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1. Introduction

A binary relation on a set V is a subset E of V x V. A digraph is a pair (V| E') where
V' is a non empty set (called vertex set) and E is a binary relation on V. The elements
of E are called edges. Let V be a non empty set and let Ei, Fs,..., E, be mutually
disjoint binary relations on V. Then the (n + 1)-tuple G = (V; Ey, Es, ..., E,) is called
a digraph structure[9]. The elements of V' are called vertices and the elements of E; are
called E;-edges. The following definition were introduced in [9].

A digraph structure (V; Ey, Es, ..., E,) is called (1)E1Es - - - E,-trivial if E; = () for all
i, and E;- trivial if E; = (0 (i) Ey By - - - E,- reflexive if for all z € G, (x,x) € E; for some i,
and E;- reflezive if for all x € V, (z, 1) € Ey(iil) EyEy - -+ E,- symmetric if E; = E;* for
all i, and E;- symmetric if E; = E; '(iv) E\Ey -+ E,- anti symmetric, if (z,y) € E; and
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(y,x) € E; implies x = y for all i, and E;- anti symmetric if (z,y) € F; and (y,x) € E;
implies = y (v) E1E; - - - E,- transitive if for every ¢ and j, E; o E; C Ej, for some k,
and E; transitive if F; o E; C F; (vi) an Ey\Fy - -+ E,- hasse diagram if for every positive
integer n > 2 and every vy, vy, ...,v, of V., (v;,v;41) € UE; for all i =0,1,2,...,n—1,
implies (vg,v,) ¢ F; for all i, and E;- hasse diagram if for every positive integer n > 2 and
every vg, U1, ..., 0, of V. (v;,v,41) € E; for all i = 0,1,2,...,n — 1, implies (vo, v,) ¢ Ej,
(viii)Ey By - - - E,- complete if UE; =V x V, and E; complete it E; =V x V.

A digraph structure (V; By, Es, ..., E,) is called (i) an EyEs - - - E,- quasi ordered set if
it is both EyEs - - E,- reflexive and Fy Es - - - E,, -transitive (ii)an EFEs - - - E, - partially
ordered set if it is F1Fs - - - E,- anti symmetric and EFEs - - - E,- quasi ordered set. Sim-
ilarly, we can define F; quasi ordered set and E; partially ordered set as in the case of
ordinary relations.

An F\FE,--- E,- walk of length k£ in a digraph structure is an alternating sequence
W = wvg,e0,01,...,€5_1,V, Where ¢; = (v;,v;41) € UE;. An E\FE,---E, -walk W
is called a E1FEs--- E,- path if all the internal vertices are distinct. We use notation
(vo, V1,02, ..., v,) for the E1Ey - -+ E, - path W. As in digraphs, we define F;— walk and

E;- path. For example, an E;- path between two vertices u and v consists of only F;- edges.

A digraph structure (V; Ey, Es, ..., E,) iscalled (i) E1Es - - - E,- connected if there exits
at least one Fy Ey - - - E,- path from v to u for all w,v € V| (ii) E1 E5 - - - E,- quasi connected
if for every pair of vertices x,y there is a vertex z such that there is an E; Fs - - - F,-path
from z to x and an EFs -+ E,-path from z to y, (iii) E1Ey--- E,- locally connected iff
for every pair of vertices u,v € V there is an E1FEs,--- E, - path from v to u whenever
there is an FyEy - -+ E, - path from u to v and (iv) E1E; - - - E,- semi connected for every
pair of vertices u, v, there is an F1Fs--- E,- path from u to v or an F1FE5--- E,- path
from v to w.

A digraph structure (V; By, Es, ..., E,) is called E; -connected if there exits at least one
E; path from v to u for all u,v € V. Similarly we can define E; quasi connected, E;

-locally connected and FE; - semi connected digraph structures.
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The E1FEs--- E, - distance between two vertices x and y in a digraph structure G is
the length of the shortest Ey E - - - E,- path between = and y, denoted by dy 23 . (2, y).
Let G = (V; Fy, Es, ..., E,) be a finite £y F,--- E,- connected digraph structure. Then

-----

we can define F; distance and F; diameter as in digraphs.

Two digraph structures (Vi; By, Es, ..., E,) and (Va; Ry, Rs, ..., R,,) are said to be
isomorphic if (i) m = n and (ii) there exits a bijective function f: V; — V5 such that
(x,y) € E; < (f(z), f(y)) € R;. This concept of isomorphism is a generalization of
isomorphism between two digraphs. An isomorphism of a digraph structure onto itself
is called an automorphism. A digraph structure (V; Ey, Es, ..., E,) is said to be vertex-
transitive if, given any two vertices a and b of V| there is some digraph automorphism
f:V — V such that f(a) = b. Let (V;Ey, Es, ..., E,) be a digraph structure and let
v € V. Then the F 1 Es--- E, out-degree of uw is [{v € V : (u,v) € UE;}| and E1Ey--- E,
in-degree of u is [{v € V : (v,u) € UE;}|. Similarly we can define the E; out- degree and
E; in- degree as in the case of digraphs.

Let (Vi; Ey, Es, ..., E,) be a digraph structure. A vertex v € G is called an F1Es - -+ E,
-source if for every vertex x € G, there is an F1FEs--- F, - path from v to x. Similar-
ly a vertex u € G is called an F1Es--- FE,- sink if for very vertex y € G there is an
E\E,--- E,- path from y to u. As in digraphs, we define F; - source and E; - sink. Let
(Vi; By, Es, ..., E,) be a digraph structure and let v € G. Then the EyEs - - - E,, reach-
able set Rya3.. n(u) is {x € G : there is an E 1 Fs - - - E,- path from u to z}. Similarly,
the By Ey - - - E,- antecedent set Q12 ,(u) is defined as

Q2. .n(u) ={x € G: thereis an E\Ey--- E,- path from z to u}.
As in the case of digraphs, we can define the E;- reachable set and F;-antecedent set of a

vertex.

2. Coset Cayley Digraph Structures

In [9] the authors introduced a class of Cayley digraph structures induced by groups.

In this paper, we introduce a class of coset Cayley digraph structures induced by groups
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and prove that every vertex transitive digraph structure is isomorphic to the coset Cayley
digraph structure . These class of Cayley digraphs structures can be viewed as a gener-
alization of those obtained in [9].

We start with the following definition:

Definition 2.1. Let G be a group and S1,95,...,S, be mutually disjoint subsets of G
and H be a subgroup of G. Then coset Cayley digraph structure of G with respect to
S1, 89, ..., S, is defined as the digraph structure (G/H; Ey, Es, ..., E,), where

E;={(zH,yH): 'y € HS;H}.

The sets Sy, S, ..., S, are called connection sets of (G/H; E1, Es, ..., E,). We denote

the coset Cayley digraph structure of G with respect to Si,.5,,...,.5, by

In this paper, we may use the following notations: Let % be a coset Cayley digraph
structure induced by the group G with respect to the connection sets Sy, 5,,...,.9, .
(1) Let Ay be the union of set of all k£ products of the form (HS;; H)(HS;oH) - -- (HS;,H)
from the set {HS1H, HS:H, ..., HS,H}. Then |, Ay. is denoted by [HSH].
(2) Let A.' be the union of set of all k¥ products of the form:

(HS;;'H)(HS;; ' H) -+ (HS;; ' H).

Then |J, A; " is denoted by [HS™1H].
(3) Let A be a subset of a group G, then the semigroup generated by A is denoted by

< A>.
2.1 Main Theorems

Theorem 2.1.1 If G is a group and let Sy, 5, ...,S, are mutually disjoint subsets of G

and H is a subgroup of G, then the coset Cayley digraph structure € is vertex transitive.

Proof. To see that Cay(G/H; HS\H, HS:H, ..., HS, H) is a vertex transitive digraph
structure, we first need only show that E;’s are well defined. Let z,y,2’,y’ be any four

elements of G with xtH = 2’H and yH = y'H. Then x = z’h; and y = y'hy for some
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hi,hy € H. Observe that

(zH,yH) € E; & v 'y € HS;H
& (2'hy) M (y'hy) € HS;H
& hit(2") W hy € HS;H
& (o) € HS;H

& («'H,y'H) € HS;H.

Hence each FE;’s are well defined and hence Cay(G/H; HS1H,HS2H,...,HS,H) is a
digraph structure. Let aH and bH be any two arbitrary elements in G/H. Define a
mapping ¢ : G — G by

o(xH) =ba'zH for all zH € G/H.

This mapping defines a permutation of the vertices of Cay(G/H; HS1H, HS,H, ..., HS, H).

It is also an automorphism. Note that

(xH,yH) € E; & o'y € HS;H
& (ba'x) ' (baly) € HS;H
& (ba 'zH,ba 'yH) € E;

& (p(zH),p(yH)) € E;.

Also we note that
¢o(aH) =ba 'aH = bH.

Hence Cay(G/H; HS1H,HSsH, ..., HS,H) is vertex transitive digraph structure.

Theorem 2.1.2
Let (V; Wy, Wa, -+ [ W,,) be any vertex transitive digraph structure such that |V| > n.
Then (V; Wy, Wy, -+ W,,) is isomorphic to Cay(G/H; HS1H,HS:H, ..., HS, H).
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Proof. Let G be the automorphism group of the digraph structure (V; Wy, Wy, -+ [ W,,).

Let g1,q2,- -+ ,q, be fixed elements in V. For i = 1,2,...,n, define the following:

Hi:={0€G:0(a) = a},
Note that H = N7, H; is a subgroup of G. Construct the Cayley digraph structure

Cay(G/H;HS1H,HS3H, ..., HS,H) as in theorem 2.2.1.
Define a map ¢ : G/H — V by

(xH)p = x(¢;) for all tH € G/H.

where ¢; is a fixed element in the set {q1, 2, ..., ¢}
(i) is well defined:
Let tH = yH. Then y = xhy, for some h; € H. Observe that

e(yH) = y(a)
= (2h1)(a)
= [ (q:)]
= z(g;)

= p(zH)
(i) ¢ is one to one:

p(xH) = o(yH) < =(q:) = y(a:)
ey le(e) = ¢
sy lreH
& oH =yH.

(iii)  is onto:

Let v be any element in V. Since (V; Wy, Wy, -+ | W,,) is vertex transitive, there exists an
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automorphism 6 such that 6(v) = ¢;. This implies that v = 671(¢;). That is, v = (0~ H).
(iv) ¢ preserves adjacency relation :

Observe that

(rH,yH) € E; & v 'y € HS;H
= x_ly = hi8;ho
& hflx’lyhgl =3 €5
& (g, (hy'a ™ yhy ") (@) € Wi
& (hilg), z y(g) € W,
< (2(q) y(@) €W;

& (p(eH), p(yH)) € Wi

2.2 Corollaries

In this section we can prove many graph theoretic properties in terms of algebraic prop-
erties. Moreover, these results can be considered as the generalization of those obtained
in [9].

Proposition 2.3 The coset Cayley graph structure € is an E1Fs--- E, -trivial digraph

structure < S; = 0 for all i.

Proof. By definition, € is E1Es--- E,, - trivial & E; = () for all . This implies that
S; = 0 for all 4.

Proposition 2.4 The coset Cayley graph structure € is an E; -trivial digraph structure

Proposition 2.5 The coset Cayley graph structure € is E1Es - - - E,- reflexive < 1 € S

for some i.
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Proof. Assume that € is an F\FE,--- E, -reflexive digraph structure. Then for every
*H € G/H, (xH,zH) € E; for some i. This implies that 1 € HS;H for some i. Con-
versely, assume that 1 € S; for some i. This implies for each xH € G/H, (xH,xH) € E;
for some i. That is, (zH,zH) € UE; for all z € G.

Proposition 2.6 The coset Cayley graph structure € is E;- reflevive < 1 € HS;H.

Proposition 2.7 The coset cayley graph structure € is E1FEs--- E,- symmetric if and
only if HS;H = HS; ' H for all .

Proof. First, assume that € is an FFE, - E, -symmetric digraph structure. Let a €
HS;H. Then (H,aH) € E;. Since € is symmetric (a,1) € E;. This implies that
a”! € HS;H. That is a € HS;'H. Hence HS;H C HS;'H. Similarly, we can prove
that HS;'H C HS;H.

Conversely, if HS;H = HSZ-_IH7 we can prove that ¢ is an EiFs--- F, -symmetric

digraph structure.
Proposition 2.8 € is E; symmetric if and only if HS;H = HS; 'H.

Proposition 2.9 € is an E\E; - - - E,, - transitive if and only if for everyi, j, HS;HS;H C
HS H for some k.

Proof. First, assume that € is E1Es - - - E,, - transitive. We will show that for all (¢, ),
HSlHSjH Q HSkH for some k. Let x c HSZHS]H = HSlHHS]H Then

T = 212 for some 2z € HS;H, 2o € HS; H

This implies that (H, 2 H) € E; and (21 H, 2120H) € E;. Since € is E1Ey - - - E,, - transi-
tive, (H,z120H) € HS,H for some k. That is 2129 € HSyH. Hence HS;HS;H C HS,H.

Conversely, assume that all (¢, 7), HS;HS;H C HS,H for some k. We will show that
€ is E1Ey--- E, - transitive. Let (H,xH) € E;, (¢H,yH) € E;. Then x € HS;H and
x 'y € HS;H. This implies that y = zo~'y € HS;HS;H. Since HS;HS;H C HS,H,
we have y € HS,H. 1t follows that (H,yH) € E.
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Proposition 2.10 € is an E1FEs - - - E, -k- transitive if and only if for every iy, io, ..., ix €
{1,2,...,k}, we have

(HS;H)(HS,,H)---(HS; H) C (HS; H) for some j;

(HS;,H)(HS,,H)---(HS;,_ H) C (HS;,H) for some js;

k-1

(HS;,H)(HS;,H) C (HS;, ,H) for some j;.

Jk—1

Proof. First, assume that € is an E1Fs - - - B, -k- transitive. Letx € (HS;, H)(HS,,H)---(HS; H).
Then there exits z; € (HS;;H), j = 1,2,...,ksuch that x = 2125 - - - ;. This implies that

(}{,Zlf{,2122}{,212223f{,...7212223. ..Zkfy)
is a path from 1 to x. Since € is an E1FE> - -- E, -k- transitive, we have

(H, 212923 ... 21, H) € Ej, for some 7,

(f{,212223.. .Zkflff) S lzh for some jg,

(H,z120H) € E;

v, for some jj_q.

The above statements tells us that

(HS,H)(HS,,H)---(HS; H) C (HS; H) for some ji;

(HS;,H)(HS;,H)---(HS;, ,H) C (HS;,H) for some jj;

k—1

(HS;,H)(HS;,H) C (HS;, ,H) for some jj_1.

Jk—1

Conversely, assume that the above conditions holds. Let x1H,z2H, ..., x,H € G/H such
that (v1H,29H) € E;,, (xoH,23H) € E,,, ..., (xy_1H,2,H) € E;,. Then

To = T1t1, X3 = Xata, ..., T = Tp_1t_1
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for some t; € HS; H.
The above equations can be written as:
w3 = 11(t1ts)

Ty = 11 (tltgtg)

Ty = 21 (tity -+ - ty)
The above equations tells as that (z1H,x3H) € E;,, (x1H,24H) € E;y, ..., (x1H,x4_1H) €
E; This completes the proof.

k—1"
Proposition 2.11 % is an E;-k- transitive if and only if (HS;H)" C (HS;H) for n =
2.3,.... k.

Proposition 2.12 ¢ is F\Es - - - E,, -complete if and only if G = UHS; H.

Proof. Suppose ¥ is E1E;---E, complete. Then for every xtH € G/H, we have
(H,xH) € UE;. This implies that 2 € HS;H for some 7. This implies that G = UHS; H.
Conversely, assume that G = UHS;H. Let xH and yH be two arbitrary elements in
G/H such that y = xz. Then z € G. This implies that z € HS;H for some i. That is,
(H,zH) € UE;. That is (¢H,zzH) = (xH,yH) € UE;. This shows that ¢ is complete.

Proposition 2.13 ¢ is E; complete if and only if G = HS;H.
Proposition 2.14 € is E1E, - -+ E,, connected if and only if G = [HSH].

Proof. Suppose €is E1FEs - - - E,, connected and let +H € G/H.
Let (H,y1H,y2H,...,y,H,xH) be an E\FE5 - - FE,- path leading from H to zH. Then

yy €HS; H for some iy;
Y yo €HS;, H for some iy;

yy 'ys €HS;, H for some i;

y, ' €HS;,  H for some i,,;.

In+1
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Note that = = y1y; "9y 'ys - -y, 'x. Hence from the above equations, we have:

ve (HSyH)HS,H)(HS,,H)---(HS;, H) C [HSH]. Since z is arbitrary, G = [HSH].
Conversely, assume that G = [HSH]. Let z and y be any arbitrary elements in

G. Let y = zz. Then z € G. That is, z € (HS;H)(HS;H)---(HSxH) for some

i,7,... and k. This implies that z = s;s;...5s; for some 7,j... and k. Then clearly,

(H,s;H,s;s;H,... ,s;5;...551H)is an E1Ey-- - E,- path from H to zH. That is

(xH,xs;H,xs;5;H, ... ,xs;5;...5,H) is a E1Ey--- E,- path from xH to yH. Hence ¢ is

connected.

Proposition 2.15 ¢ is E; connected if and only if G =< HS;H >, where < HS;H > 1is

the semigroup generated by HS;H .
Proposition 2.16 ¢ is Ey1E, - -+ E,, quasi connected if and only if G = [HSH| '[HSH].

Proof. First, assume that % is quasi strongly connected. Let xH be any arbitrary elemen-
tin G/H. Then there exits a vertex yH € G such that there is a path from yH to xH, say:
(yH,y1H,y.H,--- ,y,H, H) and a path from yH to H, say: (yH,x1H,zoH, ... ,v,,H,vH).

Then we have the following system of equations:
y~ 'y, € HS; H;
yi'y2 € HS;, H;

(1) Yy 'ys € HS,, H;

y,t € HS;,  H.

n+1

and
y’lxl € HS; H;
xtwy € HS;, H;

(2) xy'wy € HS;, H;

xlv € HS;, . H.
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From equation (1) we obtain the following:

y =) ) (v s) o (U ) € Siy € (HS H)(HSu,H) -+ (HS;,,,, H).
This implies that

(3) ye (HS;'H)(HS;;'H)---(HS; ! H) e [HS"H].

Tn+1

Similarly, from equation (2) we obtain the following:

(4) yilx = (yilxl)(‘xlilxﬁ e (x;lx) € (HsllH>(HSl2H) e (HSim+1H)'
That is

y 'z € [HSH].
That is

v €yHSH) C [HS 'H|[HSH).

Since x is arbitrary, we have
G = [HS 'H|[HSH].

Conversely, assume that G = [HST'H|[HSH]|. Let x and y be two arbitrary vertices in
G. Let y = zz. Then z € G. This implies that z € [HS 'H|[HSH]. Then there exits
21 € [HS7'H| and z, € [HSH] such that z = z25. 2, € [HS™'H] implies that there
exits ty € HS;, H such that

z1 = tity . . . t, for some t GHSZ-;lH,kzl,Z,...,n.

This implies that

(ZlH,tthH...tnfl,..wH)

is a path from z; H to H. That is
(y21H7 ytltgH . tn_lH, . ,yH)

is a path from yz1H to yH.

Similarly, zo € [HSH] implies that there exits a; € S;, such that

Z9 = A1a3 . .. Q.
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Observe that

(z22H,a1a0H, ayaza3H, ..., H)
is a path from zoH to H. That is,
(z120H, z1a100H, ayasasH, . .., 21 H)
is a path from zH to z;H. That is
(yzH,yza1a0H, yajasasH, ... 21 H)
is a path from xH to z1 H.
Proposition 2.17 € is E;- quasi connected if and only if G =< HS;'H >< HS;H >.

Proposition 2.18 ¢ is E\E; - - - E,, - locally connected if and only if [HSH] = [HS™'H].

Proof.
Assume that €is E1E,--- E, - locally connected. Let z € [HSH]|. Then z € A,, for

some m. Then x = s;s;...5,. Let xog = 1,21 = 8;, 02 = 5;8;, ..., Ty, = 5iSj ... Sy Then
(l’oH,.’ElH,ZL’QH,...,l‘mH)

is a path leading from 1 to x. Since % is locally connected, there exits a path from zH
to H, say:
(xHaylHay2H7 s 7ymH7H)

This implies that
-1
r Y € S’h

yl_lyQ S Siz

y;ll € Szn

The above equations tells us that z=! € [HSH| . That is x € [HS™'H|. Hence [HSH] =
[HS™'H]. Conversely, if [HSH]| = [HS™'H], one can easily verify that € is E1E,--- E,

- locally connected.
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Proposition 2.19 € is E;- locally connected if and only if < HS;'H >=< HS;H >.
Proposition 2.20 € is E\E; - - - E,,- semi connected if and only if G = [HSH|U[HS™' H].

Proof. Assume that € is E1F,--- E, - semi connected and let xtH € G/H. Then there

is a path from H to xH, say

(H,x1H,x9H,--- ,x,H xH)
or a path from zH to H, say

(xH,yH,y2H, -, ymH, H)

This implies that z € [HSH] or z € [HS™'H]. This implies that G = [HSH|U[HS'H].
Similarly, if G = [HSH] U [HS 'H], then one can prove that ¢ is EiFy--- E,- semi

connected.

Proposition 2.21 € is E; - semi connected if and only if G =< HS;H > U < HS; 'H >.

Proposition 2.22 € is an E1Es - -- E,- quasi ordered set if and only if
(i1)le (HS\H)U(HS:H)---U (HS,H),

(i1)for every(i, j), HS;HS;H C HSyH for some k.
Proposition 2.23 € is an E; quasi ordered set if and only if
(i)l € HS;H,
(i3)(HS;H)* C HS;H.
Proposition 2.24 ¢ if an E1Es - - - E,- partially ordered set if and only if
()1 e(HSYH)U(HSH)---U(HS,H),
(23)for every(i, j), (HS;H)(HS;H) C (HSkH) for some £,
(iii) U (HS;H) N (HS;'H) = {1}.
Proof. Observe that

r € UHS;H)NH(S)'H & 2z € (HS;H)N (HS;'H) for some i
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& r € HS;H and xr € HS;'H
& (H,zH) € E; and (xH, H) € E;

S z=1.

Proposition 2.25 € if an E; partially ordered set if and only if

(1)1 € HS;H,
(i3)(HS;H)* C HS;H

(i3d)(HS;H) N (HS; *H) = {1}

Proposition 2.26 Let A,,(m > 2) is the set of m products of the form S;,S;, - S,

Then € is an E\FEy--- E, - hasse diagram if and only if C N S; = 0 for all i and for all
CeA,.

Proof. Suppose the condition holds. Let zoH,z1H,...,z,,H be (m + 1) elements in
G/H such that (z;H,z;.1H) € UE; for i = 0,1,...,m — 1. This implies that

Totw € Siy;

.Tl_l.iljg < SiQ;

$;1$33 S Szg;

1
T 1Ty €5

m*

The above equation tells us that z; Yem € A, Since CNS; = 0 for all ¢ and for all
C e Ay, (xg,z) ¢ UE;.

Conversely assume that ¢ is an F, F, - - - E,, hasse diagram. We will show that CN.S; = ()
for all ¢+ and for all C' € A,,. Let S; 5,5, -5, be any element in A,,. Let z €

SiySiySig -+ S, Then x = s;,5;,8, ...5;, for some s;, € 5;,. This implies that

(H,sy H,si,si,H,...,oH)



COSET CAYLEY DIGRAPH STRUCTURES 1781

is a path from H to xH. Since ¢ is an E1E, - - - E, hasse- diagram, x ¢ S; for any i. That
is, A,, N S; = 0 for all 4.

Proposition 2.27 The E1E; - - - E,, out-degree of € is the cardinal number |S;USU- - -U
Sn/H|.

Proof. Since % is vertex- transitive it suffices to consider the out degree of the vertex

H € G/H. Observe that
p(H) ={uH : (H,uH) € E}
={uH : v € HS;H for some i}
=(HS1H)U(HS;H)U---U(HS,H)/H
Hence |p(H)| = |(HS1H)U(HS;H)U---U (HS,H)/H|.
Proposition 2.28 The E; out-degree of € is the cardinal number |HS;H/H|.

Proposition 2.29 The E\E,--- E, in-degree of € is the cardinal number |(HS; H) U
(HSy'H)U---U(HS,;*H)/H|.

Proof. Since ¥ is vertex- transitive it suffices to consider the in degree of the vertex

H € G/H. Observe that
o(H)={uH : (uH,H) € E}
— {uH : (ull, H) € E;}
={uH :u ' € HS;H}
={uH :u € HS;'H}
Hence |o(H)| = |(HS;"H)U (HS;'H)U ---U (HS;'H)/H|.
Proposition 2.30 The E; in-degree of € is the cardinal number |HS; *H/H]|.

Proposition 2.31 For k = 1,2,3,... let Ay be the set of all k products of the form
(HS;H)(HS,,H)---(HS; H). If € has finite diameter, then the diameter of € is the
least positive integer m such that

G=A4,
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Proof.Let m be the smallest positive integer such that G = A,,. We will show that the
diameter of € is m. Let xH and yH be any two arbitrary elements in G such that y = xz.
Then z € G. This implies that z € A,,. But then z has a representation of the form

T = S, Si, -+ - Si,,. Lhis implies that
(H,s;,H,s;,8:,H,...,2H)
is path of m edges from H to zH. That is
(xH,xs; H,xs;,8:,H,...,yH)

is a path of length m from zH to yH. This shows that d(zH,yH) < n. Since xH and

yH are arbitrary,
maX:pH,yHGG{dl,Z,--- ,n(va yH>} S m
Therefore the diameter of % is less than or equal to n. On the other hand let the diameter

of € be k. Let x € G and dy 5. n(H,xH) = k. Then we have x € B for some B € Ay.
That is

G = A,
Now by the minimality of k, we have m < k. Hence k = m.
Proposition 2.32 The vertex H is an E1Ey - - - E,- source of € if and only if G = [HSH].

Proof. First, assume that H is an F1FE5--- FE, -source of 4. Then for any vertex
xH € G/H, there is an E1Ey - - - E,- path from H to xH. This implies that G = [HSH]|.

Conversely, if G = [HSH|, one can prove that H is an EFEs - - - E,- source.
Proposition 2.33 The vertex H is an E;- source of € if and only if G =< HS;H >.
Proposition 2.34 The vertex H is an E\Es - - - E,, - sink of € if and only if G = [HS™' H].

Proof. First, assume that H is an E1FE,--- FE, -sink of ¥. Then for each zH € G/H,
there is an F Fy--- E,- path from zH to H. This implies that x € [HS™'H]. Hence
G=[HS'H].

Conversely, if G = [HS™'H], one can easily prove that H is an E\E,--- E, -sink of €.
Proposition 2.35 The vertex H is an E; sink of € if and only if G =< HS; 'H >.
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Proposition 2.36 The EyE,--- E,- reachable set Ry ,(H) of the vertex H is the set
[HSH].

Proof. By definition,
R(H) = {zH : there exits an E1E,--- E, - path from H to 2H}
Observe that

tH € Ry n(H) < there exits an E1Es - - - E, -path from H to xH, say
(H,x1H,x9H, ... ,x,H xH)
& o e [HSH|
Therefore, Ry 3. o(H) = [HSH].
Proposition 2.37 The E; reachable set R;(H) of the vertex H is the set < S; > .

Proposition 2.38 The E\E, - - - E, - antecedent set Q1. ,(H) of the vertex H is the set
[HS™'H].

Proof. Observe that
r € Q. n(H) < there exits an EyEy - -- E, path from xH to H, say
(xH,x1H,xoH, ... , x,H H)
& e[HSH].
Qro..n(H) = [HSilH]-

Proposition 2.39 The E; antecedent set Q;(H) of the vertex H is the set < HS; 'H > .
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