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1. Introduction

A binary relation on a set V is a subset E of V × V . A digraph is a pair (V,E) where

V is a non empty set (called vertex set) and E is a binary relation on V . The elements

of E are called edges. Let V be a non empty set and let E1, E2, . . . , En be mutually

disjoint binary relations on V . Then the (n + 1)-tuple G = (V ;E1, E2, . . . , En) is called

a digraph structure[9]. The elements of V are called vertices and the elements of Ei are

called Ei-edges. The following definition were introduced in [9].

A digraph structure (V ;E1, E2, . . . , En) is called (i)E1E2 · · ·En-trivial if Ei = ∅ for all

i, and Ei- trivial if Ei = ∅ (ii)E1E2 · · ·En- reflexive if for all x ∈ G, (x, x) ∈ Ei for some i,

and Ei- reflexive if for all x ∈ V , (x, x) ∈ Ei(iii) E1E2 · · ·En- symmetric if Ei = E−1i for

all i, and Ei- symmetric if Ei = E−1i (iv) E1E2 · · ·En- anti symmetric, if (x, y) ∈ Ei and
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(y, x) ∈ Ei implies x = y for all i, and Ei- anti symmetric if (x, y) ∈ Ei and (y, x) ∈ Ei

implies x = y (v) E1E2 · · ·En- transitive if for every i and j, Ei ◦ Ej ⊆ Ek for some k,

and Ei transitive if Ei ◦ Ei ⊆ Ei (vi) an E1E2 · · ·En- hasse diagram if for every positive

integer n ≥ 2 and every v0, v1, . . . , vn of V , (vi, vi+1) ∈ ∪Ei for all i = 0, 1, 2, . . . , n − 1,

implies (v0, vn) /∈ Ei for all i, and Ei- hasse diagram if for every positive integer n ≥ 2 and

every v0, v1, . . . , vn of V , (vi, vi+1) ∈ Ei for all i = 0, 1, 2, . . . , n− 1, implies (v0, vn) /∈ Ei,

(viii)E1E2 · · ·En- complete if ∪Ei = V × V , and Ei complete if Ei = V × V .

A digraph structure (V ;E1, E2, . . . , En) is called (i) an E1E2 · · ·En- quasi ordered set if

it is both E1E2 · · ·En- reflexive and E1E2 · · ·En -transitive (ii)an E1E2 · · ·En - partially

ordered set if it is E1E2 · · ·En- anti symmetric and E1E2 · · ·En- quasi ordered set. Sim-

ilarly, we can define Ei quasi ordered set and Ei partially ordered set as in the case of

ordinary relations.

An E1E2 · · ·En- walk of length k in a digraph structure is an alternating sequence

W = v0, e0, v1, . . . , ek−1, vk, where ei = (vi, vi+1) ∈ ∪Ei. An E1E2 · · ·En -walk W

is called a E1E2 · · ·En- path if all the internal vertices are distinct. We use notation

(v0, v1, v2, . . . , vn) for the E1E2 · · ·En - path W . As in digraphs, we define Ei− walk and

Ei- path. For example, an Ei- path between two vertices u and v consists of only Ei- edges.

A digraph structure (V ;E1, E2, . . . , En) is called (i) E1E2 · · ·En- connected if there exits

at least one E1E2 · · ·En- path from v to u for all u, v ∈ V , (ii)E1E2 · · ·En- quasi connected

if for every pair of vertices x, y there is a vertex z such that there is an E1E2 · · ·En-path

from z to x and an E1E2 · · ·En-path from z to y, (iii) E1E2 · · ·En- locally connected iff

for every pair of vertices u, v ∈ V there is an E1E2 · · ·En - path from v to u whenever

there is an E1E2 · · ·En - path from u to v and (iv) E1E2 · · ·En- semi connected for every

pair of vertices u, v, there is an E1E2 · · ·En- path from u to v or an E1E2 · · ·En- path

from v to u.

A digraph structure (V ;E1, E2, . . . , En) is called Ei -connected if there exits at least one

Ei path from v to u for all u, v ∈ V . Similarly we can define Ei quasi connected, Ei

-locally connected and Ei - semi connected digraph structures.
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The E1E2 · · ·En - distance between two vertices x and y in a digraph structure G is

the length of the shortest E1E2 · · ·En- path between x and y, denoted by d1,2,3,...,n(x, y).

Let G = (V ;E1, E2, . . . , En) be a finite E1E2 · · ·En- connected digraph structure. Then

the E1E2 · · ·En diameter of G is defined as d(G) = maxx,y∈G{d1,2,3,...,n(x, y)}. Similarly

we can define Ei distance and Ei diameter as in digraphs.

Two digraph structures (V1;E1, E2, . . . , En) and (V2;R1, R2, . . . , Rm) are said to be

isomorphic if (i) m = n and (ii) there exits a bijective function f : V1 7−→ V2 such that

(x, y) ∈ Ei ⇔ (f(x), f(y)) ∈ Ri. This concept of isomorphism is a generalization of

isomorphism between two digraphs. An isomorphism of a digraph structure onto itself

is called an automorphism. A digraph structure (V ;E1, E2, . . . , En) is said to be vertex-

transitive if, given any two vertices a and b of V , there is some digraph automorphism

f : V → V such that f(a) = b. Let (V ;E1, E2, . . . , En) be a digraph structure and let

v ∈ V . Then the E1E2 · · ·En out-degree of u is |{v ∈ V : (u, v) ∈ ∪Ei}| and E1E2 · · ·En

in-degree of u is |{v ∈ V : (v, u) ∈ ∪Ei}|. Similarly we can define the Ei out- degree and

Ei in- degree as in the case of digraphs.

Let (V1;E1, E2, . . . , En) be a digraph structure. A vertex v ∈ G is called an E1E2 · · ·En

-source if for every vertex x ∈ G, there is an E1E2 · · ·En - path from v to x. Similar-

ly a vertex u ∈ G is called an E1E2 · · ·En- sink if for very vertex y ∈ G there is an

E1E2 · · ·En- path from y to u. As in digraphs, we define Ei - source and Ei - sink. Let

(V1;E1, E2, . . . , En) be a digraph structure and let v ∈ G. Then the E1E2 · · ·En reach-

able set R1,2,3,··· ,n(u) is {x ∈ G : there is an E1E2 · · ·En- path from u to x}. Similarly,

the E1E2 · · ·En- antecedent set Q1,2,...,n(u) is defined as

Q1,2,...,n(u) = {x ∈ G : there is an E1E2 · · ·En- path from x to u}.

As in the case of digraphs, we can define the Ei- reachable set and Ei-antecedent set of a

vertex.

2. Coset Cayley Digraph Structures

In [9] the authors introduced a class of Cayley digraph structures induced by groups.

In this paper, we introduce a class of coset Cayley digraph structures induced by groups
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and prove that every vertex transitive digraph structure is isomorphic to the coset Cayley

digraph structure . These class of Cayley digraphs structures can be viewed as a gener-

alization of those obtained in [9].

We start with the following definition:

Definition 2.1. Let G be a group and S1, S2, . . . , Sn be mutually disjoint subsets of G

and H be a subgroup of G. Then coset Cayley digraph structure of G with respect to

S1, S2, . . . , Sn is defined as the digraph structure (G/H;E1, E2, . . . , En), where

Ei = {(xH, yH) : x−1y ∈ HSiH}.

The sets S1, S2, . . . , Sn are called connection sets of (G/H;E1, E2, . . . , En). We denote

the coset Cayley digraph structure of G with respect to S1, S2, . . . , Sn by

C = Cay(G/H;HS1H,HS2H, . . . , HSnH).

In this paper, we may use the following notations: Let C be a coset Cayley digraph

structure induced by the group G with respect to the connection sets S1, S2, . . . , Sn .

(1) LetAk be the union of set of all k products of the form (HSi1H)(HSi2H) · · · (HSikH)

from the set {HS1H,HS2H, . . . , HSnH}. Then
⋃

k Ak. is denoted by [HSH].

(2) Let A−1k be the union of set of all k products of the form:

(HSi
−1
1 H)(HSi

−1
2 H) · · · (HSi

−1
k H).

Then
⋃

k A
−1
k is denoted by [HS−1H].

(3) Let A be a subset of a group G, then the semigroup generated by A is denoted by

< A >.

2.1 Main Theorems

Theorem 2.1.1 If G is a group and let S1, S2, . . . , Sn are mutually disjoint subsets of G

and H is a subgroup of G, then the coset Cayley digraph structure C is vertex transitive.

Proof. To see that Cay(G/H;HS1H,HS2H, . . . , HSnH) is a vertex transitive digraph

structure, we first need only show that Ei’s are well defined. Let x, y, x′, y′ be any four

elements of G with xH = x′H and yH = y′H. Then x = x′h1 and y = y′h2 for some
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h1, h2 ∈ H. Observe that

(xH, yH) ∈ Ei ⇔ x−1y ∈ HSiH

⇔ (x′h1)
−1(y′h2) ∈ HSiH

⇔ h−11 (x′)−1y′h2 ∈ HSiH

⇔ (x′)−1y′ ∈ HSiH

⇔ (x′H, y′H) ∈ HSiH.

Hence each Ei’s are well defined and hence Cay(G/H;HS1H,HS2H, . . . , HSnH) is a

digraph structure. Let aH and bH be any two arbitrary elements in G/H. Define a

mapping ϕ : G 7−→ G by

ϕ(xH) = ba−1xH for all xH ∈ G/H.

This mapping defines a permutation of the vertices of Cay(G/H;HS1H,HS2H, . . . , HSnH).

It is also an automorphism. Note that

(xH, yH) ∈ Ei ⇔ x−1y ∈ HSiH

⇔ (ba−1x)−1(ba−1y) ∈ HSiH

⇔ (ba−1xH, ba−1yH) ∈ Ei

⇔ (ϕ(xH), ϕ(yH)) ∈ Ei.

Also we note that

ϕ(aH) = ba−1aH = bH.

Hence Cay(G/H;HS1H,HS2H, . . . , HSnH) is vertex transitive digraph structure.

Theorem 2.1.2

Let (V ;W1,W2, · · · ,Wn) be any vertex transitive digraph structure such that |V | ≥ n.

Then (V ;W1,W2, · · · ,Wn) is isomorphic to Cay(G/H;HS1H,HS2H, . . . , HSnH).
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Proof. Let G be the automorphism group of the digraph structure (V ;W1,W2, · · · ,Wn).

Let q1, q2, · · · , qn be fixed elements in V . For i = 1, 2, . . . , n, define the following:

Hi := {θ ∈ G : θ(qi) = qi},

Si := {θ ∈ G : (qi, θ(qi)) ∈ Wi}.

Note that H = ∩ni=1Hi is a subgroup of G. Construct the Cayley digraph structure

Cay(G/H;HS1H,HS2H, . . . , HSnH) as in theorem 2.2.1.

Define a map ϕ : G/H 7−→ V by

(xH)ϕ = x(qi) for all xH ∈ G/H.

where qi is a fixed element in the set {q1, q2, . . . , qn}.

(i)ϕ is well defined:

Let xH = yH. Then y = xh1, for some h1 ∈ H. Observe that

ϕ(yH) = y(qi)

= (xh1)(qi)

= x[h1(qi)]

= x(qi)

= ϕ(xH)

(ii) ϕ is one to one:

ϕ(xH) = ϕ(yH)⇔ x(qi) = y(qi)

⇔ y−1x(qi) = qi

⇔ y−1x ∈ H

⇔ xH = yH.

(iii) ϕ is onto:

Let v be any element in V . Since (V ;W1,W2, · · · ,Wn) is vertex transitive, there exists an
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automorphism θ such that θ(v) = qi. This implies that v = θ−1(qi). That is, v = ϕ(θ−1H).

(iv) ϕ preserves adjacency relation :

Observe that

(xH, yH) ∈ Ei ⇔ x−1y ∈ HSiH

⇔ x−1y = h1sih2

⇔ h−11 x−1yh−12 = si ∈ Si

⇔ (qi, (h
−1
1 x−1yh−12 )(qi)) ∈ Wi

⇔ (h1(qi), x
−1y(qi)) ∈ Wi

⇔ (x(qi), y(qi)) ∈ Wi

⇔ (ϕ(xH), ϕ(yH)) ∈ Wi.

2.2 Corollaries

In this section we can prove many graph theoretic properties in terms of algebraic prop-

erties. Moreover, these results can be considered as the generalization of those obtained

in [9].

Proposition 2.3 The coset Cayley graph structure C is an E1E2 · · ·En -trivial digraph

structure ⇔ Si = ∅ for all i.

Proof. By definition, C is E1E2 · · ·En - trivial ⇔ Ei = ∅ for all i. This implies that

Si = ∅ for all i.

Proposition 2.4 The coset Cayley graph structure C is an Ei -trivial digraph structure

⇔ Si = ∅ .

Proposition 2.5 The coset Cayley graph structure C is E1E2 · · ·En- reflexive ⇔ 1 ∈ Si

for some i.
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Proof. Assume that C is an E1E2 · · ·En -reflexive digraph structure. Then for every

xH ∈ G/H, (xH, xH) ∈ Ei for some i. This implies that 1 ∈ HSiH for some i. Con-

versely, assume that 1 ∈ Si for some i. This implies for each xH ∈ G/H, (xH, xH) ∈ Ei

for some i. That is, (xH, xH) ∈ ∪Ei for all x ∈ G.

Proposition 2.6 The coset Cayley graph structure C is Ei- reflexive ⇔ 1 ∈ HSiH.

Proposition 2.7 The coset cayley graph structure C is E1E2 · · ·En- symmetric if and

only if HSiH = HS−1i H for all i.

Proof. First, assume that C is an E1E2 · · ·En -symmetric digraph structure. Let a ∈

HSiH. Then (H, aH) ∈ Ei. Since C is symmetric (a, 1) ∈ Ei. This implies that

a−1 ∈ HSiH. That is a ∈ HS−1i H. Hence HSiH ⊆ HS−1i H. Similarly, we can prove

that HS−1i H ⊆ HSiH.

Conversely, if HSiH = HS−1i H, we can prove that C is an E1E2 · · ·En -symmetric

digraph structure.

Proposition 2.8 C is Ei symmetric if and only if HSiH = HS−1i H.

Proposition 2.9 C is an E1E2 · · ·En - transitive if and only if for every i, j, HSiHSjH ⊆

HSkH for some k.

Proof. First, assume that C is E1E2 · · ·En - transitive. We will show that for all (i, j),

HSiHSjH ⊆ HSkH for some k. Let x ∈ HSiHSjH = HSiHHSjH. Then

x = z1z2 for some z1 ∈ HSiH, z2 ∈ HSjH

This implies that (H, z1H) ∈ Ei and (z1H, z1z2H) ∈ Ej. Since C is E1E2 · · ·En - transi-

tive, (H, z1z2H) ∈ HSkH for some k. That is z1z2 ∈ HSkH. Hence HSiHSjH ⊆ HSkH.

Conversely, assume that all (i, j), HSiHSjH ⊆ HSkH for some k. We will show that

C is E1E2 · · ·En - transitive. Let (H, xH) ∈ Ei, (xH, yH) ∈ Ej. Then x ∈ HSiH and

x−1y ∈ HSjH. This implies that y = xx−1y ∈ HSiHSjH. Since HSiHSjH ⊆ HSkH,

we have y ∈ HSkH. It follows that (H, yH) ∈ Ek.
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Proposition 2.10 C is an E1E2 · · ·En -k- transitive if and only if for every i1, i2, . . . , ik ∈

{1, 2, . . . , k}, we have

(HSi1H)(HSi2H) · · · (HSikH) ⊆ (HSj1H) for some j1;

(HSi1H)(HSi2H) · · · (HSik−1
H) ⊆ (HSj2H) for some j2;

...

(HSi1H)(HSi2H) ⊆ (HSjk−1
H) for some j1.

Proof. First, assume that C is anE1E2 · · ·En -k- transitive. Let x ∈ (HSi1H)(HSi2H) · · · (HSikH).

Then there exits zj ∈ (HSijH), j = 1, 2, . . . , k such that x = z1z2 · · · zk. This implies that

(H, z1H, z1z2H, z1z2z3H, . . . , z1z2z3 . . . zkH)

is a path from 1 to x. Since C is an E1E2 · · ·En -k- transitive, we have

(H, z1z2z3 . . . zkH) ∈ Ej1 for some j1,

(H, z1z2z3 . . . zk−1H) ∈ Ej1 for some j2,

...

(H, z1z2H) ∈ Ejk−1
for some jk−1.

The above statements tells us that

(HSi1H)(HSi2H) · · · (HSikH) ⊆ (HSj1H) for some j1;

(HSi1H)(HSi2H) · · · (HSik−1
H) ⊆ (HSj2H) for some j2;

...

(HSi1H)(HSi2H) ⊆ (HSjk−1
H) for some jk−1.

Conversely, assume that the above conditions holds. Let x1H, x2H, . . . , xnH ∈ G/H such

that (x1H, x2H) ∈ Ei1 , (x2H, x3H) ∈ Ei2 , . . . , (xk−1H, xnH) ∈ Eik . Then

x2 = x1t1, x3 = x2t2, . . . , xk = xk−1tk−1



COSET CAYLEY DIGRAPH STRUCTURES 1775

for some ti ∈ HSi1H.

The above equations can be written as:

x3 = x1(t1t2)

x4 = x1(t1t2t3)

...

xk−1 = x1(t1t2 · · · tn)

The above equations tells as that (x1H, x3H) ∈ Ei1 , (x1H, x4H) ∈ Ei2 , . . . , (x1H, xk−1H) ∈

Eik−1
. This completes the proof.

Proposition 2.11 C is an Ei-k- transitive if and only if (HSiH)n ⊆ (HSiH) for n =

2, 3, . . . , k.

Proposition 2.12 C is E1E2 · · ·En -complete if and only if G = ∪HSiH.

Proof. Suppose C is E1E2 · · ·En complete. Then for every xH ∈ G/H, we have

(H, xH) ∈ ∪Ei. This implies that x ∈ HSiH for some i. This implies that G = ∪HSiH.

Conversely, assume that G = ∪HSiH. Let xH and yH be two arbitrary elements in

G/H such that y = xz. Then z ∈ G. This implies that z ∈ HSiH for some i. That is,

(H, zH) ∈ ∪Ei. That is (xH, xzH) = (xH, yH) ∈ ∪Ei. This shows that C is complete.

Proposition 2.13 C is Ei complete if and only if G = HSiH.

Proposition 2.14 C is E1E2 · · ·En connected if and only if G = [HSH].

Proof. Suppose C is E1E2 · · ·En connected and let xH ∈ G/H.

Let (H, y1H, y2H, . . . , ynH, xH) be an E1E2 · · ·En- path leading from H to xH. Then

y1 ∈HSi1H for some i1;

y−11 y2 ∈HSi2H for some i2;

y−12 y3 ∈HSi3H for some i3;

...

y−1n x ∈HSin+1H for some in+1.
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Note that x = y1y
−1
1 y2y

−1
2 y3 · · · y−1n x. Hence from the above equations, we have:

x ∈ (HSi1H)(HSi2H)(HSi3H) · · · (HSinH) ⊆ [HSH]. Since x is arbitrary, G = [HSH].

Conversely, assume that G = [HSH]. Let x and y be any arbitrary elements in

G. Let y = xz. Then z ∈ G. That is, z ∈ (HSiH)(HSjH) · · · (HSkH) for some

i, j, . . . and k. This implies that z = sisj . . . sk for some i, j . . . and k. Then clearly,

(H, siH, sisjH, . . . , sisj . . . skH) is an E1E2 · · ·En- path from H to zH. That is

(xH, xsiH, xsisjH, . . . , xsisj . . . skH) is a E1E2 · · ·En- path from xH to yH. Hence C is

connected.

Proposition 2.15 C is Ei connected if and only if G =< HSiH >, where < HSiH > is

the semigroup generated by HSiH.

Proposition 2.16 C is E1E2 · · ·En quasi connected if and only if G = [HSH]−1[HSH].

Proof. First, assume that C is quasi strongly connected. Let xH be any arbitrary elemen-

t in G/H. Then there exits a vertex yH ∈ G such that there is a path from yH to xH, say:

(yH, y1H, y2H, · · · , ynH,H) and a path from yH toH, say: (yH, x1H, x2H, . . . , xmH, xH).

Then we have the following system of equations:

y−1y1 ∈ HSi1H;

y−11 y2 ∈ HSi2H;

y−12 y3 ∈ HSi3H;

...

y−1n ∈ HSin+1H.

(1)

and

y−1x1 ∈ HSi1H;

x−11 x2 ∈ HSi2H;

x−12 x3 ∈ HSi3H;

...

x−1m x ∈ HSim+1H.

(2)
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From equation (1) we obtain the following:

y−1 = (y−1y1)(y
−1
1 y2)(y

−1
2 y3) · · · (y−1n ) ∈ Si2 ∈ (HSi1H)(HSi2H) · · · (HSin+1H).

This implies that

(3) y ∈ (HS−1i1
H)(HS−1i2

H) · · · (HS−1in+1
H) ∈ [HS−1H].

Similarly, from equation (2) we obtain the following:

(4) y−1x = (y−1x1)(x
−1
1 x2) · · · (x−1m x) ∈ (HSi1H)(HSi2H) · · · (HSim+1H).

That is

y−1x ∈ [HSH].

That is

x ∈ y[HSH] ⊆ [HS−1H][HSH].

Since x is arbitrary, we have

G = [HS−1H][HSH].

Conversely, assume that G = [HS−1H][HSH]. Let x and y be two arbitrary vertices in

G. Let y = xz. Then z ∈ G. This implies that z ∈ [HS−1H][HSH]. Then there exits

z1 ∈ [HS−1H] and z2 ∈ [HSH] such that z = z1z2. z1 ∈ [HS−1H] implies that there

exits tk ∈ HSikH such that

z1 = t1t2 . . . tn for some tk ∈ HS−1ik
H, k = 1, 2, . . . , n.

This implies that

(z1H, t1t2H . . . tn−1, . . . , H)

is a path from z1H to H. That is

(yz1H, yt1t2H . . . tn−1H, . . . , yH)

is a path from yz1H to yH.

Similarly, z2 ∈ [HSH] implies that there exits ak ∈ Sik such that

z2 = a1a2 . . . am.
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Observe that

(z2H, a1a2H, a1a2a3H, . . . , H)

is a path from z2H to H. That is,

(z1z2H, z1a1a2H, a1a2a3H, . . . , z1H)

is a path from zH to z1H. That is

(yzH, yz1a1a2H, ya1a2a3H, . . . , z1H)

is a path from xH to z1H.

Proposition 2.17 C is Ei- quasi connected if and only if G =< HS−1i H >< HSiH >.

Proposition 2.18 C is E1E2 · · ·En - locally connected if and only if [HSH] = [HS−1H].

Proof.

Assume that C is E1E2 · · ·En - locally connected. Let x ∈ [HSH]. Then x ∈ Am for

some m. Then x = sisj . . . sm. Let x0 = 1, x1 = si, x2 = sisj, . . . , xm = sisj . . . sm. Then

(x0H, x1H, x2H, . . . , xmH)

is a path leading from 1 to x. Since C is locally connected, there exits a path from xH

to H, say:

(xH, y1H, y2H, . . . , ymH,H)

This implies that

x−1y1 ∈ Si1

y−11 y2 ∈ Si2

...

y−1m ∈ Sin

The above equations tells us that x−1 ∈ [HSH] . That is x ∈ [HS−1H]. Hence [HSH] =

[HS−1H]. Conversely, if [HSH] = [HS−1H], one can easily verify that C is E1E2 · · ·En

- locally connected.
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Proposition 2.19 C is Ei- locally connected if and only if < HS−1i H >=< HSiH >.

Proposition 2.20 C is E1E2 · · ·En- semi connected if and only if G = [HSH]∪[HS−1H].

Proof. Assume that C is E1E2 · · ·En - semi connected and let xH ∈ G/H. Then there

is a path from H to xH, say

(H, x1H, x2H, · · · , xnH, xH)

or a path from xH to H, say

(xH, y1H, y2H, · · · , ymH,H)

This implies that x ∈ [HSH] or x ∈ [HS−1H]. This implies that G = [HSH]∪ [HS−1H].

Similarly, if G = [HSH] ∪ [HS−1H], then one can prove that C is E1E2 · · ·En- semi

connected.

Proposition 2.21 C is Ei - semi connected if and only if G =< HSiH > ∪ < HS−1i H >.

Proposition 2.22 C is an E1E2 · · ·En- quasi ordered set if and only if

(i)1 ∈ (HS1H) ∪ (HS2H) · · · ∪ (HSnH),

(ii)for every(i, j), HSiHSjH ⊆ HSkH for some k.

Proposition 2.23 C is an Ei quasi ordered set if and only if

(i)1 ∈ HSiH,

(ii)(HSiH)2 ⊆ HSiH.

Proposition 2.24 C if an E1E2 · · ·En- partially ordered set if and only if

(i)1 ∈ (HS1H) ∪ (HS2H) · · · ∪ (HSnH),

(ii)for every(i, j), (HSiH)(HSjH) ⊆ (HSkH) for some k,

(iii) ∪ (HSiH) ∩ (HS−1i H) = {1}.

Proof. Observe that

x ∈ ∪(HSiH) ∩H(Si)
−1H ⇔ x ∈ (HSiH) ∩ (HS−1i H) for some i
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⇔ x ∈ HSiH and x ∈ HS−1i H

⇔ (H, xH) ∈ Ei and (xH,H) ∈ Ei

⇔ x = 1.

Proposition 2.25 C if an Ei partially ordered set if and only if

(i)1 ∈ HSiH,

(ii)(HSiH)2 ⊆ HSiH

(iii)(HSiH) ∩ (HS−1i H) = {1}

Proposition 2.26 Let Am(m ≥ 2) is the set of m products of the form Si1Si2 · · ·Sim.

Then C is an E1E2 · · ·En - hasse diagram if and only if C ∩ Si = ∅ for all i and for all

C ∈ Am.

Proof. Suppose the condition holds. Let x0H, x1H, . . . , xmH be (m + 1) elements in

G/H such that (xiH, xi+1H) ∈ ∪Ei for i = 0, 1, . . . ,m− 1. This implies that

x−10 x1 ∈ Si1 ;

x−11 x2 ∈ Si2 ;

x−12 x33 ∈ Si3 ;

...

x−1m−1xm ∈ Sim .

The above equation tells us that x−10 xm ∈ Am. Since C ∩ Si = ∅ for all i and for all

C ∈ Am, (x0, xm) /∈ ∪Ei.

Conversely assume that C is an E1E2 · · ·En hasse diagram. We will show that C∩Si = ∅

for all i and for all C ∈ Am. Let Si1Si2Si3 · · ·Sim be any element in Am. Let x ∈

Si1Si2Si3 · · ·Sim . Then x = si1si2si3 . . . sin for some sik ∈ Sik . This implies that

(H, si1H, si2si3H, . . . , xH)
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is a path from H to xH. Since C is an E1E2 · · ·En hasse- diagram, x /∈ Si for any i. That

is, Am ∩ Si = ∅ for all i.

Proposition 2.27 The E1E2 · · ·En out-degree of C is the cardinal number |S1∪S2∪· · ·∪

Sn/H|.

Proof. Since C is vertex- transitive it suffices to consider the out degree of the vertex

H ∈ G/H. Observe that

ρ(H) = {uH : (H, uH) ∈ E}

= {uH : u ∈ HSiH for some i}

= (HS1H) ∪ (HS2H) ∪ · · · ∪ (HSnH)/H

Hence |ρ(H)| = |(HS1H) ∪ (HS2H) ∪ · · · ∪ (HSnH)/H|.

Proposition 2.28 The Ei out-degree of C is the cardinal number |HSiH/H|.

Proposition 2.29 The E1E2 · · ·En in-degree of C is the cardinal number |(HS−11 H) ∪

(HS−12 H) ∪ · · · ∪ (HS−1n H)/H|.

Proof. Since C is vertex- transitive it suffices to consider the in degree of the vertex

H ∈ G/H. Observe that

σ(H) = {uH : (uH,H) ∈ E}

= {uH : (uH,H) ∈ Ei}

= {uH : u−1 ∈ HSiH}

= {uH : u ∈ HS−1i H}

Hence |σ(H)| = |(HS−11 H) ∪ (HS−12 H) ∪ · · · ∪ (HS−1n H)/H|.

Proposition 2.30 The Ei in-degree of C is the cardinal number |HS−1i H/H|.

Proposition 2.31 For k = 1, 2, 3, . . . let Ak be the set of all k products of the form

(HSi1H)(HSi2H) · · · (HSikH). If C has finite diameter, then the diameter of C is the

least positive integer m such that

G = Am
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Proof.Let m be the smallest positive integer such that G = Am. We will show that the

diameter of C is m. Let xH and yH be any two arbitrary elements in G such that y = xz.

Then z ∈ G. This implies that x ∈ Am. But then z has a representation of the form

x = si1si2 · · · sim . This implies that

(H, si1H, si1si2H, . . . , zH)

is path of m edges from H to zH. That is

(xH, xsi1H, xsi1si2H, . . . , yH)

is a path of length m from xH to yH. This shows that d(xH, yH) ≤ n. Since xH and

yH are arbitrary,

maxxH,yH∈G{d1,2,··· ,n(xH, yH)} ≤ m

Therefore the diameter of C is less than or equal to n. On the other hand let the diameter

of C be k. Let x ∈ G and d1,2,··· ,n(H, xH) = k. Then we have x ∈ B for some B ∈ Ak.

That is

G = Ak

Now by the minimality of k, we have m ≤ k. Hence k = m.

Proposition 2.32 The vertex H is an E1E2 · · ·En- source of C if and only if G = [HSH].

Proof. First, assume that H is an E1E2 · · ·En -source of C . Then for any vertex

xH ∈ G/H, there is an E1E2 · · ·En- path from H to xH. This implies that G = [HSH].

Conversely, if G = [HSH], one can prove that H is an E1E2 · · ·En- source.

Proposition 2.33 The vertex H is an Ei- source of C if and only if G =< HSiH >.

Proposition 2.34 The vertex H is an E1E2 · · ·En- sink of C if and only if G = [HS−1H].

Proof. First, assume that H is an E1E2 · · ·En -sink of C . Then for each xH ∈ G/H,

there is an E1E2 · · ·En- path from xH to H. This implies that x ∈ [HS−1H]. Hence

G = [HS−1H].

Conversely, if G = [HS−1H], one can easily prove that H is an E1E2 · · ·En -sink of C .

Proposition 2.35 The vertex H is an Ei sink of C if and only if G =< HS−1i H >.
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Proposition 2.36 The E1E2 · · ·En- reachable set R1,2,...,n(H) of the vertex H is the set

[HSH].

Proof. By definition,

R(H) = {xH : there exits an E1E2 · · ·En - path from H to xH}

Observe that

xH ∈ R1,2,...,n(H)⇔ there exits an E1E2 · · ·En -path from H to xH, say

(H, x1H, x2H, . . . , xnH, xH)

⇔ x ∈ [HSH]

Therefore, R1,2,3,··· ,n(H) = [HSH].

Proposition 2.37 The Ei reachable set Ri(H) of the vertex H is the set < Si > .

Proposition 2.38 The E1E2 · · ·En- antecedent set Q1,2,...,n(H) of the vertex H is the set

[HS−1H].

Proof. Observe that

x ∈ Q1,2,...,n(H)⇔ there exits an E1E2 · · ·En path from xH to H, say

(xH, x1H, x2H, . . . , xnH,H)

⇔ x ∈ [HS−1H].

∴ Q1,2,...,n(H) = [HS−1H].

Proposition 2.39 The Ei antecedent set Qi(H) of the vertex H is the set < HS−1i H > .
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