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Abstract: The distinct qualitative behavior exhibited by neuron at externally applied current stimuli is well known
in the Hodgkin-Huxley model (HH model). The resting state and periodic firings in neuron correspond to solutions
of the HH model having stable fixed points and unstable fixed point (periodic solutions through Hopf bifurcation
points). The one-parameter bifurcation with respect to externally applied current stimuli suggests a periodic window
between two stable fixed point solutions in the HH model. The externally applied sinusoidal current stimuli generate
periodic firings at very low current and a large periodic region is observed. The generations of limit cycles and
possible chaotic behavior in the HH model is explored through numerical simulations extensively.
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1. INTRODUCTION

The network of neurons in the brain is very complex and study about its dynamics is also very
complicated. A human brain consists of approximately 10! neurons [1]. The neuron is like a
signal converter since it receives stimulus via dendrites at the synapse and transmits through the
axon to other neurons [2]. This process continues as the firing of the action potential. A sufficient
input is required for firing of action potential because below that threshold values no firing of the
action potential is possible [3]. This period of no action potential is called the refractory period
[2,4].

The cell membrane has a lipid structure which is completely stable from inside and outside.
These are ion channels inside the cell which allow the specific type of ions to pass through it.
When ions pass across the cell membrane, it creates a potential difference between inside and
outside of the cell membrane. Therefore the cell membrane can behave as a capacitor. The

behavior of neurons depends on voltage-dependent ionic channels [5]. Hence Hodgkin and
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FIGURE 1. An electrical equivalent circuit for cell membrane

According to Ohm’s law, the current through a conductor between two points is directly
proportional to the voltage across the two points. Using the voltage-clamped method

Hodgkin-Huxley made the cell membrane isopotential, where the same potential is measured
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across the cell membrane. For the different ion channels (Na, K and leakage ions), the transverse
current is given as follows
lL=09,(V,-G) where i = Na,Kand L @
Kirchhoff’s current law states that the sum of all currents in a closed system equals to zero.
>1,=0 for jeN (2)
-
The ionic current for sodium, potassium, and leakage ions are considered at maximum
corresponding conductance which is given as
la ==0wM NV ~Vi) T ==0n*(V Vi) gng 1L=-9.(V -V)
Hodgkin-Huxley model of a cell membrane is important to model for the study of nonlinear
dynamics. It is highly nonlinear ODEs [6, 7, 8, 9, 10] and given by system four differential

equations (system 3) and six voltage-dependent coefficients (system 4) as follows:

C(Ij_\t/ - [_gNamsh((V +65) _VNa) - gKn4((V +65) _VK)
~g.((V +65) V) +11/C
&, ()a-0-4,0)x ©

wherex=m,n,h

a, =0.1(25—-(V +65)) / (exp((25— (V +65)) /10) -1)

B, =4exp(—(V +65)/18)

a, =0.07exp(—(V +65)/20) (4)
S, =1/ 1+exp(30—(V +65))/10))

a, =0.01(10—(V +65)) / (exp(10—(V +65))/10) -1)

S, =0.125exp(—(V +65)/80)
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TABLE 1. Notations of Variables and parameters

Variable & Parameters Representations Units
Membrane potential \ mV
Potential for sodium (Na) Via mV
Potential for potassium (K) Vi mV
Potential for leakage current \A mV
Membrane capacitance C uF cm?
External Applied Current I HA/ cm?
Sodium activation m -
Potassium activation n -
Sodium inactivation h -
Rate constants a,,a,anda, -
Rate constants B, B.and f3, -
Maximum conductance for Ona mS / cm?
Sodium ions
Maximum conductance for Ok mS / cm?

Potassium ions
Maximum conductance for g, mS / cm?

Leakage ions

The system (3) and (4) are so complex that they are mathematically intractable. Hence, extensive

numerical simulations are carried out by MATLAB, Mathematica and XPPAUT.
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2. PRELIMINARIES

If the neuron is at rest then there is no transmission of information within or in between neurons. In
the following subsections we describe the voltage time series and the effects of external stimuli
when it is constant and when it is periodic specifically sinusoidal:

No Stimulus to neuron
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FIGURE 2. Responses of membrane potential (left) and gated variable (right) without an external current (1=0
PA/cm?)

The equilibrium state is followed by a single spike when there is no external stimulus given to
neurons (Fig. 2). Since the system is very complex so at all initial conditions, it always gives a
single spike. In this manuscript we are analyzing the effect of external current, so firstly constant
external current is applied to the system (3) and behavior has been observed.

Constant Stimulus
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FIGURE 3: Responses of membrane potential (left) and gated variable (right) with a constant external current value,

I=5 pd/cm?
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As the external current is increased to some positive value (say 5 pA/cm?) then it has been
observed that new disturbance in voltage is arising with very low amplitude. But immediately it
goes back to the equilibrium state (Fig. 3).

Voltage Time Series

20 Solution of Gating Variables
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FIGURE 4: Responses of membrane potential (left) and gated variable (right) with a constant external current value,

1=8.8 p/cm?

When the external current is increased to value 1=8.8 pA/cm?, then it has been found that

smooth oscillations occur but it disappears after 150 milliseconds (Fig. 4).

For the external current values, 1=50 p/cm?, continuous oscillation with high spike has been
observed for membrane potential and gating variables (Fig. 5). For sodium activation gated
variable (m), spikes are very high as compared to potassium activation gated variable (n) and

sodium inactivation gated variable (h).
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FIGURE 5: Responses of membrane potential (left) and gated variable (right) with a constant external current value,

1=50 pa/cm?
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But as the external current is increased up to 1=100 pA/cm?, the amplitude of spikes decreased

as compared to initial spike but the oscillations go on and not disappear in the case of membrane

potential (Fig.6). But for the gated variables, the amplitude of spike decreases very little as

compared to membrane potential (Fig. 6).
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FIGURE 6: Responses of membrane potential (left) and gated variable (right) with a constant external current value,

=100 pA/cm?

However, when the external current is increased to the value 1=160 pA/cm? then it has been

observed that after a single spike again oscillations disappear within 100 millisecond time period

for both membrane potential and gated variables (Fig. 7).
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FIGURE 7: Responses of membrane potential (left) and gated variable (right) with a constant external current value,

=160 pA/cm?
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Therefore, it has been observed that for constant external current neurons behave in two ways
such as stable and oscillatory in the case of constant stimulation. Now for better understanding, we
have explored the behavior of neurons for varying external current that is when the external current
becomes a function of time.

Sinusoidal Stimulus
Now, an external current is being varied by a sine function with period 2 # thatis | =asint and

| =asin 2zt with period 1 (Fig. 8).

‘ I=a sin(t) i Il=a sin(2x t?

External Current
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o
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FIGURE 8: Graph of external current with respect to time | =asint (left) and | =asin2zt (right)

With varying external current, we have analyzed the behavior of the HH model and found that it
shows chaotic behavior for membrane potential with high spikes (Fig. 9(a)). In case of gating
variables, the behavior is also chaotic but spikes of sodium activation (m) are high as compared to

sodium inactivation (h) and potassium activation (n) for lower amplitude a=5 (Fig. 9(b)).
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FIGURE 9: Responses of membrane potential (left) and gated variable (right) with a sinusoidal external current, 1=5

sin (t) pA/cm?
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As we increase the value from 5 to 50, we have found a change in the behavior of the system. It

shows double periodic in both the case of membrane potential and gating variables (Fig. 10).
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FIGURE 10: Responses of membrane potential (left) and gated variable (right) with a sinusoidal external current,

I=50 sin (t) pa/cm?

For higher values of a system shows continuous oscillations with high spikes in both the cases

of membrane potential and gating variables with high spikes (Fig. 11).
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FIGURE 11: Responses of membrane potential (left) and gated variable (right) with a sinusoidal external current,

1=100 sin (t) pa/cm?
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But for the value, a=150 spikes of membrane potential are low as compared to figure 11,
although it shows continuous oscillations for both membrane potential and gating variables (Fig.
12).
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FIGURE 12: Responses of membrane potential (left) and gated variable (right) with a sinusoidal external current,

1=150 sin (t) pa/cm?

Now we are changing the frequency of sinusoidal current as | =asin(2xt).In this case, we have

found a continuous periodic solution for both membrane potential and gating variables for lower
and higher values of a (Fig. 13). We can clearly observe from zoom picture of the behavior of

membrane potential (Fig. 13(a)) and gating variables (Fig. 14) that the solutions are periodic.
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FIGURE 13: (a) Response of membrane potential with a sinusoidal external current, 1=5 sin (2 7 t) pA/cm? and (b)

Responses of gating variables with a sinusoidal external current, 1=5 sin (2 77 t) p&/cm?,
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. Solution of Gating Variables
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FIGURE 14: Magnified picture of figure 13 (responses of gating variables with a sinusoidal external current, 1=5 sin

(2 1) pAlcm?)

Different behavior has been observed for higher values of a. This shows that system (3) exhibits

continuous periodic solutions for the applied external current given by | =asin(2xt).
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FIGURE 15: (a) Response of membrane potential with a sinusoidal external current, 1=120 sin (2 7 t) pd/cm?and (b)

Responses of gating variables with a sinusoidal external current, 1=120 sin (2 77 t) pA/cm?.
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3. MAIN RESULTS

It has been observed in the above section with the help of time series analysis that model
behaves differently for different values of externally applied current. Bifurcation will occur at
equilibrium points of the system when the externally applied current is injected into the neurons
[10]. Since the system is very complex so we will study the model analytically for external current

| =0. Stability of models can be analyzed easily with the help of equilibrium points. Let

E=(v,mh,n) be the equilibrium point of the model (1) which obtained by equating right-hand

sides of the system (1) equal to zero.

Now we have Jacobian matrix after linearization of the system (1) as [11]:

f11 le f13 f14
J= f21 f22 f23 f24 ()
f31 f32 f33 f34
f41 f42 f43 f44
Where,
9naM’h+9,n* +9,
1:11 == C
3gN mzh(\/ _VN )
f,=— 2 2
C
_ gNams(\/ _VNa)
fis =
C
f o=—— 4g|<n3(v _VK)
14
C
f,, = (2mexp(- V/18 - 65/18))/9 + (m - 1)/(10(exp(- v - 40)/10 - 1)) + (6)

(exp(- v - 40)(v/10 + 4)(m - 1))/(10(exp(- v - 40)/10 - 1)?)
f,, = (v/10 + 4)/(exp(- v - 40)/10 - 1) - 4exp(- v/18 - 65/18)
f3=0 =0

fy, = (7exp(- v/20 - 13/4)(h - 1))/2000 - (hexp(- v - 35))/(10(exp(- v - 35)/10 + 1)"2)
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f, =0
fy3 =- (7exp(- v/20 - 13/4))/100 - 1/(exp(- v - 35)/10 + 1)
f,, =0

f,; = (3n exp(- v/80 - 13/16))/2000 + (n - 1)/(100 (exp(- v - 55)/10 - 1)) +
(exp(- v - 55) (v/100 + 11/20) (n - 1))/(10 (exp(- v - 55)/10 - 1)?)

f,, = (v/100 + 11/20)/(exp(- v - 55)/10 - 1) - (3exp(- v/80 - 13/16))/25

And the characteristic equation of matrix J with is given as:

A +al+ad+ad+a, =0 (7)
where,
a =—(fy+fp+ fyg+ 1)
&= f11( f22 + f33 + f44) + f22 ( f33 + f44) + f33 f44 - f12 f21 - f13 f31 - f14 f41 ®)

Ay = f, iy (fog + F) + Fia Foy (T + 1) + T, £, (F + £5)
— o (fog + F) = (fyy + ) f5 fyy

a, = f11 f22 f33 f44 - f12 f21 f33 1t44 - f13 f22 f31 f44 - f14 f22 f33 f41

According to Rourth-Hurwitz Criterion, roots of equation (7) have negative real roots, if
a,>0,aa,>c,a,>0and aa,a, >a’°+a’a,
Otherwise, roots have non-negative real parts.

By putting all the values fixed we may have E= (-54.4, 8.6800e-11, 1, 3.7836-04)
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-0.3789  0.0000  0.0000 -610.8728

0.0000 -2.2198 0 0

A= 9)
-0.0000 0 -0.0412 0
0.0121 0 0 -0.1115

The characteristic polynomial of matrix A is given by

A%+ 27514 2° + 8.63414% +16.8527 1 +0.6799=0 (10)

where, a, =2.7514,a, =8.6341,a, =16.8527,a, = 0.6799

According to Routh- Hurwitz Criterion, since

a, =2.7514>0
a,a, = 23.7557 > ¢ (=16.8527) (11)
a, =0.6799>0

a,a,a, =400.3483 > c¢* +a’d (= 289.1602)
Therefore, roots of polynomial equation (10) have negative real parts. Also from matrix A, we
have eigenvalues with negative real parts:

4, =-0.2452 + 2.7155i, A, = -0.2452 - 2.7155i
2, =-2.2198 + 0.0000i, A, =-0.0412 + 0.0000i

Bifurcation Analysis

We have observed the behavior of the HH model on the dependence of externally applied
current. The action potential is produced by neurons when the external current is applied
continuously. The behavior of the HH model can be observed in two ways for the lower value of
current and for higher values of current. So here the region in figure 16 is divided into three parts
(Region 1, Region 2 and Region 3) to make a clear understanding. Regions for the current values
less than 11 (1=7.9 plA/em?), i< | < I, and for greater than 1> (1=154.5 pd/cm?) are represented by
Region 1, Region 2 and Region 3 respectively. For 1>9.7 pA/cm? system shows an equilibrium
point and a stable limit cycle in region 2, which disappears at I, (1=154.5 p&/cm?) after a Hopf
bifurcation HB2. Region 3 shows stable equilibrium point higher values of currents. At HB1

sub-critical Hopf bifurcation emanates unstable limit cycle whereas at HB1 super-critical Hopf
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bifurcation emanates stable limit cycles (Fig. 17). It can be observed clearly from region 1, that
multistability occurs around HB1. Saddle-node bifurcation occurs at DC1 and DC2 and also it
generates a pair of the stable and unstable limit cycle at DC3 (Fig. 17). As the external applied

current increases, the amplitude of stable limit cycles decrease and abort at I».

v

e |} Region 2
o Stable Limit Cycle Region 3

Unstable Limit Cycle
-20 F

Region 1

HB2
Stable
-a0 }
Unstable | Equilibrium

o0 b Equilibrium Point Point

HB1

0 1120 40 60 80 100 120 140 160 180
1

FIGURE 16: Stable (green filled circles) and unstable (blue vacant circles) branches of periodic solution of the HH

model showing different dynamical behavior

Coexisting of periodic solutions has occurred at 1=9.7 pA/cm? in which one is stable and the
other three are unstable periodic solutions in region 1. Period-doubling bifurcations occurred at
PD1 and PD2 (Fig. 17(b)). Region 1 shows interesting and complex behaviors of dynamics. Firstly
neuron is at resting state but as the external current is applied to it then it fires an action potential.

Stable and periodic solutions correspond to the resting and firing state of neurons (Fig. 17).
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FIGURE 17: (a) Magnification of the figure in Fig. 16 and (b) Magnification of (a)
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Now we have analyzed the influence of resting potential of Na on equilibrium points and

bifurcation of the model. It has been observed that membrane potential slowly changes with

respect to Na potential. The system goes under subcritical-Hopf bifurcation at HB1 (Vna=136.4).

Figure 18 gives the relation between V and Vna in which for Vna<136.4 systems gives a stable

solution and for Vna >136.4 system gives an unstable solution.
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FIGURE 18: (a) The relation between membrane potential and parameter v, and (b) Magnification of (a)

Figure 19 gives the relation between V and gna, and how gna influences the dynamics of the

system. Figure 19(a) shows that V changes slowly for ¢ <[0,350] and rapidly for ¢ [350,800]

Subcritical-Hopf bifurcation has been observed at HB1. The system shows stable behavior for

gna<212.6 and unstable behavior for gna>212.6 [11].
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FIGURE 19: (a) The relation between membrane potential and parameter g, and (b) Magnification of (a)



723

PERIODIC FIRINGS IN NEURONS WITH EXTERNAL SINUSOIDAL APPLIED CURRENT

Figure 20 gives the relation between V and Vi, and how Vi influences the dynamics of the
system. Figure 20(a) shows that V changes rapidly with respect to Vk. . There are two
Hopf-bifurcation points, HB1 (sub-critical) and HB2 (supercritical). The system shows stable
behavior for Vk <-66.89 and Vk >-50.32 whereas unstable behavior for -66.89< Vk <-50.32

v
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Untable Equilibrium Point

Stable Equilibrium

Cycle
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Equilibrium Points

-80 =70 -60 =50 -;?( =30 -20 =10 [ -68 -7 -66 -85 -84
(a) (b)

FIGURE 20: (a) The relation between membrane potential and parameter VK and (b) Magpnification of (a)

Figure 21 gives the relation between V and gk, and how gk influences the dynamics of the
system. Figure 21(a) shows that V decreases rapidly with respect to Vk. There are two
Hopf-bifurcation points, HB1 and HB2; both are sub-critical Hopf bifurcation points. The system
shows stable behavior for gk <3.844 and gk > 19.76 whereas unstable behavior for 3.844< gk

<19.76 dynamics of the system [11] is very different in Fig. 21.
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FIGURE 21: (a) The relation between membrane potential and parameter g, and (b) Magnification of (a)
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We have tried to analyze the effect externally applied current on neuron response. Resting-state
of the neurons corresponds to the stability of the system. When a small pulse of externally applied
current is applied then small perturbation is observed in membrane potential and gating variables,
but it goes to resting state again. A larger pulse of externally applied current causes periodic firing
or spike. The different behavior of externally applied current shows the dynamics of the neurons.
When constant is applied then the system shows stable behavior for lower and higher values of
current and periodic behavior for intermediate values. But when externally applied current is of the
sinusoidal form then we have observed that continuous firing is observed. Chaotic behavior is
observed for lower amplitude and periodic behavior for higher amplitude. We have also observed

synchronization in case of sinusoidal impulse.
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