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Abstract. In this paper, a production inventory system with two servers involving multiple vacations is considered.

Customers’ demand is in accordance with the Poisson process. The time for production and addition of each item

to the inventory is exponentially distributed. The reloading of the inventory is done as per the (s, S) policy. When

no customer waits for service in the system or no inventory is available to satisfy their demands or both, multiple

vacations are taken by the servers. The period taken by servers 1 and 2 for their vacation is also exponentially

distributed. The system works with the assumption that both the servers are heterogeneous. It is also presumed

that their service rates are exponentially distributed with parameters µ1 and µ2. The minimum service rates of

both the servers are taken as µ and such a case is also considered with two homogeneous servers. The final

algorithmic solution to the problem is obtained by Matrix Analytic Method (MAM). We could also derive some

significant measures of performance of the model in the steady state. Finally, we could also construct and analyze

cost function numerically.
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1. INTRODUCTION

The study of production inventory models with multiple vacations has received remarkable

attention of researchers in recent decades. To redress the problem of the long queue with cus-

tomers waiting for service, the decision maker provides another server. Multiple servers are

more flexible and practically applicable compared to single server models. Another advan-

tage of a multi-server queueing system is that the servers can engage in secondary jobs when

they are idle. The credit for developing a production inventory system having service time

and vacation to the server goes to Krishnamoorthy and Viswanath C. Narayanan [3]. The sys-

tem had a MAP/PH/1 queue attached to it. Items were produced in the inventory as per the

time that follows a ”Markovian Production Scheme”. They calculated system stability and per-

formance. Another M/M/2 queueing inventory system was discussed by Krishnamoorthy and

Sreenivasan [4]. They modeled the system with two heterogeneous servers, in which one was

a vacationing server. Customers enjoyed a different quality of service with this heterogeneous

service mechanism. Two production inventory systems with varying production rates were de-

vised by Jose and Salini [1]. The system had both retrials and buffer. To find the numerical

solution they used the MAM method. Referring to Neuts [9] can provide more details of the

MAM.

Yet another (s, S) production inventory system was studied by Anoop and Jacob [8]. It was a

queueing system that had controlled self service. It provided service only to one customer at a

time though it was a multi sever Markovian queueing model. Using the MAM method one could

easily check ergodicity and steady state solutions. Vijayashree and Janani [12] experimented

with a multi server queueing system that had a single exponential vacation.The customers arrive

as per the Poisson process and services take place according to an exponential distribution. All

the servers in the system go for a vacation when the system is empty and returns after the fixed

time gap. The model helps us to explicitly obtain the stationary and transient probabilities for

the number of customers during the ideal and functional state of the servers. For an in-depth

study of a Markovian queueing system having two heterogeneous servers that take working

vacations, Vishwanath Maurya [7] demonstrated a mathematical model. At first, a service policy
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where both the heterogeneous servers take a vacation was considered. In the model, they worked

out a busy period analysis.

A new model was developed by Vijayalaxmi and Jyothsna [6] who observed the performance of

a working vacation queue with heterogeneous servers and had a renewal input. Supplementary

variable and recursive techniques were used to find the different performance measures and

the steady state probabilities of the model. A Markovian (s, Q) inventory queueing system

was developed by Jeganathan [2] that had two heterogeneous servers with server interruptions.

This was to compare the efficiency of heterogeneous and homogeneous systems; by deriving

their performance measures. Palanivel and Uthayakumar [10] devised an economic production

quantity model with varying production costs and probabilistic deterioration. For a Quasi Birth

Death Process Latouche and Ramaswami [5] derived a logarithmic reduction algorithm. The

non-ergodicity and mean drifts of the Markov chain were derived by Sennott et al. [11]. The

following section of this paper discusses ; 1. A detailed description of the model 2. Analysis of

the system after modeling it mathematically 3. Derivation of its stability condition 4. Discussion

of Steady state probability vector and its explicit expressions 5. Derivation of various relevant

performance measures and their explicit form 6. Numerical experiments.

2. DESCRIPTION OF THE MODEL

This paper considers a production facility with two servers; server 1 and server 2. The servers

go for a vacation when the inventory level reaches zero or no demand is made or both. θ1 and θ2

are the parameters with which the vacation times of the servers are exponentially distributed.The

servers take independent and identically distributed time gaps for their vacations.The model

works with the assumption that the service rates of the heterogeneous servers are exponentially

distributed with parameters µ1 and µ2. Then, a minimum service rate of µ1 and µ2 named

µ with homogeneous servers is also considered. In these two instances, only when there is

a positive inventory level with at least one customer waiting for service does the service get

started at the end of the vacation. In all the other cases both the servers go for another vacation

until there is a positive inventory level and customer level. A customer who comes and finds

a free server with a positive inventory level can get the service immediately. The (s, S) policy

renews the inventory. Customer demands are in accordance with the Poisson process with rate
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λ . Production has to be started when there is a decline in inventory level say s. It gets stopped

when the level of inventory reaches S. Two successive items are added to the inventory and their

time gap follows an exponential distribution with rate β .

3. MATHEMATICAL MODELING AND ANALYSIS

The following are the assumptions and notations used in this model.

Assumptions

(i) customer demands are in accordance with the Poisson process with rate λ .

(ii) the service rates of the heterogeneous servers are exponentially distributed with parameter

µ1 and µ2.

(iii) the time gap of the addition of two successive items (by production) to the inventory is

exponential with rate β .

(iv) θ1 and θ2 are the parameters with which vacation durations of server 1 and server 2 are

exponentially distributed.

Notations

At time t, N(t) be the number of customers in the system

At time t, the inventory level is I(t)

C(t) :



0 if both servers are on vacation

1 if server 1 is busy and server 2 is on vacation

2 if server 1 is on vacation and server 2 is busy

3 if server 1 and server 2 are busy

J(t) :


0 if the production process is switched off

1 if the production process gets switched on

e : (1,1,1, ...,1)′

Then the quadruplet {(N(t),C(t),J(t), I(t)), t ≥ 0} is a continuous time Markov chain on the

state space {(0,0,0,k),s+1≤ k ≤ S} ∪ {(0,0,1,k),0≤ k ≤ S−1} ∪ {(1, j,0,k), j = 1,2,s+
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1 ≤ k ≤ S} ∪ {(1, j,1,k), j = 1,2,1≤ k ≤ S−1} ∪ {(i,0,1,0), i≥ 1} ∪ {(i, j,0,k), i ≥ 2, j =

1,2,3, s+1≤ k≤ S}∪{(i, j,1,k), i≥ 2, j = 1,2,1≤ k ≤ S−1}∪{(i,3,1,k), i≥ 2,2≤ k ≤ S−1}.

Now the infinitesimal generator of the process is

Q =



B00 B01 0 0 0 . . .

B10 B11 B12 0 0 . . .

0 B21 A1 A0 0 . . .

0 0 A2 A1 A0 . . .
...

...
...

...
... . . .


where A0,A1,A2 are square matrices of order 6S−3s−3.

B00 =

−λ IS−s 0

Ψ1 D1


(2S−s)

; [D1](uv) =


-β , i f u = v,u = 1

β , if 1≤ u≤ S−1,v = u+1

-(λ +β ), if 2≤ u≤ S,v = u

A2 =



0 0 0 0 0 0 0

0 ∆0 ∆1 0 0 0 0

∆2 0 ∆3 0 0 0 0

0 0 0 ∆4 ∆5 0 0

∆6 0 0 0 ∆7 0 0

0 0 0 0 0 ∆8 ∆9

0 0 ∆6 0 ∆2 0 ∆10



[∆0]uv =


µ1, if 2≤ u≤ S− s,v = u−1

0, otherwise
; [∆1]uv =


µ1, if u = 1,v = s

0, otherwise

[∆2]uv =


µ1, if u = v,u = 1

0, otherwise
; [∆3]uv =


µ1, if 2≤ u≤ S−1,v = u−1

0, otherwise

[∆4]uv =


µ2, if 2≤ u≤ S− s,v = u−1

0, otherwise
; [∆5]uv =


µ2, ifu = 1,v = s

0, otherwise
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[∆6]uv =


µ2, if u = 1,v = u

0, otherwise
; [∆7]uv =


µ2, if 2≤ u≤ S−1,v = u−1

0, otherwise

[∆8]uv =


(µ1 +µ2), if 2≤ u≤ S− s,v = u−1

0, otherwise
; [∆9]uv =


(µ1 +µ2,) if u = 1,v = s−1

0, otherwise

[∆10]uv =


(µ1 +µ2), if 2≤ u≤ S−2,v = u−1

0, otherwise

B10 =



0 0

∆0 ∆1

0 ∇1

∆4 ∆5

0 ∇2


(4S−2s−1)×(2S−s)

; ∇1 =
[
µ1IS−1 0

]
(4S−2s)×(2S−s)

∇2 =
[
µ2IS−1 0

]
(4S−2s)×(2S−s)

A1 =



−β 0 Ψ0 0 0 0 0

0 −(λ +µ1 +θ2)IS−s 0 0 0 θ2IS−s 0

0 Ψ1 Ψ2 0 0 0 Ψ3

0 0 0 −(λ +µ2 +θ1)IS−s 0 θ1IS−s 0

0 0 0 Ψ1 Ψ4 0 Ψ5

0 0 0 0 0 −(λ +µ1 +µ2)IS−s 0

0 0 0 0 0 Ψ6 Ψ7



[Ψ0]uv =


β if u= 1 ,v=u

0 otherwise
; [Ψ1]uv =


β , if u = S−1,v = S− s

0, otherwise

[Ψ2]uv =



-(λ +µ1 +β ), if u = v,u = 1

-(λ +β +µ1 +θ2), if 2≤ u≤ S−1,v = u

β , if 1≤ u≤ S−2,v = u+1

0, otherwise
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[Ψ3]uv =


θ2, if 2≤ u≤ S−1,v = u−1

0, otherwise

[Ψ4]uv =



-(λ +µ2 +β ), if u = v,u = 1

-(λ +β +µ2 +θ1), if 2≤ u≤ S−1,v = u

β , if 1≤ u≤ S−2,v = u+1

0, otherwise

[Ψ5]uv =


θ1, if 2≤ u≤ S−1,v = u−1

0, otherwise
; [Ψ6]uv =


β , if u = S−3,v = S− s

0, otherwise

[Ψ7]uv =


-(λ +µ1 +µ2 +β ), if 1≤ u≤ S−2,v = u

β , if 1≤ p≤ S−3,v = u+1

0, otherwise

B21 =



0 0 0 0 0

0 ∆0 ∆1 0 0

∆2 0 ∆3 0 0

0 0 0 ∆4 ∆5

∆6 0 0 0 ∆7

0 ∆4 ∆5 ∆0 ∆1

0 0 K1 0 ∇1


(6S−3s−3)×(4S−2s−1)

; K1 =
[
µ2IS−1 0

]
(4S−2s)×(2S−s)

B11 =



−β 0 Ψ0 0 0

0 −(λ +µ1)IS−s 0 0 0

0 Ψ1 χ1 0 0

0 0 0 −(λ +µ2)IS−s 0

0 0 0 Ψ1 χ2


(4S−2s−1)
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[χ1]uv =


-(λ +β +µ1), if 1≤ u≤ S−1,v = u

β , if 1≤ u≤ S−2,v = u+1

0, otherwise

[χ2]uv =


-(λ +β +µ2), if 1≤ u≤ S−1,v = u

β , if 1≤ u≤ S−2,v = u+1

0, otherwise

A0 =



0

IS−s

IS−1

IS−s

IS−1

IS−s

IS−2



B12 =



0 0

λ IS−s 0

λ IS−1 0

λ IS−s 0

λ IS−1 0


(4S−2s−1)×(6S−3s−3)

B01 =

0 λ IS−s 0 0

0 0 Z1 0


(4S−2s−1)

; Z1 =
[
0 λ IS−1

]
(S)

4. ALGORITHMIC ANALYSIS

4.1. Stability Condition.

Theorem 1. λ

µ1+µ2
< 1 is the necessary and sufficient condition for the system to be stable.

Proof. To prove the stability condition of the system, we use Pake’s Lemma. According to

Pake’s Lemma,”if there exists an ε > 0 such that the mean drift ψ j = E[(Ti+1−Ti)/Ti = j]

is finite for all j∈ N and ψ j ≤ −ε for all j ∈ N except perhaps for a finite number then the
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irreducible aperiodic Markov chain is ergodic”. Let Ti be the number of customers in the system

immediately after the service completion of the ith customer, then {Ti : i ∈ N} satisfies

Ti =


Ti−1−1+Vi, if Ti−1 ≥ 1

Vi, if Ti−1 = 0

where Vi denotes the number of arrivals into the system during the service of the ith customer.

Here the Mean drift is

ψ j =


−1+ρ, if j ≥ 1

ρ, if j = 0

The Markov chain {Ti : i ∈ N} is ergodic if ρ < 1. For proving the necessary condition, we

assume that ρ ≥ 1. Then using the theorem in Sennot, if {Ti : i∈N} satisfies Kaplan’s condition

then the Markov chain is non-ergodic. Here ψ j < ∞ for j ≥ 0 and there exists a j0 such that

ψ j ≥ 0, for j ≥ j0. Hence the Markov chain is not ergodic when ρ ≥ 1

�

5. STEADY STATE PROBABILITY VECTOR

Let P = (P0,P1, . . .) be the steady state probability vector of Q. Our objective is to compute the

stationary probability vector P from the system of equations PQ = 0. Under the conditions of

stability Pi’s are given by Pi = Pi−1 ∗R for (i = 3,4,5. . . ) where R is the minimal nonnegative

solution of the matrix quadratic equation R2A2 +RA1 +A0 = 0, with spectral radius of R is less

than one. The rate matrix R is computed from R =−A0(A1)
−1−R2A2A−1

1 . R is approximated

by the successive substitution method developed by Neuts namely R0 = 0,

Rn+1 = −A0(A1)
−1−R2

nA2(A1)
−1,n = 0,1,2, . . . . The elements of R will increase after each

iteration. The process is continued until the successive difference in the value of R is less than

a specified tolerance criterion. The sub vectors P0, P1, and P2 can be calculated using

(1)

P0B00 +P1B10 = 0

P0B01 +P1B11 +P2B21 = 0

P1B12 +P2[A1 +RA2] = 0


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The normalizing equation is

(2) P0e+P1e+P2(I−R)−1e = 1
}

The boundary probabilities P0, P1, and P2 and the probabilities Pi for i≥ 3 can be obtained from

using equations 1, 2 and R.

6. SYSTEM PERFORMANCE MEASURES

We partition the components of Pi as

Pi =(yi,0,1,0,yi,1,0,s+1, . . . ,yi,1,0,S,yi,1,1,1 . . . ,yi,1,1,S−1,yi,2,0,s+1, . . . ,yi,2,0,S,

yi,2,1,1, . . . ,yi,2,1,S−1,yi,3,0,s+1, . . . ,yi,3,0,S,yi,3,1,2, . . . ,yi,3,1,S−1),(i≥ 2)

Also,

P0 = (y0,0,0,s+1, . . . ,y0,0,0,S,y0,0,1,0 . . . ,y0,0,1,S−1),

and

P1 = (y1,1,0,s+1, . . . ,y1,1,0,S,y1,1,1,1 . . . ,y1,1,1,S−1,y1,2,0,s+1, . . . ,y1,2,0,S,y1,2,1,1, . . . ,y1,2,1,S−1)

Now we derive some performance measures of the system under steady state

(i) Expected inventory level, ∨I , is given by

∨l =
S

∑
k=s+1

ky0,0,0,k +
S−1

∑
k=1

ky0,0,1,k ++
2

∑
j=1

S

∑
k=s+1

ky1, j,0,k +
2

∑
j=1

S−1

∑
k=1

ky1, j,1,k+

3

∑
j=1

S

∑
k=s+1

∞

∑
i=2

kyi, j,0,k +
2

∑
j=1

S−1

∑
k=1

∞

∑
i=2

kyi, j,1,k +
S−1

∑
k=2

∞

∑
i=2

kyi,3,1,k

(ii) Expected number of customers in the system, ∨C, is given by

∨C = (
∞

∑
i=1

iPi)e = P1e+P2{(I−R)−1 +(I−R)−2}e

(iii) Expected reorder rate, ∨R, is given by

∨R = µ1

∞

∑
i=1

yi,1,0,s+1 +µ2

∞

∑
i=1

yi,2,0,s+1 +(µ1 +µ2)
∞

∑
i=2

yi,3,0,s+1

(iv) The fraction of time production process is on ∨ON is given by

∨ON =
2

∑
j=1

S−1

∑
k=1

y1, j,1,k +
S−1

∑
k=0

y0,0,1,k +
∞

∑
i=1

yi,0,1,0 +
∞

∑
i=1

S−1

∑
k=1

2

∑
j=1

yi, j,1,k +
∞

∑
i=2

S−1

∑
k=2

yi,3,1,k
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(v) Expected number of departures ∨D after completing service is given by

∨D = µ1{
∞

∑
i=1

S

∑
k=s+1

yi,1,0,k +
∞

∑
i=1

S−1

∑
k=1

yi,1,1,k}+µ2{
∞

∑
i=1

S

∑
k=s+1

yi,2,0,k +
∞

∑
i=1

S−1

∑
k=1

yi,2,1,k}

+(µ1 +µ2){
∞

∑
i=2

S

∑
k=s+1

yi,3,0,k +
∞

∑
i=2

S−1

∑
k=2

yi,3,1,k}

(vi) The probability that server 2 is on vacation

∨vac2 = P0 +
∞

∑
i=1

S

∑
k=s+1

yi,1,0,k +
∞

∑
i=1

yi,0,1,0 +
∞

∑
i=1

S−1

∑
k=1

yi,1,1,k

where P0 is the probability that no customer is in the system when both servers are on

vacation.

(vii) The probability that server 1 is on vacation

∨vac1 = P0 +
∞

∑
i=1

S

∑
k=s+1

yi,2,0,k +
∞

∑
i=1

yi,0,1,0 +
∞

∑
i=1

S−1

∑
k=1

yi,2,1,k

7. COST ANALYSIS

Define the expected total cost of the system per unit per unit time is given by

Tcost = (C+(S− s)c1)∨R +c2∨I +c3∨C +c4∨D, where

C : Fixed cost/unit/unit time

c1 : The procurement cost per unit per unit time

c2 : The holding cost of inventory per unit per unit time

c3 : The holding cost of customers per unit per unit time

c4 : The cost due to service per unit per unit time

7.1. Numerical Experiments.

The effect of the arrival rate of the customers on different system performance measures and

Tcost are illustrated in table 1. In tables 2,3,4 we represent the effect of θ1,θ2,β on some of

the performance measures and Tcostof the system for heterogeneous and homogeneous servers,

keeping the other values of the parameters fixed.
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TABLE 1. Effect of variation of λ with heterogeneous and homogeneous servers

λ ∨I ∨C ∨D ∨R Tcost(HT ) ∨I ∨C ∨D ∨R Tcost(HM)

0.8 13.416 0.40938 0.53499 0.019096 2100.5 13.395 0.49710 0.54396 0.019256 2103.3

0.9 13.362 0.45026 0.59150 0.020838 2100.0 13.331 0.57571 0.60817 0.022162 2101.8

1.0 13.306 0.49318 0.64966 0.022891 2099.6 13.265 0.66851 0.67689 0.025572 2103.1

1.1 13.249 0.53910 0.64966 0.022891 2099.5 13.198 0.77966 0.75108 0.029451 2105.5

1.2 13.190 0.58893 0.77335 0.027856 2099.6 13.131 0.91433 0.83151 0.033755 2109.5

1.3 13.130 0.64361 0.83984 0.030714 2100.0 13.064 1.07920 0.91880 0.038433 2115.4

1.4 13.070 0.70407 0.90991 0.033779 2101.1 12.997 1.28310 1.01340 0.043429 2123.5
C = 20,c1 = 15,c2 = 151,c3 = 35,c4 = 104,µ1 = 1.2,µ2 = 2.5,β = 5,θ1 = 3,θ2 = 4,S = 20,s = 5,

TABLE 2. Effect of variation of θ1 with heterogeneous and homogeneous servers

θ1 ∨I ∨C ∨D ∨R Tcost(HT ) ∨I ∨C ∨D ∨R Tcost(HM)

3.1 13.553 0.28760 0.36653 0.015959 325.7501 13.564 0.31265 0.36584 0.013661 327.4075

3.2 13.554 0.28824 0.36661 0.015768 325.7183 13.564 0.31262 0.36583 0.013651 327.4024

3.3 13.554 0.28825 0.36660 0.015768 325.7193 13.564 0.31259 0.36582 0.013657 327.3973

3.4 13.554 0.28826 0.36660 0.015768 325.7205 13.563 0.31256 0.36582 0.013655 327.3724

3.5 13.554 0.28826 0.36659 0.015768 325.7202 13.563 0.31253 0.36581 0.013654 327.3679

3.6 13.554 0.28827 0.36659 0.015767 325.7207 13.563 0.31250 0.36580 0.013652 327.3628

3.7 13.554 0.28827 0.36658 0.015767 325.7205 13.563 0.31248 0.36580 0.013651 327.3598
C = 20,c1 = 42.2,c2 = 20.1,c3 = 118.1,c4 = 24.4,µ1 = 1.2,µ2 = 2.5,S = 20,s = 5,β = 5,λ = .5,θ2 = 4

TABLE 3. Effect of variation of θ2 with heterogeneous and homogeneous servers

θ2 ∨I ∨C ∨D ∨R Tcost(HT ) ∨I ∨C ∨D ∨R Tcost(HM)

4.1 13.554 0.28806 0.36658 0.015762 197.7897 13.563 0.31255 0.36581 0.013658 331.6369

4.2 13.553 0.28789 0.36655 0.015755 197.7674 13.563 0.31242 0.36577 0.013654 331.6241

4.3 13.553 0.28774 0.36652 0.015749 197.7584 13.563 0.31230 0.36574 0.013649 331.6088

4.4 13.553 0.28759 0.36650 0.015743 197.7498 13.562 0.31218 0.36570 0.013645 331.5751

4.5 13.553 0.28745 0.36647 0.015737 197.7409 13.562 0.31206 0.36567 0.013641 331.5626

4.6 13.552 0.28731 0.36644 0.015732 197.7210 13.562 0.31196 0.36564 0.013638 331.5530

4.7 13.552 0.28718 0.36642 0.015726 197.7125 13.561 0.31186 0.36561 0.013634 331.5196
C = 20,c1 = 184.2,c2 = 21,c3 = 7.1,c4 = 18,S = 20,s = 5,β = 5,λ = .5,θ1 = 3,µ1 = 1.2,µ2 = 2.5
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TABLE 4. Effect of variation of β with heterogeneous and homogeneous servers

β ∨I ∨C ∨D ∨R Tcost(HT ) ∨I ∨C ∨D ∨R Tcost(HM)

5.1 13.556 0.28823 0.36662 0.015770 37.3104 13.565 0.31269 0.36585 0.013665 32.7315

5.2 13.557 0.28823 0.36662 0.015771 37.3119 13.567 0.31269 0.36585 0.013666 32.7340

5.3 13.559 0.28823 0.36662 0.015771 37.3139 13.568 0.31269 0.36585 0.013668 32.7359

5.4 13.560 0.28823 0.36662 0.015772 37.3154 13.570 0.31269 0.36585 0.013671 32.7379

5.5 13.561 0.28823 0.36662 0.015773 37.3169 13.572 0.31269 0.36585 0.013673 32.7424

5.6 13.563 0.28823 0.36662 0.015774 37.3193 13.573 0.31269 0.36585 0.013674 32.7438

5.7 13.564 0.28823 0.36662 0.015775 37.3208 13.574 0.31269 0.36585 0.013676 32.7458
C = 20,c1 = 31,c2 = 1,c3 = 5,c4 = 40,S = 20,s = 5,λ = .5,θ1 = 3,θ2 = 4,µ1 = 1.2,µ2 = 2.5

7.2. Numerical Inferences.

Here for both the heterogeneous and homogeneous systems, one of the parameters is varied at

a time to analyze the total expected cost per unit per unit time. Table 1 indicates that when λ

becomes 1.1 the Tcost of the heterogeneous servers becomes minimum with a value of 2099.50.

On the contrary, the minimum value of the Tcost for the homogeneous servers is 2105.50. Table

2 indicates that for a heterogeneous system Tcost shows a minimum value of 325.72 when θ1 =

3.2. In the case of homogeneous servers, the minimum value of 327.40 is shown at θ1. The

heterogeneous and homogeneous systems show 197.79 and 331.64 respectively the value of

Tcost at θ2 = 4.1(from table 3). The homogeneous servers show 32.73 as the value of Tcost at

β = 5.1. In the same case, the value of the Tcost of the heterogeneous servers is 37.31. In all

cases, heterogeneous servers show minimum Tcost though it can vary for replenishment rates.

8. CONCLUDING REMARKS

The paper considered a production inventory system with two servers taking multiple vacations.

The model was examined using MAM. One could easily calculate the stability condition and

system performance measures. Based on the performance measures of the model, a cost func-

tion was constructed and was analyzed numerically. This work gives way to new researchers

by considering a multi server production inventory system with Markovian Arrival Process and

Phase type service time.
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