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Abstract: The present work brings into focus the numerical solution of unsteady two dimensional decelerating 

laminar boundary layer flow and heat transfer of an incompressible fluid above a moving wedge in the existence of 

variable viscosity. Suitable transformation is used to form a system of coupled nonlinear partial differential 

equations for governing both the flow and heat transfer. These equations have been solved numerically by using an 

implicit finite difference method in combination with quasilinearization strategy. The obtained numerical results 

have been presented graphically in terms of local nusselt number, skin friction, temperature distribution, and 

velocity distribution for different values of variable viscosity parameter ( ) along with Prandtl number (Pr). The 

boundary layer isolates itself from its surface, past which the dual results exist up to a critical value of an unsteady 

parameter (  ). 
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1. INTRODUCTION 

The boundary layer theory is important in many fields of engineering and real world setbacks. 

The main application of this theory is all about measuring the skin friction drag. Its main focus is 

on the way the friction drag acts on a body while it is moving through a fluid, for instance the 

flow over an airplane wing or past an entire ship. This led to Falkner-Skan [1] developing a 

model known as wedge flow based on the Prandtl boundary layer theory. Following it, a great 

deal of work has been done over the most recent couple of years by many investigators [2-13] on 

the Falkner-Skan problem which is considered a classic. It is carried out by employing various 

numerical and analytical methods for various types of flow including heat transfer conditions. 

Of the previously mentioned investigations, the properties of the fluids were assumed to be 

constant. In many technical applications in the field of engineering, however, this assumption 

cannot be conformed to. Assumption of variable viscosity becomes necessary in considering 

such problems. It is accepted knowledge that there may be a major change in the physical 

properties of the fluid, whenever the temperature changes. (Take for example the fact that 

viscosity of water is seen to decrease by about 24% whenever the temperature is seen to increase 

from 100 to 500c). 

Herwing & Wickern [14] made the principal endeavor to solve the Falkner-Skan problem by 

having the variable viscosity also taking into account temperature. Hossain et.al [15] chose to 

study the fluid flow having variable viscosity moving past a permeable a uniform surface heat 

flux. Rudrakonta Deka et.al [16] have studied the impact of variable viscosity on flow past a 

porous wedge having suction or injection. Pantokratorns et.al [17] presented the Falkner-Skan 

flow having a variable viscosity and steady wall temperature.  

The effect of unsteadiness is not considered in all the above published works. In the present 

study, the unsteady decelerating flow above a moving wedge having variable viscosity shall be 

analyzed. 
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2. MATHEMATICAL ANALYSIS 

 

Figure 1 Coordinate system and Flow configuration for Falkner-Skan wedge flow, here edge of 

thermal and momentum boundary layers represents as 1 & 2, respectively. 

Figure 1, shows unsteady incompressible laminar boundary layer flow above a moving wedge in 

a two dimensional manner. In this, the measurement of x is taken along the wedge surface with y 

being normal to it. Let ue be the free stream velocity, which introduces the unsteadiness of the 

flow field and this is seen to vary inverselyTwithTtime. The free stream temperature (𝑇∞) is 

lesser than the wall temperature (Tw) which is uniform and constant. With the exception of fluid 

viscosity (𝜇) which is assumed to be an inverse linear functionTof the temperature (T) the fluid is 

accepted to have constant physical properties. 

According to the aforesaid assumption, the unsteady forced convectionTboundaryTlayer flow 

equations over a moving wedge are, 
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In the present study, the viscosity of the form is shown using a semi-empirical formula  
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Which is created by Ling and Dybbs [18] and has been embraced, where 𝛾 is a constant and  

𝜇∞ is the viscosity of the ambient fluid. 
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Substituting the above transformations from equation (1) to (4), we acquire: 
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It can next be seen that, in (6) and (7), the parameter m  is connected with the apex angle   

by the relation )2(  −=m   or .)1(2 += mm  

The transformed boundary conditions are: 
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𝐹 = 1;     𝐺 = 0    𝑎𝑠 𝜂 → ∞                                      (9)                                           

Here, 𝜀 = (𝑇𝑤 − 𝑇∞)𝛾  is named as the variation of viscosity parameter; 𝜓 – dimensional 

stream function and 𝑓 - dimensionless stream function; m - Falkner- SkanTwedge power law 

parameter; F - dimensionless velocity and G - dimensionless temperature of the fluid; 𝜆 - 

unsteady parameter; Pr -  Prandtl number; 𝜂 - similarity variable. Here prime ( ′ ) means 

derivative with respect to η.  

Respectively, Skin friction and heat transfer coefficients as nusselt number, can be 

communicated, as  
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Here the wall shear stress w  is given by 
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3. RESULTS AND DISCUSSIONS 

The coupled nonlinear partial differential Equations (6) and (7) are solved alongside the 

boundary conditions (9) by utilizing an implicit finite difference method. This is agreed out in 

combination with a quasilinearization technique. Since the technique is described in Inouye and 

Tate [20], in the interests of brevity, the description of the same has been omitted here. The 

numerical computations as shown in graphical representations of this paper have been carried out 

for different values of temperature dependent viscosity )0.10(   , unsteady parameter ( )  

and Falkner-Skan parameter (m). To validateT the accuracyTof our numerical technique, we have 
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compared skin friction ( '

wF ) and heat transfer ( '

wG ) parameters with those given by Watanabe [7] 

ranging from 0 ≤ m ≤ 1.0[as shown in Table 1] taking Pr = 0.72 for decelerating flow ( 0 ). 

 

Table 1 Comparison of steady state (𝜆 = 0.0) results for the range of m (0 ≤ 𝑚 ≤ 1.0) when 

𝜀 = 0.0 with those given by Watanabe [7]. 

m '

wF
 

'

wG
 

Watanabe[7] Present Watanabe[7] Present 

0.0 0.46960 0.46961 0.41512 0.41511 

0.014 0.50461 0.50460 0.42051 0.42050 

0.0425 0.56898 0.56899 0.42984 0.42988 

0.0909 0.65498 0.65499 0.44125 0.44124 

0.1429 0.73200 0.73201 0.45042 0.45041 

0.2 0.80213 0.80214 0.45826 0.45827 

0.3333 0.92765 0.92768 0.47083 0.47084 

1.0 1.23258 1.23259 0.49571 0.49570 
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Figure 2 (a) skin friction & (b) heat transfer coefficients for various values of 𝜀. 
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The impact of variable viscosity (𝜀) on skin friction [Cf (ReL)1/2] and heat transfer [Nu(ReL)-1/2]  

coefficients when m = 0.2 (60o), Pr = (0.72) for 𝜆 < 0 (decelerating flow) is as shown  in 

Figure 2. It is noticed that as variable viscosity increases, both [Cf(ReL)1/2] and [Nu(ReL)-1/2]Tare 

seen to increase quantitatively. The percentageTof increase in [Cf (ReL)1/2]  is about 51.65% and 

in [Nu(ReL)-1/2]   is found to be 2.91%  in the range -1.0 ≤ 𝜆 ≤ 0.0. It is intriguing to see 

theTpresenceTofTdual solutionsTfor both [Cf(ReL)1/2]TandT[Nu(ReL)-1/2], in the vary of 

𝜆(𝜆𝑐 < 𝜆 < 0), & there is no result for 𝜆 < 𝜆𝑐 , here 𝜆𝑐 is a critical value of 𝜆. Hence, the 

result exists up to a critical 𝜆 = 𝜆𝑐 < 0, further than, the boundary layer isolates from the 

wedge surface and the result depend on the boundary layer approximation is beyond the realm of 

imagination. Based on our calculation, the estimations of  𝜆𝑐  are −1.05 and  −1.0 , 

correspondingly for [Cf(ReL)1/2]TandT[Nu(ReL)-1/2].  

Figure 3 demonstrates the significant velocity and temperature distributions of the subsequent 

first and second solutions, when  𝜆 = -1.0. The second solution profile confirms the presence of 

dual solutions for decelerated flow. As variable viscosity increases it is unmistakably observed 

that both the thicknesses of thermal and momentum boundary layersTare found to be 

diminishing. Further, these distributions fulfill the far field boundary conditions being an 

asymptote, which bolster the acquired numerical outcomes. It is commented that, the first 

outcomes are steadyTand physicallyTfeasible, where as the second solutions are most certainly 

not. Solutions such as these, though lacking physical significance are however seen to possess 

mathematical significance [19]. 
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Figure 3 (a) Velocity (F) and (b) Temperature (G) distributions for various values of 𝜀. 
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  

Figure 4 (a) skin friction and (b) heat transfer coefficients for various values of Prandtl numbers 

 

Figure 4 displays the variation of [Cf(ReL)1/2]TandT[Nu(ReL)-1/2] for various  values of Prandtl 

number (Pr =0.1, 0.72, 7.0) for various unsteady parameters  <0, corresponding to wedge angle 

m = 0.2 (600) and variable viscosity 𝜀 = 0.5. It is clear that both [Cf (ReL)1/2] and [Nu(ReL)-1/2]    

increase with the expansion of Prandtl number. The level of enhance of skin friction is about 

33.73% and heat transfer is around 86.15% for an increase of   in the range -1.0 ≤ 𝜆 ≤ 0.0.  
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Figure 5. (a) Velocity (F) and (b) Temperature (G) distributions for various values of Prandtl 

numbers  

 

Figure 5 depicts the effects of different Prandtl numbers (Pr) on velocity [F] and temperature [G] 

distributions. It is seen that both theTvelocityTandTtemperature profile decrease with an increase 

of Prandtl number. The cause for such a manner is that the fluid which has higher 

PrandtlTnumberThas a generally low thermalTconductivity which restricts conduction. This 

outcome shows the decrease of thickness the thermalTboundaryTlayer and subsequently a 

diminishing in the temperature distributions. 

 

4. CONCLUSIONS 

In the present study, the impact of variable viscosityTon theTunsteady decelerating flow of an in 

compressible fluidToverTa movingTwedge has been investigated. 

➢ The skinTfriction and heat transfer co efficient increases with an enhance of variable 

viscosity parameter (𝜀 = 0,0.5,1.0) and the temperature distribution decreases but the 

opposite trend in velocity distribution for the fixed Prandtl number (Pr = 0.72) and the 

wedge angle (m = 0.2) was observed. 
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➢ Increasing the Prandtl number with the fixed variable viscosity (𝜀 = 0.5) and wedge 

angle (𝑚 = 0.2)  leadsTtoTanTincreaseTinTboth the coefficients of skinTfrictionTand 

heat transfer, where as both temperature and velocity profiles decreases. 
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