Available online at http://scik.org

J. Math. Comput. Sci. 2 (2012), No. 1, 101-109

ISSN: 1927-5307

STRONG FORMS OF $\psi \hat{q}$ -CONTINUOUS FUNCTIONS IN TOPOLOGICAL SPACES

N.RAMYA* AND A.PARVATHI

¹Department of Mathematics, Avinashilingam University for

Women, Coimbatore-641043, Tamilnadu, India.

Abstract. In this paper, we introduce a new class of functions called $\psi \hat{q}$ -irresolute functions, Strongly

 $\psi \hat{g}$ -continuous functions and Perfectly $\psi \hat{g}$ -continuous functions in topological space and study some of

their properties and relations among them.

Keywords: $\psi \widehat{g}$ -closed(open)sets, $\psi \widehat{g}$ -continuous functions, $\psi \widehat{g}$ -open functions, $\psi \widehat{g}$ -closed functions.

2000 AMS Subject Classification: 47H17; 47H05; 47H09

1. Introduction

Levine[3]introduced generalized closed (briefly g-closed) sets and studied their ba-

sic properties. Veera Kumar [14] introduced ψ -closed sets in topological spaces. Recently

Ramya and Parvathi [6] have introduced and investigated $\psi \hat{q}$ -closed sets. Ramya and Par-

vathi[8] have introduced and studied $\psi \widehat{g}$ -continuous functions in a topological spaces. In

this paper, we introduce new class of functions namely $\psi \hat{g}$ -irresolute functions, strongly

 $\psi \widehat{g}$ -continuous functions and perfectly $\psi \widehat{g}$ -continuous functions.

*Corresponding author

E-mail addresses: ramyanagaraj144@gmail.com(N.Ramya), aparvathi.s@gmail.com(A.Parvathi)

Received December 07, 2011

101

2. Preliminaries

Throughout this paper (X, τ) and (Y, σ) and (Z, η) represent non-empty topological spaces on which no speration axiams are assumed, unless otherwise mentioned.

Now, we recollect some notations and definitions which are used in this paper.

Definition 2.1. A subset A of a topological space (X, τ) is called

- (i)semi-open if $A \subseteq cl(int)(A)$)
- (ii) α -open if $\alpha \subseteq int(cl(int(A)))$
- (iii) regular open if $A \subseteq int(cl(A))$
- (iv)pre-open if $A \subseteq int(cl(A))$.

The complements of the above sets are called semi-closed, α -closed,regular closed and pre closed sets respectively.

Definition 2.2. A subset A of a topological space (X, τ) is called

- (i) a generalized closed (briefly g-closed) set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (ii) a semi-generalized closed (briefly sg-closed) set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .
- (iii) a generalized semi-closed (briefly gs-closed) set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (iv) a \widehat{g} -closed (briefly \widehat{g} -closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .
- (v) a ψ -closed if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is sg-open in (X, τ) .
- (vi)a ψ -generalized closed set (briefly ψg -closed) if $\psi cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (vii)a $\psi \widehat{g}$ -closed set (briefly $\psi \widehat{g}$ -closed) if $\psi cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \widehat{g} -open in (X, τ) .

The complements of the above sets are called their respective open sets.

Definition 2.3. A function $f:(X,\tau)\to (Y,\sigma)$ is called

(i)semi-continuous if $f^{-1}(V)$ is open in (X, τ) for every open set V in (Y, σ) .

- (ii)g-continuous if $f^{-1}(V)$ is g-open in (X,τ) for every open set V in (Y,σ) .
- (iii)sg-continuous if $f^{-1}(V)$ is sg-open in (X,τ) for every open set V in (Y,σ) .
- (iv)gs-continuous if $f^{-1}(V)$ is gs-open in (X,τ) for every open set V in (Y,σ) .
- $(v)\widehat{g}$ -continuous if $f^{-1}(V)$ is \widehat{g} -open in (X,τ) for every open set V in (Y,σ) .
- (vi) ψ -continuous if $f^{-1}(V)$ is ψ -open in (X, τ) for every open set V in (Y, σ) .
- (vii) ψg -continuous if $f^{-1}(V)$ is ψg -open in (X,τ) for every open set V in (Y,σ) .
- (viii) $\psi \widehat{g}$ -continuous if $f^{-1}(V)$ is $\psi \widehat{g}$ -open in (X, τ) for every open set V in (Y, σ) .

3. $\psi \hat{q}$ -irresolute functions

Definition 3.1. A function $f: X \to Y$ from a topological space (X, τ) into a topological space (Y, σ) is called $\psi \widehat{g}$ -irresolute if the inverse image of every $\psi \widehat{g}$ -closed set in Y is $\psi \widehat{g}$ -closed set in X.

Theorem 3.2. A function $f: X \to Y$ is $\psi \widehat{g}$ -irresolute if and only if the inverse image of every $\psi \widehat{g}$ -open in Y is $\psi \widehat{g}$ -open in X.

Proof.

Assume that f is $\psi \widehat{g}$ -irresolute.Let A be any $\psi \widehat{g}$ -open set in Y.Then A^c is $\psi \widehat{g}$ -closed in Y.Since f is $\psi \widehat{g}$ -irresolute, $f^{-1}(A^c)$ is $\psi \widehat{g}$ -closed in X.But $f^{-1}(A^c) = X - f^{-1}(A)$ and so $f^{-1}(A)$ is $\psi \widehat{g}$ -open in X.Hence the inverse image of every $\psi \widehat{g}$ -open in Y is $\psi \widehat{g}$ -open in X. Conversely, assume that the inverse image of every $\psi \widehat{g}$ -open set in Y is $\psi \widehat{g}$ -open in X.Let A be any $\psi \widehat{g}$ -closed in Y.Then $A^c \psi \widehat{g}$ -open in Y.By assumption, $f^{-1}(A^c)$ is $\psi \widehat{g}$ -open in X.But $f^{-1}(A^c) = X - f^{-1}(A)$ and so $f^{-1}(A)$ is $\psi \widehat{g}$ -closed in X.Therefore f is $\psi \widehat{g}$ -irresolute.

Theorem 3.3. A function $f: X \to Y$ is $\psi \widehat{g}$ -irresolute if and only if it is $\psi \widehat{g}$ -continuous

Proof. Assume that f is $\psi \widehat{g}$ -irresolute.Let F be any closed set in Y.By Theorem 3.2[6] every closed set is $\psi \widehat{g}$ -closed, F is $\psi \widehat{g}$ -closed in Y.Since f is $\psi \widehat{g}$ -irresolute, $f^{-1}(F)$ is $\psi \widehat{g}$ -closed

in X.Therefore f is $\psi \widehat{g}$ -continuous.

Conversely, assume that f is $\psi \widehat{g}$ -continuous. Let F be any closed set in Y.By Theorem 3.2[6] every closed set is $\psi \widehat{g}$ -closed, F is $\psi \widehat{g}$ -closed in Y.Since f is $\psi \widehat{g}$ -continuous, $f^{-1}(F)$ is $\psi \widehat{g}$ -closed in X.Therefore f is $\psi \widehat{g}$ -irresolute.

Theorem 3.4. Let X, Y and Z be any topological spaces. For any $\psi \widehat{g}$ -irresolute map $f: X \to Y$ and any $\psi \widehat{g}$ -continuous map $g: Y \to Z$, the composition $g \circ f: X \to Z$ is $\psi \widehat{g}$ -continuous.

Proof. Let F be any closed set in Z.Since g is $\psi \widehat{g}$ -continuous, $g^{-1}(F)$ is $\psi \widehat{g}$ -closed in Y.Since f is $\psi \widehat{g}$ -irresolute, $f^{-1}(g^{-1}(F))$ is $\psi \widehat{g}$ -closed in X.But $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$. Therefore $g \circ f$ is $\psi \widehat{g}$ -continuous.

4. Strongly $\psi \widehat{g}$ -continuous and Perfectly $\psi \widehat{g}$ -continuous

Definition 4.1. A function $f: X \to Y$ from a topological space (X, τ) into a topological space (Y, σ) is said to be strongly $\psi \widehat{g}$ -cotinuous if the inverse image of every $\psi \widehat{g}$ -open set in Y is open set in X.

Theorem 4.2. If a function $f: X \to Y$ from a topological space (X, τ) into a topological space (Y, σ) is strongly $\psi \widehat{q}$ -continuous, then it is $\psi \widehat{q}$ -continuous.

Proof. Assume that f is strongly $\psi \widehat{g}$ -continuous .Let G be any closed set in Y.By Theorem 3.2[6] every closed set is $\psi \widehat{g}$ -closed in Y,G is $\psi \widehat{g}$ -closed in Y.Since f is strongly $\psi \widehat{g}$ -continuous, $f^{-1}(G)$ is closed in X.Therefore f is $\psi \widehat{g}$ -continuous.

The converse need not be true as seen from the following example

Example 4.3. Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \emptyset, \{c\}\}$ and $\sigma = \{X, \emptyset, \{c\}, \{a, b\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be an identity map. Then f is $\psi \widehat{g}$ -continuous. But f is not strongly $\psi \widehat{g}$ -continuous, since for the $\psi \widehat{g}$ closed set V = c in $Y, f^{-1}V = c$ is not closed in X.

Theorem 4.4. A function $f: X \to Y$ from a topological space (X, τ) into a topological space (Y, σ) strongly $\psi \widehat{g}$ -continuous if and only if the inverse image of every $\psi \widehat{g}$ -closed set in Y is closed in X

Proof. Assume that f is strongly $\psi \widehat{g}$ -continuous.Let F be any $\psi \widehat{g}$ -closed set in Y.Then F^c is $\psi \widehat{g}$ -open in Y.Since f is strongly $\psi \widehat{g}$ -continuous, $f^{-1}(F^c)$ is open in X.But $f^{-1}(F^c) = X - f^{-1}(F)$ and o $f^{-1}(F)$ is closed in X.

Conveersely assume that the inverse image of every $\psi \widehat{g}$ -closed set in Y is closed in X.Let G be any $\psi \widehat{g}$ -open set in Y.Then G^c is $\psi \widehat{g}$ -closed set in Y.By assumption, $f^{-1}(G^c)$ s closed in X.But $f^{-1}(G^c) = X - f^{-1}(G)$ and so $f^{-1}(G)$ is open in X.Therefore f is strongly $\psi \widehat{g}$ -continuous.

Theorem 4.5.

If a function $f: X \to Y$ is strongly $\psi \widehat{g}$ -continuous and a map $g: Y \to Z$ is $\psi \widehat{g}$ -continuous, then the composition $g \circ f: X \to Z$ is strongly $\psi \widehat{g}$ -continuous.

Proof. Let G be any closed set in Z.Since g is $\psi \widehat{g}$ -continuous, $g^{-1}(G)$ is $\psi \widehat{g}$ -closed in Y.Since f is strongly $\psi \widehat{g}$ -continuous $f^{-1}(g^{-1}(G))$ is closed in X.But $(g \circ f)^{-1}(G) = f^{-1}(g^{-1}(G))$. Therefore $g \circ f$ is strongly $\psi \widehat{g}$ -continuous.

Theorem 4.6. If a function $f: X \to Y$ is strongly $\psi \widehat{g}$ -continuous and a map $g: Y \to Z$ is $\psi \widehat{g}$ -continuous, then the composition $g \circ f: X \to Z$ is $\psi \widehat{g}$ -continuous.

Proof. Let G be any closed set in Z.Since g is $\psi \widehat{g}$ -continuous, $g^{-1}(G)$ is $\psi \widehat{g}$ -closed in Y.Since f is strongly $\psi \widehat{g}$ -continuous $f^{-1}(g^{-1}(G))$ is closed in X.By Theorem 3.2[6] every

closed set is $\psi \widehat{g}$ -closed, $f^{-1}(g^{-1}(G))$ is $\psi \widehat{g}$ -closed. But $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$. Therefore $g \circ f$ is $\psi \widehat{g}$ -continuous.

Theorem 4.7. If a function $f: X \to Y$ from a topological spaces (X, τ) into a topological spaces (Y, σ) is continuous then it is strongly $\psi \widehat{g}$ -continuous but not conversely.

Proof. Let $f: X \to Y$ be continuous .Let F be a closed set in Y.Since f is continuous $f^{-1}(F)$ is closed in X .By Theorem 3.2[6] every closed set is $\psi \widehat{g}$ -closed, $f^{-1}(F)$ is $\psi \widehat{g}$ -closed. Hence f is $\psi \widehat{g}$ -closed.

Converse of the above theorem need not be true as seen from the following example.

Example 4.8. Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \emptyset, \{a\}, \{b, c\}\}$ and $\sigma = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be an identity map. Then f is strongly $\psi \widehat{g}$ -continuous .But f is not continuous, since for the $\psi \widehat{g}$ closed set V = b in $Y, f^{-1}V = b$ is not closed in X.

Definition 4.9. A function $f: X \to Y$ from a topological space (X, τ) into a topological space (Y, σ) is said to be perfectly $\psi \widehat{g}$ -continuous if the inverse image of every $\psi \widehat{g}$ -closed set in Y is both open and closed in X.

Theorem 4.10. If a function $f: X \to Y$ from a topological space (X, τ) into a topological space (Y, σ) is perfectly $\psi \widehat{g}$ -continuous then it is strongly $\psi \widehat{g}$ -continuous.

Proof. Assume that f is perfectly $\psi \widehat{g}$ -continuous .Let G be any $\psi \widehat{g}$ -closed set in Y.Since f is perfectly $\psi \widehat{g}$ -continuous , $f^{-1}(G)$ is closed in X.Therefore f is strongly $\psi \widehat{g}$ -continuous. Converse of the above theorem need not be true as seen from the following example.

Example 4.11. Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \emptyset, \{a\}\}$ and $\sigma = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be an identity map. Then f is strongly $\psi \widehat{g}$ -continuous .But f is not perfectly $\psi \widehat{g}$ -continuous, since for the $\psi \widehat{g}$ -closed set V = b, c in $Y, f^{-1}V = b, c$ is not closed in X.

Theorem 4.12. A function $f: X \to Y$ from a topological space (x, τ) into a topological space (Y, σ) is perfectly $\psi \widehat{g}$ -continuous if and only if the inverse image of every $\psi \widehat{g}$ -closed set in Y is both open and closed in X.

Proof. Assume that f is perfectly $\psi \widehat{g}$ -continuous .Let F be any $\psi \widehat{g}$ -closed set in Y.Then F^c is $\psi \widehat{g}$ -open in Y.Since f is perfectly $\psi \widehat{g}$ -continuous $f^{-1}(F^c)$ is both open and closed in X.But $f^{-1}(F^c) = X - F^{-1}(F^c)$ and so $f^{-1}(F)$ is both open and closed in X. Conversely assume that the inverse image of every $\psi \widehat{g}$ -closed set in Y is both open and closed in X.Let G be any $\psi \widehat{g}$ -open in Y.By assumption $f^{-1}(G^c) = X - f^{-1}(G)$ and so $f^{-1}(G)$ is both open and closed in X.Therefore f is perfectly $\psi \widehat{g}$ -continuous.

Theorem 4.13. If a function $f: X \to Y$ from a topological space (X, τ) into a topological space (Y, σ) is strongly $\psi \widehat{g}$ -continuous then it is $\psi \widehat{g}$ -irresolute.

Proof. Let $f: X \to Y$ be strongly $\psi \widehat{g}$ -continuous function .Let F be a $\psi \widehat{g}$ -closed in Y.Since f is strongly $\psi \widehat{g}$ -continuous $f^{-1}(F)$ is closed in X.By Theorem 3.2[6] every closed set is $\psi \widehat{g}$ -closed, $f^{-1}(F)$ is $\psi \widehat{g}$ -closed in X.Hence f is $\psi \widehat{g}$ -irresolute.

Converse of the above theorem need not be true as seen from the following example.

Example 4.14 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \emptyset, \{c\}\}$ and $\sigma = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be an identity map. Then f is $\psi \widehat{g}$ -irresolute. But f is not strongly $\psi \widehat{g}$ -continuous, since for the $\psi \widehat{g}$ -closed set V = c in $Y, f^{-1}V = c$ is not closed in X.

Theorem 4.15. If a function $f: X \to Y$ from a topological space (X, τ) into a topological space (Y, σ) is perfectly $\psi \widehat{g}$ -continuous, then it is $\psi \widehat{g}$ -irresolute

Proof. Let $f: X \to Y$ be perfectly $\psi \widehat{g}$ -continuous function.Let F be a $\psi \widehat{g}$ -closed set in Y.Since f is perfectly $\psi \widehat{g}$ -continuous $f^{-1}(F)$ is both o closed set is bpth open and closed in X.By Theorem 3.2[6] every closed set is $\psi \widehat{g}$ -closed $f^{-1}(F)$ is $\psi \widehat{g}$ -closed in X.Hence f is

 $\psi \widehat{g}$ -irresolute.

Converse of the above theorem need not be true as seen from the following example.

Example 4.16. Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{X, \emptyset, \{b\}, \{a, b\}, \{b, c\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by f(a) = b, f(b) = c, f(c) = a. Then f is $\psi \widehat{g}$ -irresolute .But f is not perfectly $\psi \widehat{g}$ -continuous, since for the $\psi \widehat{g}$ closed set V = c in $Y, f^{-1}V = c$ is open in X but not closed in X.

References

- [1] Arya.S.P and Gupta.R,On strongly continuous mappings, Kyungpook Math.J., 14(1974), 131-143.
- [2] Balachandran.K,Sundaram.P and Maki.H,On generalized continuous maps in topological s-paces,Mem.Fac.Sci.Kochi Univ.Ser.A.Math,12(1991), 5-13.
- [3] Levine.N, Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [4] A.Pushpalatha, S.Eswaran and P.Rajarubi, τ^* -generalized closed sets in topological spaces, Proceedings of World Congress on Engineering 2009 Vol II WCE 2009, July 1 3 2009, 1-15.
- [5] Pushpalatha. A and Eswaran. S Strong Forms of τ^* -Generalized Continuous Map in Topological Spaces, Int. J. Contemp. Math. Sciences, Vol. 5 No.17,(2010),815 822.
- [6] Ramya.N and Parvathi.A, $\psi \hat{g}$ -closed sets in topological spaces,International Mathematical forum 2(10)(2011),1992-1996.
- [7] Ramya.N and Parvathi.A, $\psi \widehat{g}$ -closed sets in topological spaces,International Mathematical forum(Accepted)(2011).
- [8] Ramya.N and Parvathi.A, $\psi \hat{g}$ -closed sets in topological spaces,International Mathematical forum(Accepted)(2011).
- [9] Veerakumar, M.K.R.S.:Between closed sets and g-closed sets, Kochi University of journals Vol. 21(2000),1-19.
- [10] Veerakumar, M.K.R.S.: \hat{q} -closed sets in topological spaces, Kochi University of journals, vol 42(2000).
- [11] Veerakumar, M.K.R.S.Between semi-closed sets and semi-preclosed sets, Rend. Conti. Trieste, (2000).
- [12] Veerakumar.M.K.R.S., α -generalized regular closed sets, Acta Ciencia Indica., XXVIII M.No 2(2002),279-287.
- [13] Veerakumar.M.K.R.S., $g^{\#}$ -closed sets in topological spaces, Mem.Fac.Sci.Kochi Univ.Ser.A.Math.,24(2003),1-13.

[14] Veerakumar.M.K.R.S., between ψ -closed sets and GSP-closed sets, Atartica journal of mathematics, Vol.2(2005),123-143