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Abstract: In this paper, effects of MHD on peristaltic flow of a Newtonian fluid with variable viscosity 

in an asymmetric channel under the assumptions of long wavelength and low Reynolds number 

assumptions is investigated. The expressions for the velocity, pressure gradient and pressure rise per one 

wavelength are obtained by a regular perturbation technique. The effects of viscosity parameter , 

Hartmann number M , wave amplitudes ,a b  and phase shift    on pumping characteristics are 

discussed in detail.    
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1. Introduction 

The word peristalsis stems from the Greek word peristalitikos, which means 

clasping and compressing. It is used to describe a progressive wave of contraction along 
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a channel or tube whose cross-sectional area consequently varies in physiology, it has 

been found to be involved in many biological organs, e.g. in transport of spermatozoa in 

the ductus efferent us of the male reproductive tracts and in the cervical canal, in the 

movement of ovum in the fallopian tubes and in the vasomotion of small blood vessels 

as well as blood flow in arteries. Some worms use peristalsis as a means of locomotion. 

Roller and Finger pumps using viscous fluid also operate on this principle. The 

mechanism of peristaltic transport has been exploited for industrial applications like 

sanitary fluid transport, blood pumps in heart lung machine and transport of corrosive 

fluid where the contact of the fluid with the machinery parts is prohibited.  

 There are many fluids whose behaviour cannot be described by the Navier-Stokes 

model with constant viscosity. Also the inadequacy of the classical Navier-stokes 

theory of Newtonian fluids in predicting the behaviours of some fluids, especially 

those with high molecular weight, leads to the developments of non-Newtonian fluid 

mechanics. The governing equations for such fluids are of higher order, much more 

complicated and subtle than the Newtonian fluid. Peristaltic transport of a power-law 

fluid with variable consistency has been studied by Shukla and Gupta [11]. Srivastava 

et al. [12] have studied the peristaltic transport of a fluid with variable viscosity 

through a non-uniform tube. Abd El Hakeem et al. [2] have investigated the effect of 

endoscope and fluid with variable viscosity on peristaltic motion. Abd El Hakeem et 

al. [1] have investigated the peristaltic flow of a fluid with variable viscosity under the 

effect of magnetic held. 

The magnetic hydrodynamic flow of blood in a channel having walls that 

execute peristaltic waves using long wave length approximation has been discussed 

by Agrawal and Anwaruddin [3]. Peristaltic flow of Johnson-Segalman fluid under 

effect of a magnetic field was studied by Elshahed and Haroun [4]. Nonlinear 

peristaltic transport of MHD flow through a porous medium was studied by 

Mekheimer and Al-Arabi [7].  Mekheimer [8] have studied the peristaltic transport of 

blood under effect of a magnetic field in non uniform channels.   

 Eytan and Elad [5] have presented a Mathematical model of wall-induced 

peristaltic fluid flow in a two dimensional channel with wave trains having a phase 
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difference moving independently on the upper and lower walls to simulate 

intra-uterine fluid motion in a sagittal cross-section of the uterus. They have obtained 

a time dependent flow solution in a fixed by using lubrication approach. Mishra and 

Ramachandra Rao [9] discussed the peristaltic motion of viscous fluid in a two 

dimensional asymmetric channel under long wave length assumption. Ramachandra 

Rao and Mishra [10] also analyzed the curvature effects on peristalsis in an 

asymmetric channel. Effect of variable viscosity on the peristaltic transport of a 

Newtonian fluid in an asymmetric channel has been studied Hayat and Ali [6]. 

In view of these, we investigated the MHD peristaltic flow of a Newtonian 

fluid with variable viscosity in an asymmetric channel under the assumptions of long 

wavelength and low Reynolds number assumptions. The expressions for the velocity, 

pressure gradient and pressure rise per one wavelength are obtained by a regular 

perturbation technique. The effects of viscosity parameter , Hartmann number M , 

wave amplitudes ,a b  and phase shift    on pumping characteristics are discussed 

in detail.    

2. Mathematical formulation 

We consider the peristaltic flow of an incompressible viscous Newtonian fluid with 

variable viscosity in a two-dimensional asymmetric channel under the effect of a 

magnetic field. The channel asymmetry is produced by the propagation of waves on 

the channel walls traveling with same speed c  but with different amplitudes and 

phases. A rectangular co-ordinate system ( , )X Y  is chosen such that X -axis lies 

along the centre line of the channel in the direction of wave propagation and Y -axis 

transverse to it, as shown in Fig. 1. A uniform magnetic field 0B  is applied in the 

transverse direction to the flow. The electrical conductivity of the fluid is assumed to 

be small so that the magnetic Reynolds number is small and therefore the induced 

magnetic field is neglected. The external electric field is zero and the electric field due 

to polarization of charges is also negligible. Also heat due to Joule dissipation is 

neglected. 
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 The channel walls are defined by 

 
1 1

2
( , ) cos ( )Y H X t d a X ct




     (upper  wall)   (2.1) 

 
2 2

2
( , ) cos ( )Y H X t d a X ct






 
      

 
 (lower wall)  (2.2) 

where 1 2,a a  are the amplitudes of the waves, X  is the wave length, 2d  is the 

width of the channel,   is the phase difference which varies in the range 0    , 

0   corresponds to a symmetric channel with waves out of phase and    

defines the waves with in phase and further 1 2,a a  and   satisfies the condition 

2 2 2

1 2 1 22 cos (2 )a a a a d   . 

 

Fig. 1. The Physical Model 

We shall carryout this investigation in a co-ordinate system moving with wave 

speed c, in which the boundary shape is stationary. The co-ordinates and velocities in 

the laboratory frame ( , )X Y and the wave frame ( , )x y are related by 

 , , , , ( ) ( , )x X ct y Y u U c v V p x P X t           (2.3) 

where  ,  u v and  ,  U V  are the velocity components,  p   and  P   are 

pressures in the wave and fixed frames of reference, respectively. 

 The equations governing the flow field in a wave frame are 

0
u v

x y

 
 

 
              (2.4) 
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2

0( ) ( ) ( )
u v p u v u

u v M y M y B u c
x y x x x y x y

 
            

             
            

(2.5) 

( ) ( )
v v p v u v

u v M y M y
x y x x x y x y


             

           
             

  (2.6) 

where   is the density, 0B  magnetic field strength and   - electrical conductivity. 

The dimensional boundary conditions are 

 u c    at 1 2,y H H            (2.7) 

Introducing the following non-dimensional quantities 

,
x y a u

x = , y = ,  = , u
a c


 


2

0

v pa ct
v = , p = , t = , 

c c   
 

1 2 1 2
1 2, , ,

H H a a
h h a b

d d d d
     

where 0 is the viscosity constant,   is the wave number and a and b are amplitude 

ratios, in the equations (2.1), (2.2) and (2.4) – (2.6) dropping the bars, we obtain 

 1 1 cos2h a x   

 2 1 cos(2 )h b x               (2.8) 

 0
u v

x y

 
 

 
             (2.9) 

2Re 2 ( )
u v p u

u v y
x y x x x

  
      

      
      

      

    
2 2( ) ( 1)

v u
y M u

y x y
 
    

     
    

    (2.10) 

3 2 2 2Re ( ) 2 ( )
v v p v u v

u v y y
x y y x x y y y

     
             

           
             

  

                 (2.11) 

where 
0

Re
dc


  is the Reynolds number, 0

0

M B d



  is the Hartmann 

number and under the assumptions of low Reynolds number ( Re 0 ) and long 
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wave length ( 1  ), the equations (2.10) and (2.11) become 

 
2

1

( )
( 1)

1

p y u
O M u

x y y





   
     

    
       (2.12) 

 
p

O
y





               (2.13) 

 The corresponding dimensionless boundary conditions are 

 1u    at 1 2,y h h             (2.14) 

 From Eq. (2.13) we conclude that p  is only function of x  alone. Therefore, 

the Eq. (2.12) can be rewritten as  

 
2

1

1
( ) ( 1)

1

dp u
y M u

dx y y




  
   

   
       (2.15) 

 The non-dimensional viscosity here is of the following form 

 ( ) 1y y    or ( ) yy e    for 1        (2.16) 

where   is the viscosity parameter.  

 The dimensionless volume flow rate q  in the wave frame of reference is given 

by  

1

2

h

h

q udy            (2.17) 

The instantaneous flux ( , )Q x t  in the laboratory frame is 

 

1 1 1

2 2 2

1 2( , ) ( 1)  1 

h h h

h h h

Q x t u dy u dy dy q h h             (2.18) 

 The time averaged volume flow rate over one period T
c

 
 
 

 of the peristaltic 

wave is 

 

1

1 2

0 0

1
( , ) ( ) 2

T

Q Q x t dt q h h dx q
T

             (2.19) 
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3. Solution 

 We seek for a regular perturbation solution in terms of a small parameter   as 

follows   

2

0 1 ( )u u u o               (3.1) 

20 1 ( )
dp dp dp

o
dx dx dx

             (3.2) 

 
2

0 1 ( )q q q o               (3.3) 

 Substituting the equations (3.1) and (3.2) into the equations (2.14) and (2.15) and 

using Eq. (2.16), we get 

3.1 The system of order zero 

 

2
20 0

02
( 1)

dp u
M u

dx y


  


          (3.4) 

 with the dimensionless boundary conditions 

 0 1u    at 1 2,y h h            (3.5) 

3.2 The system of order one 

 

2 2
21 1 0 0

12 2

u dp u u
M u y

y dx y y

  
   

  
        (3.6) 

 with the corresponding dimensionless boundary conditions  

1 0u   at 1 2,y h h                            (3.7) 

3.3 Solution of order zero 

 Solving Eq. (3.4) together with the boundary conditions Eq. (3.5), we get 

  0
0 1 22

1
cosh sinh 1 1

dp
u c My c My

M dx
                 (3.8) 

 where 2 1
1

2 1

sinh sinh

sinh ( )

Mh Mh
c

M h h





 and 1 2

2

2 1

cosh cosh

sinh ( )

Mh Mh
c

M h h





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The volume flow rate 0q  in the wave frame of reference is given by  

 

1

2

0 0

h

h

q u dy                             

   
 

 1 2 1 2 2 10
1 23

2 1

2 2cosh ( ) ( )sinh ( )1

sinh ( )

M h h M h h M h hdp
h h

M dx M h h

    
  


 (3.9) 

From Eq. (3.9), we have 

 
 

3

0 1 2 2 10

1 2 1 2 2 1

sinh ( )

2 2cosh ( ) ( )sinh ( )

q h h M M h hdp

dx M h h M h h M h h

  


    
   (3.10) 

3.2 Solution of order one 

 Substituting Eq. (3.8) in the Eq. (3.6) and solving it by using the boundary 

conditions Eq. (3.7), we obtain 

 1
1 1 22

1
sinh sinh 1

dp
u c My c My

M dx
     

2

0
1 2sinh cosh

4

y dp
c My c My

M dx
   

 
 

 1 2 2 20
1 2 2 12

2 1

1 cosh ( )1
( sinh sinh cosh

4 sinh ( )

M h hdp
h Mh h Mh My

M dx M h h

 
 


 

 
 

 1 2 2 20
1 2 2 12

2 1

1 cosh ( )1
( cosh cosh sinh

4 sinh ( )

M h hdp
h Mh h Mh My

M dx M h h

 
 


 (3.11) 

The volume flow rate 1q  in the wave frame of reference is given by  

1

2

1 1

h

h

q u dy 
 1 2 1 2 2 11

3

2 1

2 2cosh ( ) ( )sinh ( )1

sinh ( )

M h h M h h M h hdp

M dx M h h

    



  

   
 

22 2
1 22 1 0

2 2

2 1

1 cosh ( )( )

4 sinh ( )

M h hh h dp

M dx M h h

 



             (3.12) 

From Eq. (3.12), we have 

 
 

3

1 1 2 1

1 2 1 2 2 1

sinh ( )

2 2cosh ( ) ( )sinh ( )

dp q M M h h

dx M h h M h h M h h




    
  

  
 

22 2
1 202 1

2 1

1 cosh (( )

4 sinh ( )

M h hph h
k

x M h h

 


 
      (3.13) 

where 
 1 2 1 2 2 12 2cosh ( ) ( )sinh ( )

M
k

M h h M h h M h h


    
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Substituting from equations (3.10) and (3.13) into Eq. (3.2), we get  

 
 

 

3

1 2 2 1

1 2 1 2 2 1

sinh ( )

2 2cosh ( ) ( )sinh ( )

M q h h M h hdp

dx M h h M h h M h h

  


    
 

  
   

 

22 2 4

2 1 1 2 0 1 2

2

1 2 1 2 2 1

( ) 1 cosh ( )

2 2cosh ( ) ( )sinh ( )

h h M M h h q h h
k

M h h M h h M h h


    


    
  (3.14) 

 Using 0 1q q q   and neglecting 
2( )o   terms, Eq. (3.14), we get 

 
 

 

3

1 2 2 1

1 2 1 2 2 1

sinh ( )

2 2cosh ( ) ( )sinh ( )

M q h h M h hdp

dx M h h M h h M h h

  


    
 

  
  

 

22 2 4

2 1 1 2 1 2

2

1 2 1 2 2 1

( ) 1 cosh ( )

2 2cosh ( ) ( )sinh ( )

h h M q h h M h h

M h h M h h M h h


    


    
    (3.15) 

 The pressure rise  p  per one wave length is given as   

1

0

dp
p dx

dx
              (3.16)  

4. Results and discussions 

Fig. 2 shows the variation of pressure rise with time averaged flux Q  for 

different values of viscosity parameter   with 0.5, 0.7, 1a b M    and 

4


  It is observe that in the pumping region ( )p o  , the Q  decreases with an 

increase in  . 

 The variation of pressure rise p  with time averaged flux Q  for different 

values of phase shift   with 1, 0.5, 0.7M a b    and 0.1   is illustrated in 

Fig. 3 It is found that, in the pumping region, the Q  decreases with an increase in 

 . 

 Fig. 4 depicts the variation of pressure vise p with time averaged fluxQ  for 

different values of Hartman number M  with 0.5, 0.7, 0.1a b     and 
4


  . 

It is observed that any two pumping curves intersect at a point in first quadrant. To the 
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left of this point of intersection the  Q  increases with increasing M and to the right 

of this point of intersection Q  decreases with M . As 0M   and 0r   results 

agree with those results obtained by Mishra and Ramachandra Rao [9]. 

 The variation of pressure rise p  with time averaged flux Q  for different 

values of a  with 0.5b  , 1, 0.1M    and 
4


   is presented in Fig. 5. It is 

observed that in the pumping region the Q  increases with an increase in a . 

 Fig. 6 illustrates the variation of p  with Q  for different values of b with 

0.4, 1, 0.1a M     and 
4


  . It is observed that in the pumping region the Q   

increases with increasing b . 

5. Conclusions 

In this paper, we investigated the MHD peristaltic flow of a Newtonian fluid with 

variable viscosity in an asymmetric channel under the assumptions of long 

wavelength and low Reynolds number assumptions. It is found that, in the pumping 

region the  Q  increases with increasing ,M a and b , while it decreases with 

increasing  and  .  
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