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Abstract: A difference scheme involving acceptable fitting parameters is suggested for differential equations with 

delay and advanced terms, the solutions of which show boundary layer behaviour. First, the original problem is 

reshaped into asymptotically comparable second order singular perturbation problem using Taylor series 

approximation for the retarded terms. In order to obtain precise solution, fitting parameters are introduced in 

difference scheme using modified upwind differences for the first order derivatives. Thomas procedure is used to 

solve the resulting tri-diagonal difference system. The method is tested on numerical examples for various values of 

the perturbation, delay and advance parameters. Computed maximum absolute errors are tabulated. Numerical 

experiments are shown in graphs and the effects of small shifts have been studied on the boundary layer region. Also, 

convergence has been established of the proposed method. 
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1. INTRODUCTION 

Modelling of many practical phenomena such as, thermo-elasticity [2], hybrid optical 

system [3], in population dynamics [10], in models for physiological processes [14], red blood 

cell system [13], predator-prey models [15] and in the potential in nerve cells by random 

synaptic inputs in dendrites [18] causes differential-difference problems.  

Bellman and Cooke [1], Doolan et al. 5], Driver [6], El’sgol’tsand Norkin [7], Kokotovic 

[9], Miller et al. [16] and Smith [17] can be found in the collection of books for further study of 

mathematical aspects of the above class of models and singular perturbation problems. Lange 

and Miura [11-12] provided an overview of equations with small shifts, layers having turning 

points and rapid oscillations. In [4], for the solution of the singularly perturbed 

differential-difference equations with mixed shifts, a fourth order difference method with a 

fitting factor is proposed. The researchers in [8], proposed a fitted piecewise-uniform mesh 

method with analysis for differential difference equation having mixed small shifts having 

boundary layer. With this inspiration, in the next section, we define the problem and derivation of 

the of the numerical scheme using modified upwind differences with two fitting parameters. 

 

2. DESCRIPTION OF THE METHOD 

Consider the differential-difference equation with small delay as well as advance terms 

having the layer structure of the form: 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),s s s s s C s s D s s F s         + + − + + + = 0 1s    (1) 

with the boundary conditions  

                         ( ) ( ) ,   over  - 0s s s  =           (2) 

                       ( ) ( ),    over      1 1s s s  =   +        (3) 

where ( ) ( )( ),  ( ),  ,  ,  ( ) and ( )s s C s D s s s     are differentiable functions over (0, 1), 

perturbation parameter is  ( 0 1  ),  ( 0 ( )o  = ) the delay parameter and the advance 

parameter respectively ( 0 ( )o  = ).   
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Using Taylor’s expansion for the terms having delay and advanced parameters, we have 

                            
( ) ( ) ( )s s s   −  −

        (4) 

                            
( ) ( ) ( )s s s   +  +

        (5) 

Using Eq. (4) and Eq.(5) in Eq. (1), we have the following an asymptotically similar problem 

                 ( ) ( ) ( )( ) ( ) ( )s s s s s F s     + + =        (6) 

                             
( )(0) 0 =           (7) 

                             
( )(1) 1 =

           (8)
                                                                                                                                                       

where   ( ) ( ) ( )( )s s D s s    = + −   and  ( ) ( ) ( )( )s s C s D s = + + . 

Since 0 1   and  0 1  , the conversion from Eq. (1) to Eq. (6) shall be admitted 

(El'sgolt’s and Norkin [7]).  

The roots for the characteristic equationof Eq. (6) may be described by  

2( ) ( ) ( ) ( ) 0s s s s   + − =  

The two continuous functions of the above equation are given by 

2

1

( ) ( ) ( )
( )

2 2

s s s
s

  


  

 
= − − + 

 
        (9) 

2

2

( ) ( ) ( )
( )

2 2

s s s
s

  


  

 
= − + + 

 
        (10) 

The function 1 0   characterizes the layer on the left-end s = 0, while 2 0   describes layer on 

the right-end s = 1. 

 

3. NUMERICAL METHOD 

Discretize the space [0, 1] in N equivalent sub-intervals of mesh size 
N

h
1

= , so that 

0 ,   is s ih i= + = 0, 1, 2, …, N  are the nodal points with 00 ,1 Ns s= = .    

As there are two boundary layers at s =0 and s =1 for the given problem, the space [0, 1] split into 
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two sub-intervals 0,  ps    and ,  1ps    where 
1

2
ps = .  In 0,  ps    the layer at the left end s = 0 

and the layer is at right end s =1 in ,  1ps   . 

We consider the difference scheme  

            
( ) ( ) ( ) ( ) ( )i i i i i i i is s F s         +

 +  − =
 
for i = 1, 2,…p    (11) 

         
( ) ( ) ( ) ( ) ( )i i i i i i i is s F s         −

 +  − = for i = p +1,p +2, …, N-1    (12) 

with                                    ,    o N   = =            (13) 

where ( )  and  ( )i i     are defined in such way that the solution of the related homogeneous 

differential equation is the exact solution of the related homogeneous difference of Eq. (11), Eq. 

(12).   

Here 1 1

2

2i i i
i

h

  
 − +


− +
  , 1 1  ,     

2 2

i i i i
i i i i

h h

h h

   
   + −
+ −

− −    −   + and
h




= . 

Substituting Eq. (9) and Eq. (10) in the related homogeneous difference Eq. (11) and Eq. (12), we 

can determine the fitting factors  

( )

2

1 2 2

( )
( )

( ) ( )1
4

2 22

is h

i
i

ii

s h e

s h s h
Sinh Sinh




 

 



 
− 
 

 
 
 = −

      
−     

    

for i = 1, 2, …, p        (14a) 

( )

2

1 2 2

( )
( )

( ) ( )1
4

2 22

is h

i
i

ii

s h e

s h s h
Sinh Sinh




 

 



 
− 
 

 
 
 = −

      
+     

    

for i = p+1, p+2,…, N-1       (14b) 

and 1 2( ) ( ) ( )
( )

2 ( ) 2 2

i i i
i

i

s h s h s h
Coth Coth

s

  
 



    
= +    

    
 for i = 1,2,…N-1.              (15) 

The Eq. (11) and Eq. (12) reduces to below tridiagonal systems of equations 

1 12 2 2

2

2 2 2

i i i i i i i i i i
i i i i i

h h h
F

h h h h h

       
      − +

           
− − − + + + − + =           

           

          (16) 

for i = 1, 2, …, p   
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1 12 2 2

2

2 2 2

i i i i i i i i i i
i i i i i

h h h
F

h h h h h

       
      − +

           
+ − − − − + + + =           

           

          (17) 

i = p +1, p +2,…N-1          

To solve the above system of equations, Thomas algorithm is used with the boundary conditions 

Eq. (13). 

 

4. CONVERGENCE ANALYSIS 

The matrix vector form of tridiagonal system Eq. (16) can be expressed as 

        MZ R=            (18) 

where ( )  ,  1 -1 and 1 -1ijM p i p j p=     , such that 

 1   12 2 2

2
,  ,

2 2 2

i i i i i i i i i i
i i i i i i i

h h h
p p p

h h h h h

       
   − +

         
= − = − − + + = + +         

         
 

( )and   iR F= is a column matrix for 1,  2,..., 1i  p -=  with local truncation error  

2 3( ) ( )
2 6 12 2

i i i i
i i i i

h
T h h h O h

   
   

      = + + − +    
    

         (19)

 

i.e., truncation error in the scheme is of ( ) O h . 

The matrix-vector form of tridiagonal system Eq. (17) can be expressed as 

         MZ R=           (20) 

where ( ) j  ,  1 , -1iM p p i j N= +   , with 

i i 1   i 12 2 2

2
, ,

2 2 2

i i i i i i i i i i
i i i i

h h h
p p p

h h h h h

       
   − +

           
= + − = − − − + = +           

           
 

( )and  R iF=  is a column matrix for 1,  2,..., 1i p p N -= + + with local truncation error 

2 3( ) ( )
2 6 12 2

i i i i
i i i i

h
T h h h O h

   
   

      = − + + + +    
    

 

We also have    
__

( )  EM Z T h R− =           (21) 
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where 
__ __ __ __

0 1, ,...,

t

NZ   
 

=  
 

symbolizes the exact solution and the local truncation error is denoted 

by ( ) ( )0 1( ), ( ),..., ( )
t

E NT h T h T h T h= .                

Using Eq. (18), Eq. (20) and Eq. (21), we get    

( ) ( ) EM Z Z T h− =         (22) 

Thus the error equation is                    

( )EME T h=
         

(23) 

Here   ( )0 1 2, , ,...,
t

NE Z Z e e e e= − =  .     

Clearly, we have 

1

 j 2
1

+   for 1     
2

N
i

i i i

j

h
S p i

h


 

−

=

 
= = − − = 

 
  

0

1

 j

1

2 =     for 2,3,........., 2 
N

i i i i

j

S p i N 
−

=

= = = −  

1

 j 2
1

+   for 1
2

N
i

i i i

j

h
S p i N

h


 

−

=

 
= = − + = − 

 
  

Since 10   , the matrix M is monotone and irreducible.  Then, 1M −  exists and its entries 

are non-negative. 

Hence using Eq. (23), we get   

1 ( )EE M T h−=           (24) 

and                                1 . ( )EE M T h−          (25) 

Let ,k ip  be the ( ),
th

k i element of 1M − .  Since  , 0k ip  , using the matrix theory, we have 

                             
1

,

1

   1  ,    1,2,...., -1  
N

k i i

i

p S k N
−

=

= =                (26) 

Therefore, 

                                   

-1

,

1

1   1

1 1 1
  

min
o o

N

k i

i i i i
i N

p
S  =

  −

 = 
       

(27) 



 485 

FITTED DIFFERENCE APPROACH FOR DDES 

for some 1 oi N   and 2
oi i = . 

We define 
1

1

1 1
1

max
N

ki
k N

i

M p
−

−

  −
=

=   and ( ) ( )
1 1
maxE i

i N
T h T h

  −
= .  

Using Eq. (19), Eq. (24) and Eq. (27), we get 

1

i

1

   ( ),    1, 2, 3, ,  -1                 
N

j ki

i

e p T h j N
−

=

= =  

implies                         ,  1,2,3,..., -1j

i

Kh
e j N


 =         (28) 

where 
4

i iK
 

=  is a constant. 

Hence, using Eq. (28), we have      ( )hOE = . 

Therefore, the proposed scheme has first order convergent on uniform mesh.  

 

5. NUMERICAL EXPERIMENTS 

In order to check the efficiency of proposed scheme computationally, six problems are 

considered, chosen from the literature.  Since, the exact solution of the considered problems is 

given, so the maximum absolute errors are estimated by using ( ),
0
maxN i i

i N
E s  

 
= −  where the 

exact solution is ( )is and the computed solution is .i  

Example 1. ( )( ) ( ) 2 ( ) 3 0s s s s     + + − − = with  (0) 1 = , - 0s    and (1) 1 = ,

1 1s   + .  

Example 2. ( ) ( )( ) ( ) 3 2 0s s s s     + − + + = with (0) 1 = , - 0s    and (1) 1 = ,  

1 1s   + .  

Example 3. ( ) ( )( ) ( ) 2 ( ) 5 0s s s s s       + − − − + + = with (0) 1 = , - 0s    and

(1) 1 = ,  1 1z   + .  

Example 4. ( )( ) ( ) 2 ( ) 0s s s s     − − − + = with (0) 1 = , - 0s    and (1) 1 = − ,  



486 

SANGEETHA, MAHESH AND PHANEENDRA 

1 1s   + .  

Example 5. ( ) ( )( ) ( ) 2 0s s s s     − + − + = with (0) 1 = , - 0s    and (1) 1 = − ,  

1 1s   + .  

Example 6. ( ) ( )( ) ( ) 2 ( ) 2 0s s s s s       − − − + − + = with (0) 1 = , - 0s    and

(1) 1 = − ,  1 1s   + . 

 

6. DISCUSSIONS AND CONCLUSION 

To solve differential-difference equation having layer behaviour, a difference scheme with 

modified finite differences and multiple fitting parameters is introduced. Initially, the expansion 

of Taylor series used to minimize the given problem to differential equation with layer structure. 

Using modified finite differences of the first order derivatives, the numerical scheme is derived. 

Then introduced the fitting parameters at the convective and diffusion terms to handle the small 

values of the perturbation and to get accurate solution of the problem. The method is used with 

various examples of left layer and right layer, with distinct values of the delay parameter  , 

advanced parameter   and the perturbation  . The outcomes of the computations were 

compared and tabulated. The effects of the delay and the advanced parameters have been 

examined via graphs on the problem solutions. When the solution exhibits the layer on the 

left-end, the effect of delay or advanced parameters in the layer domain is observed to be 

negligible, whereas in the outer region it is significant. The variation of the advanced parameter 

influences the solution in the same way that the change in delay has an influence but reverse 

effect (see the Figures 1-4). In layer region as well as external region, there is an impact when 

the problem shows right-end layer on the region with respect to the delay or advanced variations. 

We also observed that the layer thickness decreases as the delay parameter increases while the 

advanced parameter increases the layer thickness (Figures 5-8). Results show that the proposed 

scheme is very well suited to the exact solution. 
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Table 1.  Maximum absolute errors in the solution of Example 1 for  =0.1 and for different 

values of .   

______________________________________________________________________________ 

      N →   8      32     128   512 

______________________________________________________________________________ 

        δ ↓                     Present method 

  0.00     7.6406e-13   6.7724e-15  9.9920e-16  3.3307e-16   

  0.05     7.5151e-13   2.5535e-15  3.3307e-15  2.2204e-16 

  0.09     7.4929e-13   2.6645e-15  3.5527e-15  3.3307e-16 

Results in [17] 

       0.00  0.03998462   2.3211e-003  1.4207e-004  8.8822e-006 

       0.05  0.04117834   2.3918e-003  1.4572e-004  9.0930e-006 

       0.09   0.04193952  2.4339e-003  1.4773e-004  9.2252e-006 

Results in [8] 

       0.00   0.09907804   0.03700736  0.00954678  0.00214501 

       0.05   0.09659609   0.03640566  0.00924661  0.00202998 

       0.09   0.09277401   0.03556652  0.00895172  0.00192488 

____________________________________________________________________________ 

 

 

 

Table 2.  Maximum absolute errors in the solution of Example 2 for  =0.1 and for different 

values of η. 

______________________________________________________________________________ 

     N →    8        32     128     512 

______________________________________________________________________________ 

      η ↓                           Present Method 

      0.00  7.6406e-13   6.7724e-15  9.9920e-16   3.3307e-16 

      0.05  3.0642e-14   4.2188e-14  2.3315e-15   3.3307e-16 

      0.09  1.6986e-14   3.3862e-14  1.6653e-15   3.3307e-16 

Results in [17] 

      0.00     3.5917e-003       1.9114e-004    1.1686e-005     7.2967e-007 

      0.05  3.3119e-003   1.8015e-004  1.0902e-005   6.8007e-007 

      0.09  3.0919e-003     1.7198e-004  1.0756e-005   6.7236e-007 

Results [8] 

      0.00  0.09907804   0.03700736  0.00954678   0.00214501 

      0.05  0.09977501   0.03727087  0.00979659   0.00224472 

      0.09  0.10031348   0.03723863  0.00996284   0.00458698 

______________________________________________________________________________ 
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Table 3.  Maximum absolute errors in the solution of Example 3 for  =0.1 and for different 

values of η and . 

______________________________________________________________________________  

                N=8             N = 32             N =128            N =512      

______________________________________________________________________________ 

   5.0=                       Present method 

  0.00        1.1213e-14        6.3283e-15         3.3307e-16         2.2204e-16 

  0.05        1.2490e-14        4.1078e-15         3.3307e-16         2.2204e-16 

  0.09        1.8785e-13        1.0603e-14         4.4409e-16         1.1102e-16  

   5.0=  

 0.00         1.7564e-13        1.2546e-14         2.2204e-16         1.1102e-16 

 0.05         1.2490e-14        4.1078e-15         3.3307e-16         2.2204e-16 

 0.09         1.8030e-13        1.8874e-15         2.2204e-16         2.2204e-16 

 

   5.0=                       Results in [17] 

 0.00         0.03998462        0.00232117        0.00014207         8.8822e-006 

 0.05         0.04117834        0.00239180        0.00014572         9.0930e-006 

 0.09         0.04193952        0.00243399        0.00014773         9.2252e-006 

   5.0=  

 0.00         0.04061578        0.00235898        0.00014404         8.9940e-006 

 0.05         0.04117834        0.00239180        0.00014572         9.0930e-006 

 0.09         0.04157997        0.00241448        0.00014683         9.1629e-006 

 

  5.0=                        Results in [8] 

0.00        0.09190267        0.03453494        0.01164358         0.00300463 

0.05        0.10233615        0.03823132        0.01295871         0.00335137 

0.09        0.11018870        0.04110846        0.01400144         0.00362925 

  5.0=  

0.00        0.09720079        0.03640446        0.01229476         0.0031786 

0.05        0.10233615        0.03823132        0.01295871         0.00335137 

0.09        0.10632014        0.03965833        0.01348348         0.00349050 

______________________________________________________________________________ 
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Table 4.  Maximum absolute errors in the solution of Example 4 for  =0.1 and for different 

values of .  

______________________________________________________________________________ 

N →   8      32      128     512 

______________________________________________________________________________ 

δ ↓          Present method 

0.00  7.4529e-13   2.3315e-15   8.3267e-16   3.3307e-16   

0.05   7.5462e-13    1.5543e-15   2.8866e-15   1.1102e-16 

0.09  7.5784e-13   .6645e-15   3.3307e-15   2.7756e-16 

 

             Results in [17] 

0.00   0.01729728   8.9760e-004   5.5488e-005   3.4650e-006 

0.05   0.01614989   8.5195e-004   5.3014e-005   3.3311e-006 

0.09   0.01511535    8.1843e-004   5.0710e-005   3.1680e-006 

 

                                   Results in [8] 

0.00   0.07847490   0.04678972   0.01727912   0.00443086 

0.05   0.09222560   0.03828329   0.01487799   0.00380679 

0.09   0.10509460   0.03149275   0.01299340   0.00331935 

______________________________________________________________________________ 

Table 5.  Maximum absolute errors in the solution of Example 5 for  =0.1 and for different 

values of η. 

______________________________________________________________________________ 

N →   8      32      128     512 

______________________________________________________________________________ 

η ↓                                 Present method 

0.00  7.4529e-13   2.3315e-15   8.3267e-16   3.3307e-16  

0.05   3.9857e-14   4.5963e-14   1.7764e-15   3.3307e-16  

0.09   1.3545e-14   4.5852e-14   1.5543e-15   2.2204e-16 

 

                                   Results in [17] 

0.00   0.01729728   9.3663e-004   5.7581e-005   3.5951e-006 

0.05   0.01829655   8.5195e-004   5.3014e-005   3.3311e-006 

0.09   0.01900051   9.6037e-004   5.9020e-005   3.6850e-006 

 

Results in [8] 

 

0.00   0.07847490   0.04678972   0.01727912   0.00443086 

0.05   0.06834579   0.05516436   0.01972508   0.00506769 

0.09   0.08328237   0.06168267   0.02169662   0.00558451 

______________________________________________________________________________ 
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Table 6.  Maximum absolute errors in the solution of Example 6 for  =0.1 and for different 

values of η and . 

______________________________________________________________________________ 

N →   8      32      128     512 

______________________________________________________________________________ 

   5.0=                           Present method 

0.00      2.2204e-16        3.6082e-16         7.3830e-15       2.2649e-14 

0.05      1.9429e-16        3.7470e-16         8.8818e-16    3.5127e-13 

0.09      1.3878e-16        1.6653e-15         2.2538e-14    1.1935e-14 

 

   5.0=  

0.00      2.2204e-16        1.9429e-15         2.9976e-15         1.5987e-14 

0.05      1.9429e-16        3.7470e-16         8.8818e-16         3.5127e-13 

0.09      3.3307e-16        5.5511e-16         2.2593e-14         3.5461e-13 

 

  5.0=                            Results in [8] 

0.00     0.09930002     0.03685072        0.01331683         0.00342882 

0.05     0.09997296       0.03218424         0.01167102     0.00299572 

0.09     0.10044578       0.02850398   0.01038902    0.00266379 

 

  5.0=  

0.00     0.10055269        0.02759534       0.01007834    0.00258299 

0.05     0.09997296       0.03218424         0.01167102     0.00299572 

0.09       0.09944067       0.03591410         0.0129736          0.00334044 

______________________________________________________________________________ 
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Figure 1. Numerical solution in Example 1 for ε = 0.1with different values of δ. 

 

 

Figure 2. Numerical solution in Example 2 for𝜀 = 0.1 with different values of η. 
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Figure 3. Numerical solution in Example 3 for𝜀 = 0.1with different values of δ. 

 

 

Figure 4. Numerical solution in Example 3 for𝜀 = 0.1with different values of η. 
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Figure 5. Numerical solution in Example 4 for𝜀 = 0.1with different values of δ. 

 

 

Figure 6. Numerical solution in Example 5 for 𝜀 = 0.1with different values of η. 
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Figure 7. Numerical solution in Example 6 with 𝜀 = 0.1 and for different values of η. 

 

 

Figure 8. Numerical solution in Example 6 with 𝜀 = 0.1 and for different values of δ. 
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