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1. INTRODUCTION

commuting mappings were generalizied as weakly commuting maps by Sessa[8]. Later

G.Jungck[4, 5] introduced compatibility as a further generalization of weakly commuting maps.

Among all generalizations[1,2,3,9] of metric spaces, G- metric spaces initiated by Zead Mustafa

and Brailey Sims[6, 7] evinced interest in many researchers.

in the present paper we prove a common fixed point theorem for two compatible self maps of a

G -metric space.
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2. PRELIMINARIES

Before proving the main result we begin with,

Definition 2.1: Let X be a non empty set and

G : X3→ [0,∞) be a function satisfying

(G1) G(x,y,z) = 0 if x = y = z

(G2) 0 < G(x,x,y) for all x,y ∈ X with x 6= y

(G3) G(x,x,y)≤ G(x,y,z) for all x,y,z ∈ X with z 6= y

(G4) G(x,y,z) = G(σ(x,y,z)) for all x,y,z ∈ X where σ(x,y,z) is a permutation of the set

{x,y,z} and

(G5) G(x,y,z)≤ G(x,w,w)+G(w,y,z) for all x,y,z,w ∈ X

Then G is called a G-metric on X and the pair (X ,G) is called a G- metric space.

Definition 2.2: Let (X ,G) be a G-metric Space. A sequence {xn} in X is said to be

G-convergent if there is a x0 ∈ X such that to each ε > 0 there is a natural number N for which

G(xn,xn,x0)< ε for all n≥ N.

Definition 2.3: Let (X ,G) be a G-metric Space. A sequence {xn} in X is said to be G-Cauchy

if for each ε > 0 there exists is a natural number N such that G(xn,xm,xl)< ε for all n,m, l ≥N.

Note that every G-convergent sequence in a G-metric space (X ,G) is G-Cauchy.

Definition 2.4: Let f and g be two self maps of a G-metric space (X ,G) such that

lim
n→∞

G( f gxn,g f xn,g f xn) = 0 for every sequence {xn} in X with lim
n→∞

f xn = lim
n→∞

gxn = t for some

t ∈ X , then the functions f and g are said to be compatible.

Definition 2.5: A function ψ : [0,∞)→ [0,∞) is said to be a contractive modulus if ψ(0) = 0

and ψ(t)< t for t > 0

Definition 2.6: Let f and g be self maps of a non-empty set X and let x0 ∈ X ,we can find

a sequence {xn} in X satisfying that f xn = gxn−1 for n ≥ 0 then {xn} is called an associated

sequence of x0 relative to the self maps f and g.
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3. MAIN RESULT

Theorem 3.1: Suppose f is continuous selfmap of a G-metric space (X ,G), then f has a

fixed point in X if and only if there is a contractive modulus ψ and a continuous selfmap g of X

such that:

(i) f and g are compatible

(ii) G(gx,gy,gy)≤ ψ(G( f x, f y, f y)) for all x,y ∈ X

and

(iii) there is a point x0 ∈ X and an associated sequence {xn} of x0 relative to the selfmaps f

and g such that the sequence { f xn} converges to some point t of X .

Further gt is the unique common fixed point of f and g.

Proof: To prove the necessary part, suppose that f has a fixed point, say ’a’, a∈ X , then f a = a.

Define g : X → X by gx = a for all x ∈ X . Now for any x ∈ X , we have (g f )x = g( f x) = a and

( f g)x = f gx = f a = a for any x ∈ X , giving that f g = g f , so that f and g are compatible.

Now let ψ be a contractive modulus, then ψ(0) = 0 and ψ(t)< t for t > 0 and for any x,y ∈ X

G(gx,gy,gy) = G(a,a,a) = 0≤ ψ(G( f x, f y, f y).

Further an associated sequence of x0 = a relative to the selfmaps f and g is given by xn = a for

n = 0,1,2,3 · · · , and since the sequence { f xn} is a constant sequence converging to a, which is

a point in X .

Thus the conditions (i) (ii) and (iii) of the theorem are satisfied.

Conversely, suppose that there is a contractive modulus ψ and a selfmap g of X satisfying (i)

(ii) and (iii) of the theorem hold.

From the condition (iii) of the theorem there is an associated sequence {xn} of x0 relative to the

selfmaps f and g such that f xn = gxn−1 for n = 1,2,3 · · · and f xn→ t as n→∞ for some t ∈ X .

Then since gxn = f xn+1, it follows that gxn→ t as n→ ∞.

Now we show that g is continuous on X . To see this, suppose that {yn} is a sequence in X with

yn→ y as n→∞, y∈ X . Since f is continuous f yn→ f y as n→∞, this together with inequality

(ii) of the theorem, we get G(gyn,gy,gy)≤ψ(G( f yn, f y, f y))→ 0 as n→∞, which implies that

gyn→ gy as n→ ∞, showing that g is continuous.

Using the continuity of f and g,we get g f xn→ gt, f gxn→ f t as n→∞. Since f xn→ t,gxn→ t



COMMON FIXED POINT THEOREM FOR TWO SELFMAPS OF A G-METRIC SPACE 415

as n→ ∞ and f and g are compatible, we have lim
n→∞

G( f gxn,g f xn,g f xn) = 0 which implies

that G( f t,gt,gt) = 0 gives f t = gt. To show that f gt = g f t, take zn = t for n = 1,2,3 · · ·

so that f zn → f t and gzn → gt as n→ ∞. Since f t = gt, f and g are compatible , we get

lim
n→∞

G( f gzn,g f zn,g f zn) = 0.

Using the continuity of G, f and g, we get g f zn→ g f t and f gzn→ f gt as n→ ∞. It follows

that G( f gt,g f t,g f t) = 0 and hence f gt = g f t

Consequently

(1) f f t = f gt = g f t = ggt

If possible suppose that gt 6= ggt, then G(gt,ggt,ggt)> 0 and hence

(2) ψ(G(gt,ggt,ggt))< G(gt,ggt,ggt)

But from (ii)of the theorem and 1 we get

G(gt,ggt,ggt)≤ ψ(G( f t, f gt, f gt)) = ψ(G(gt,ggt,ggt))

which is contradicts to 2, hence gt = ggt.

Using this in 1 we get ggt = gt = f gt, showing thatgt is a common fixed point of f and g.

Uniqueness: Suppose that u = f u = gu and v = f v = gv for some u,v ∈ X .

if possible suppose that u 6= v,then G(u,v,v) 6= 0 so that

(3) ψ(G(u,v,v))< G(u,v,v)

from (ii) of the theorem we have

G(u,v,v) = G(gu,gv,gv)≤ ψ(G( f u, f v, f v)) = ψ(G(u,v,v))

which is contradiction to 3, hence u = v, proving the theorem.

Corollary 3.2: Suppose f is continuous selfmap of a G-metric space (X ,G), then f has a fixed

point in X if and only if there is a contractive modulus ψ and a selfmap g of X such that

(i) f g = g f

(ii) G(gx,gy,gy)≤ ψ(G( f x, f y, f y)) for all x,y ∈ X

and
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(iii) there is a point x0 ∈ X and an associated sequence {xn} of x0 relative to the selfmaps f

and g such that the sequence { f xn} converges to some point t of X . Further gt is the

unique common fixed point of f and g.

Proof: From the fact that the commutativity implies the compatibility of a pair of selfmaps

proof of the corollary follows from the Theorem 3.

Corollary 3.3: Suppose f and g are selfmaps of a G-metric space (X ,G). Let f is continuous

and if there is a contractive modulus ψ and a positive integer k such that:

(i) f g = g f

(ii) G(gkx,gky,gky)≤ ψ(G( f x, f y, f y)) for all x,y ∈ X

and

(iii) there is a point x0 ∈ X and an associated sequence {xn} of x0 relative to the selfmaps f

and gk such that the sequence { f xn} converges to some point t of X . Further gt is the

unique common fixed point of f and g.

Proof: From the condition (i) of the corollary 3 we get f gk = gk f . Thus f and gk are

commuting and hence satisfying the hypothesis of 3, and therefore f and gk have a unique

common fixed point say b, then gkb = b = f b.

Now gkgb = gk+1b = ggkb = gb and f gb = g f b = gb.

This shows that gb is a common fixed point of f and gk. The uniqueness of b implies that gb= b

since f b = b , b is a common fixed point of f and g.

To prove that f and g have unique common fixed point, suppose that u = f u = gu and

v = f v = gv for some u,v ∈ X , so that gku = u and gkv = v, this shows that u,v are common

fixed points of f and gk. The uniqueness of common fixed point of f and gk implies u = v.

Corollary 3.4: Let p be a positive integer. If g is continuous selfmap of a G-metric space

(X ,G), such that:

(i) G( f x, f y, f y)≤ ψ(G(gPx,gpy,gpy)) for all x,y ∈ X

and

(ii) there is a point x0 ∈ X and an associated sequence {xn} of x0 relative to the selfmaps

gp and I( where I is the identity map onX) such that the sequence {gpxn} converges to

some point t of X . Then g has a unique common fixed point in X .
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Proof: We know that gpI = Igp. From (ii) of the corollary 3, we have

G(x,y,y) = G(Ix, Iy, Iy)≤ ψG(gpx,gpy,gpy) for all x,y ∈ X .

Since g is continuous, gp is continuous. Applying corollary 5.3.1 to the function gp and I, we

have unique common fixed point, showing that g has unique fixed point as every point of X is a

fixed point of I.
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