB1 (VNa=136.4). 

Figure 18 gives the relation between V and VNa in which for VNa<136.4 systems gives a stable 

solution and for VNa >136.4 system gives an unstable solution. 

 

             

(a) (b) 

FIGURE 18: (a) The relation between membrane potential and parameter 
NaV  and (b) Magnification of (a) 

 

Figure 19 gives the relation between V and gNa, and how gNa influences the dynamics of the 

system. Figure 19(a) shows that V changes slowly for [0,350]Nag   and rapidly for
 

[350,800]Nag  . 

Subcritical-Hopf bifurcation has been observed at HB1. The system shows stable behavior for 

gNa<212.6 and unstable behavior for gNa>212.6 [11].
 

             

(a) (b) 

FIGURE 19: (a) The relation between membrane potential and parameter 
Nag  and (b) Magnification of (a) 
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Figure 20 gives the relation between V and VK, and how VK influences the dynamics of the 

system. Figure 20(a) shows that V changes rapidly with respect to VK. . There are two 

Hopf-bifurcation points, HB1 (sub-critical) and HB2 (supercritical). The system shows stable 

behavior for VK <-66.89 and VK >-50.32 whereas unstable behavior for -66.89< VK <-50.32 

            

(a) (b) 

FIGURE 20: (a) The relation between membrane potential and parameter KV  and (b) Magnification of (a) 

 

Figure 21 gives the relation between V and gK, and how gK influences the dynamics of the 

system. Figure 21(a) shows that V decreases rapidly with respect to VK. There are two 

Hopf-bifurcation points, HB1 and HB2; both are sub-critical Hopf bifurcation points. The system 

shows stable behavior for gK <3.844 and gK > 19.76 whereas unstable behavior for 3.844< gK 

<19.76 dynamics of the system [11] is very different in Fig. 21. 

                  

(a) (b) 

FIGURE 21: (a) The relation between membrane potential and parameter 
Kg  and (b) Magnification of (a) 
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We have tried to analyze the effect externally applied current on neuron response. Resting-state 

of the neurons corresponds to the stability of the system. When a small pulse of externally applied 

current is applied then small perturbation is observed in membrane potential and gating variables, 

but it goes to resting state again. A larger pulse of externally applied current causes periodic firing 

or spike. The different behavior of externally applied current shows the dynamics of the neurons. 

When constant is applied then the system shows stable behavior for lower and higher values of 

current and periodic behavior for intermediate values. But when externally applied current is of the 

sinusoidal form then we have observed that continuous firing is observed. Chaotic behavior is 

observed for lower amplitude and periodic behavior for higher amplitude. We have also observed 

synchronization in case of sinusoidal impulse. 
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