Available online at http://scik.org

 J. Math. Comput. Sci. 2 (2012), No. 6, 1766-1784

 ISSN: 1927-5307

COSET CAYLEY DIGRAPH STRUCTURES

ANIL KUMAR V¹, PARAMESWARAN ASHOK NAIR^{2,*}

¹Department of Mathematics, University of Calicut, Malappuram, Kerala, India 673 635 ²Mannaniya College of Arts & Science, Pangode, Trivandrum, Kerala, India 695 609

Abstract. In this paper, we generalize the results in [9] to produce a new classes of Cayley digraph structures induced by groups.

Keywords: Cayley digraph, Digraph structure, Cayley digraph structure.

2000 AMS Subject Classification: 05C25

1. Introduction

A binary relation on a set V is a subset E of $V \times V$. A digraph is a pair (V, E) where V is a non empty set (called vertex set) and E is a binary relation on V. The elements of E are called edges. Let V be a non empty set and let E_1, E_2, \ldots, E_n be mutually disjoint binary relations on V. Then the (n + 1)-tuple $G = (V; E_1, E_2, \ldots, E_n)$ is called a digraph structure[9]. The elements of V are called vertices and the elements of E_i are called E_i -edges. The following definition were introduced in [9].

A digraph structure $(V; E_1, E_2, ..., E_n)$ is called (i) $E_1E_2 \cdots E_n$ -trivial if $E_i = \emptyset$ for all i, and E_i -trivial if $E_i = \emptyset$ (ii) $E_1E_2 \cdots E_n$ -reflexive if for all $x \in G$, $(x, x) \in E_i$ for some i, and E_i -reflexive if for all $x \in V$, $(x, x) \in E_i$ (iii) $E_1E_2 \cdots E_n$ -symmetric if $E_i = E_i^{-1}$ for all i, and E_i -symmetric if $E_i = E_i^{-1}$ (iv) $E_1E_2 \cdots E_n$ -anti symmetric, if $(x, y) \in E_i$ and

 $^{^{*} {\}rm Corresponding} ~{\rm author}$

Received July 13, 2012

 $(y,x) \in E_i$ implies x = y for all i, and E_i - anti symmetric if $(x,y) \in E_i$ and $(y,x) \in E_i$ implies x = y (v) $E_1E_2\cdots E_n$ - transitive if for every i and j, $E_i \circ E_j \subseteq E_k$ for some k, and E_i transitive if $E_i \circ E_i \subseteq E_i$ (vi) an $E_1E_2\cdots E_n$ - hasse diagram if for every positive integer $n \ge 2$ and every v_0, v_1, \ldots, v_n of V, $(v_i, v_{i+1}) \in \bigcup E_i$ for all $i = 0, 1, 2, \ldots, n - 1$, implies $(v_0, v_n) \notin E_i$ for all i, and E_i - hasse diagram if for every positive integer $n \ge 2$ and every v_0, v_1, \ldots, v_n of V, $(v_i, v_{i+1}) \in E_i$ for all $i = 0, 1, 2, \ldots, n - 1$, implies $(v_0, v_n) \notin E_i$ for all i, and E_i - hasse diagram if $i = 0, 1, 2, \ldots, n - 1$, integer $n \ge 2$ and every v_0, v_1, \ldots, v_n of V, $(v_i, v_{i+1}) \in E_i$ for all $i = 0, 1, 2, \ldots, n - 1$, implies $(v_0, v_n) \notin E_i$, $(v_{iii})E_1E_2\cdots E_n$ - complete if $\bigcup E_i = V \times V$, and E_i complete if $E_i = V \times V$.

A digraph structure $(V; E_1, E_2, \ldots, E_n)$ is called (i) an $E_1E_2 \cdots E_n$ - quasi ordered set if it is both $E_1E_2 \cdots E_n$ - reflexive and $E_1E_2 \cdots E_n$ -transitive (ii) an $E_1E_2 \cdots E_n$ - partially ordered set if it is $E_1E_2 \cdots E_n$ - anti symmetric and $E_1E_2 \cdots E_n$ - quasi ordered set. Similarly, we can define E_i quasi ordered set and E_i partially ordered set as in the case of ordinary relations.

An $E_1E_2\cdots E_n$ - walk of length k in a digraph structure is an alternating sequence $W = v_0, e_0, v_1, \ldots, e_{k-1}, v_k$, where $e_i = (v_i, v_{i+1}) \in \bigcup E_i$. An $E_1E_2\cdots E_n$ -walk Wis called a $E_1E_2\cdots E_n$ - path if all the internal vertices are distinct. We use notation $(v_0, v_1, v_2, \ldots, v_n)$ for the $E_1E_2\cdots E_n$ - path W. As in digraphs, we define E_i - walk and E_i - path. For example, an E_i - path between two vertices u and v consists of only E_i - edges.

A digraph structure $(V; E_1, E_2, \ldots, E_n)$ is called (i) $E_1E_2 \cdots E_n$ - connected if there exits at least one $E_1E_2 \cdots E_n$ - path from v to u for all $u, v \in V$, (ii) $E_1E_2 \cdots E_n$ - quasi connected if for every pair of vertices x, y there is a vertex z such that there is an $E_1E_2 \cdots E_n$ -path from z to x and an $E_1E_2 \cdots E_n$ -path from z to y, (iii) $E_1E_2 \cdots E_n$ - locally connected iff for every pair of vertices $u, v \in V$ there is an $E_1E_2 \cdots E_n$ - path from v to u whenever there is an $E_1E_2 \cdots E_n$ - path from u to v and (iv) $E_1E_2 \cdots E_n$ - semi connected for every pair of vertices u, v, there is an $E_1E_2 \cdots E_n$ - path from u to v or an $E_1E_2 \cdots E_n$ - path from v to u.

A digraph structure $(V; E_1, E_2, ..., E_n)$ is called E_i -connected if there exits at least one E_i path from v to u for all $u, v \in V$. Similarly we can define E_i quasi connected, E_i -locally connected and E_i - semi connected digraph structures.

The $E_1E_2 \cdots E_n$ - distance between two vertices x and y in a digraph structure G is the length of the shortest $E_1E_2 \cdots E_n$ - path between x and y, denoted by $d_{1,2,3,\dots,n}(x,y)$. Let $G = (V; E_1, E_2, \dots, E_n)$ be a finite $E_1E_2 \cdots E_n$ - connected digraph structure. Then the $E_1E_2 \cdots E_n$ diameter of G is defined as $d(G) = \max_{x,y \in G} \{d_{1,2,3,\dots,n}(x,y)\}$. Similarly we can define E_i distance and E_i diameter as in digraphs.

Two digraph structures $(V_1; E_1, E_2, \ldots, E_n)$ and $(V_2; R_1, R_2, \ldots, R_m)$ are said to be isomorphic if (i) m = n and (ii) there exits a bijective function $f: V_1 \mapsto V_2$ such that $(x, y) \in E_i \Leftrightarrow (f(x), f(y)) \in R_i$. This concept of isomorphism is a generalization of isomorphism between two digraphs. An isomorphism of a digraph structure onto itself is called an automorphism. A digraph structure $(V; E_1, E_2, \ldots, E_n)$ is said to be vertextransitive if, given any two vertices a and b of V, there is some digraph automorphism $f: V \to V$ such that f(a) = b. Let $(V; E_1, E_2, \ldots, E_n)$ be a digraph structure and let $v \in V$. Then the $E_1E_2\cdots E_n$ out-degree of u is $|\{v \in V : (u, v) \in \cup E_i\}|$ and $E_1E_2\cdots E_n$ in-degree of u is $|\{v \in V : (v, u) \in \cup E_i\}|$. Similarly we can define the E_i out- degree and E_i in- degree as in the case of digraphs.

Let $(V_1; E_1, E_2, \ldots, E_n)$ be a digraph structure. A vertex $v \in G$ is called an $E_1E_2 \cdots E_n$ -source if for every vertex $x \in G$, there is an $E_1E_2 \cdots E_n$ - path from v to x. Similarly a vertex $u \in G$ is called an $E_1E_2 \cdots E_n$ - sink if for very vertex $y \in G$ there is an $E_1E_2 \cdots E_n$ - path from y to u. As in digraphs, we define E_i - source and E_i - sink. Let $(V_1; E_1, E_2, \ldots, E_n)$ be a digraph structure and let $v \in G$. Then the $E_1E_2 \cdots E_n$ reachable set $R_{1,2,3,\cdots,n}(u)$ is $\{x \in G :$ there is an $E_1E_2 \cdots E_n$ - path from u to $x\}$. Similarly, the $E_1E_2 \cdots E_n$ - antecedent set $Q_{1,2,\ldots,n}(u)$ is defined as

 $Q_{1,2,\dots,n}(u) = \{x \in G : \text{ there is an } E_1 E_2 \cdots E_n \text{- path from } x \text{ to } u\}.$

As in the case of digraphs, we can define the E_i - reachable set and E_i -antecedent set of a vertex.

2. Coset Cayley Digraph Structures

In [9] the authors introduced a class of Cayley digraph structures induced by groups. In this paper, we introduce a class of coset Cayley digraph structures induced by groups and prove that every vertex transitive digraph structure is isomorphic to the coset Cayley digraph structure . These class of Cayley digraphs structures can be viewed as a generalization of those obtained in [9].

We start with the following definition:

Definition 2.1. Let G be a group and S_1, S_2, \ldots, S_n be mutually disjoint subsets of G and H be a subgroup of G. Then coset Cayley digraph structure of G with respect to S_1, S_2, \ldots, S_n is defined as the digraph structure $(G/H; E_1, E_2, \ldots, E_n)$, where

$$E_i = \{ (xH, yH) : x^{-1}y \in HS_iH \}.$$

The sets S_1, S_2, \ldots, S_n are called connection sets of $(G/H; E_1, E_2, \ldots, E_n)$. We denote the coset Cayley digraph structure of G with respect to S_1, S_2, \ldots, S_n by

$$\mathscr{C} = \operatorname{Cay}(G/H; HS_1H, HS_2H, \dots, HS_nH)$$

In this paper, we may use the following notations: Let \mathscr{C} be a coset Cayley digraph structure induced by the group G with respect to the connection sets S_1, S_2, \ldots, S_n .

- (1) Let A_k be the union of set of all k products of the form $(HS_{i1}H)(HS_{i2}H)\cdots(HS_{ik}H)$ from the set $\{HS_1H, HS_2H, \ldots, HS_nH\}$. Then $\bigcup_k A_k$ is denoted by [HSH].
- (2) Let A_k^{-1} be the union of set of all k products of the form:

$$(HS_{i_1}^{-1}H)(HS_{i_2}^{-1}H)\cdots(HS_{i_k}^{-1}H).$$

Then $\bigcup_k A_k^{-1}$ is denoted by $[HS^{-1}H]$.

(3) Let A be a subset of a group G, then the semigroup generated by A is denoted by $\langle A \rangle$.

2.1 Main Theorems

Theorem 2.1.1 If G is a group and let S_1, S_2, \ldots, S_n are mutually disjoint subsets of G and H is a subgroup of G, then the coset Cayley digraph structure \mathscr{C} is vertex transitive.

Proof. To see that $\operatorname{Cay}(G/H; HS_1H, HS_2H, \ldots, HS_nH)$ is a vertex transitive digraph structure, we first need only show that E_i 's are well defined. Let x, y, x', y' be any four elements of G with xH = x'H and yH = y'H. Then $x = x'h_1$ and $y = y'h_2$ for some

 $h_1, h_2 \in H$. Observe that

$$(xH, yH) \in E_i \Leftrightarrow x^{-1}y \in HS_iH$$
$$\Leftrightarrow (x'h_1)^{-1}(y'h_2) \in HS_iH$$
$$\Leftrightarrow h_1^{-1}(x')^{-1}y'h_2 \in HS_iH$$
$$\Leftrightarrow (x')^{-1}y' \in HS_iH$$
$$\Leftrightarrow (x'H, y'H) \in HS_iH.$$

Hence each E_i 's are well defined and hence $\operatorname{Cay}(G/H; HS_1H, HS_2H, \ldots, HS_nH)$ is a digraph structure. Let aH and bH be any two arbitrary elements in G/H. Define a mapping $\varphi: G \longmapsto G$ by

$$\varphi(xH) = ba^{-1}xH$$
 for all $xH \in G/H$.

This mapping defines a permutation of the vertices of $Cay(G/H; HS_1H, HS_2H, \ldots, HS_nH)$. It is also an automorphism. Note that

$$(xH, yH) \in E_i \Leftrightarrow x^{-1}y \in HS_iH$$
$$\Leftrightarrow (ba^{-1}x)^{-1}(ba^{-1}y) \in HS_iH$$
$$\Leftrightarrow (ba^{-1}xH, ba^{-1}yH) \in E_i$$
$$\Leftrightarrow (\varphi(xH), \varphi(yH)) \in E_i.$$

Also we note that

$$\varphi(aH) = ba^{-1}aH = bH.$$

Hence $Cay(G/H; HS_1H, HS_2H, \ldots, HS_nH)$ is vertex transitive digraph structure.

Theorem 2.1.2

Let $(V; W_1, W_2, \dots, W_n)$ be any vertex transitive digraph structure such that $|V| \ge n$. Then $(V; W_1, W_2, \dots, W_n)$ is isomorphic to $Cay(G/H; HS_1H, HS_2H, \dots, HS_nH)$.

Proof. Let G be the automorphism group of the digraph structure $(V; W_1, W_2, \dots, W_n)$. Let q_1, q_2, \dots, q_n be fixed elements in V. For $i = 1, 2, \dots, n$, define the following:

$$H_i := \{ \theta \in G : \theta(q_i) = q_i \},$$
$$S_i := \{ \theta \in G : (q_i, \theta(q_i)) \in W_i \}.$$

Note that $H = \bigcap_{i=1}^{n} H_i$ is a subgroup of G. Construct the Cayley digraph structure $\operatorname{Cay}(G/H; HS_1H, HS_2H, \dots, HS_nH)$ as in theorem 2.2.1. Define a map $\varphi : G/H \longmapsto V$ by

$$(xH)\varphi = x(q_i)$$
 for all $xH \in G/H$.

where q_i is a fixed element in the set $\{q_1, q_2, \ldots, q_n\}$.

 $(i)\varphi$ is well defined:

Let xH = yH. Then $y = xh_1$, for some $h_1 \in H$. Observe that

$$\varphi(yH) = y(q_i)$$
$$= (xh_1)(q_i)$$
$$= x[h_1(q_i)]$$
$$= x(q_i)$$
$$= \varphi(xH)$$

(ii) φ is one to one:

$$\begin{split} \varphi(xH) &= \varphi(yH) \Leftrightarrow x(q_i) = y(q_i) \\ \Leftrightarrow y^{-1}x(q_i) &= q_i \\ \Leftrightarrow y^{-1}x \in H \\ \Leftrightarrow xH = yH. \end{split}$$

(iii) φ is onto:

Let v be any element in V. Since $(V; W_1, W_2, \dots, W_n)$ is vertex transitive, there exists an

automorphism θ such that $\theta(v) = q_i$. This implies that $v = \theta^{-1}(q_i)$. That is, $v = \varphi(\theta^{-1}H)$. (iv) φ preserves adjacency relation :

Observe that

$$(xH, yH) \in E_i \Leftrightarrow x^{-1}y \in HS_iH$$
$$\Leftrightarrow x^{-1}y = h_1s_ih_2$$
$$\Leftrightarrow h_1^{-1}x^{-1}yh_2^{-1} = s_i \in S_i$$
$$\Leftrightarrow (q_i, (h_1^{-1}x^{-1}yh_2^{-1})(q_i)) \in W_i$$
$$\Leftrightarrow (h_1(q_i), x^{-1}y(q_i)) \in W_i$$
$$\Leftrightarrow (x(q_i), y(q_i)) \in W_i$$
$$\Leftrightarrow (\varphi(xH), \varphi(yH)) \in W_i.$$

2.2 Corollaries

In this section we can prove many graph theoretic properties in terms of algebraic properties. Moreover, these results can be considered as the generalization of those obtained in [9].

Proposition 2.3 The coset Cayley graph structure \mathscr{C} is an $E_1E_2\cdots E_n$ -trivial digraph structure $\Leftrightarrow S_i = \emptyset$ for all *i*.

Proof. By definition, \mathscr{C} is $E_1 E_2 \cdots E_n$ - trivial $\Leftrightarrow E_i = \emptyset$ for all *i*. This implies that $S_i = \emptyset$ for all *i*.

Proposition 2.4 The coset Cayley graph structure \mathscr{C} is an E_i -trivial digraph structure $\Leftrightarrow S_i = \emptyset$.

Proposition 2.5 The coset Cayley graph structure \mathscr{C} is $E_1E_2\cdots E_n$ -reflexive $\Leftrightarrow 1 \in S_i$ for some *i*.

Proof. Assume that \mathscr{C} is an $E_1E_2\cdots E_n$ -reflexive digraph structure. Then for every $xH \in G/H$, $(xH, xH) \in E_i$ for some *i*. This implies that $1 \in HS_iH$ for some *i*. Conversely, assume that $1 \in S_i$ for some *i*. This implies for each $xH \in G/H$, $(xH, xH) \in E_i$ for some *i*. That is, $(xH, xH) \in \cup E_i$ for all $x \in G$.

Proposition 2.6 The coset Cayley graph structure \mathscr{C} is E_i -reflexive $\Leftrightarrow 1 \in HS_iH$.

Proposition 2.7 The coset cayley graph structure \mathscr{C} is $E_1E_2\cdots E_n$ -symmetric if and only if $HS_iH = HS_i^{-1}H$ for all *i*.

Proof. First, assume that \mathscr{C} is an $E_1E_2\cdots E_n$ -symmetric digraph structure. Let $a \in HS_iH$. Then $(H, aH) \in E_i$. Since \mathscr{C} is symmetric $(a, 1) \in E_i$. This implies that $a^{-1} \in HS_iH$. That is $a \in HS_i^{-1}H$. Hence $HS_iH \subseteq HS_i^{-1}H$. Similarly, we can prove that $HS_i^{-1}H \subseteq HS_iH$.

Conversely, if $HS_iH = HS_i^{-1}H$, we can prove that \mathscr{C} is an $E_1E_2\cdots E_n$ -symmetric digraph structure.

Proposition 2.8 \mathscr{C} is E_i symmetric if and only if $HS_iH = HS_i^{-1}H$.

Proposition 2.9 \mathscr{C} is an $E_1E_2 \cdots E_n$ - transitive if and only if for every $i, j, HS_iHS_jH \subseteq HS_kH$ for some k.

Proof. First, assume that \mathscr{C} is $E_1 E_2 \cdots E_n$ - transitive. We will show that for all (i, j), $HS_iHS_jH \subseteq HS_kH$ for some k. Let $x \in HS_iHS_jH = HS_iHHS_jH$. Then

 $x = z_1 z_2$ for some $z_1 \in HS_i H, z_2 \in HS_i H$

This implies that $(H, z_1H) \in E_i$ and $(z_1H, z_1z_2H) \in E_j$. Since \mathscr{C} is $E_1E_2 \cdots E_n$ - transitive, $(H, z_1z_2H) \in HS_kH$ for some k. That is $z_1z_2 \in HS_kH$. Hence $HS_iHS_jH \subseteq HS_kH$.

Conversely, assume that all (i, j), $HS_iHS_jH \subseteq HS_kH$ for some k. We will show that \mathscr{C} is $E_1E_2\cdots E_n$ - transitive. Let $(H, xH) \in E_i$, $(xH, yH) \in E_j$. Then $x \in HS_iH$ and $x^{-1}y \in HS_jH$. This implies that $y = xx^{-1}y \in HS_iHS_jH$. Since $HS_iHS_jH \subseteq HS_kH$, we have $y \in HS_kH$. It follows that $(H, yH) \in E_k$. **Proposition 2.10** \mathscr{C} is an $E_1E_2 \cdots E_n$ -k- transitive if and only if for every $i_1, i_2, \ldots, i_k \in \{1, 2, \ldots, k\}$, we have

$$(HS_{i_1}H)(HS_{i_2}H)\cdots(HS_{i_k}H) \subseteq (HS_{j_1}H) \text{ for some } j_1;$$
$$(HS_{i_1}H)(HS_{i_2}H)\cdots(HS_{i_{k-1}}H) \subseteq (HS_{j_2}H) \text{ for some } j_2;$$
$$\vdots$$
$$(HS_{i_1}H)(HS_{i_2}H) \subseteq (HS_{j_{k-1}}H) \text{ for some } j_1.$$

Proof. First, assume that \mathscr{C} is an $E_1E_2\cdots E_n$ -k-transitive. Let $x \in (HS_{i_1}H)(HS_{i_2}H)\cdots (HS_{i_k}H)$. Then there exits $z_j \in (HS_{i_j}H), j = 1, 2, ..., k$ such that $x = z_1z_2\cdots z_k$. This implies that

$$(H, z_1H, z_1z_2H, z_1z_2z_3H, \ldots, z_1z_2z_3\ldots z_kH)$$

is a path from 1 to x. Since \mathscr{C} is an $E_1 E_2 \cdots E_n$ -k- transitive, we have

 $(H, z_1 z_2 z_3 \dots z_k H) \in E_{j_1}$ for some j_1 , $(H, z_1 z_2 z_3 \dots z_{k-1} H) \in E_{j_1}$ for some j_2 , \vdots $(H, z_1 z_2 H) \in E_{j_{k-1}}$ for some j_{k-1} .

The above statements tells us that

$$(HS_{i_1}H)(HS_{i_2}H)\cdots(HS_{i_k}H) \subseteq (HS_{j_1}H) \text{ for some } j_1;$$
$$(HS_{i_1}H)(HS_{i_2}H)\cdots(HS_{i_{k-1}}H) \subseteq (HS_{j_2}H) \text{ for some } j_2;$$
$$\vdots$$
$$(HS_{i_1}H)(HS_{i_2}H) \subseteq (HS_{j_{k-1}}H) \text{ for some } j_{k-1}.$$

Conversely, assume that the above conditions holds. Let $x_1H, x_2H, \ldots, x_nH \in G/H$ such that $(x_1H, x_2H) \in E_{i_1}, (x_2H, x_3H) \in E_{i_2}, \ldots, (x_{k-1}H, x_nH) \in E_{i_k}$. Then

$$x_2 = x_1 t_1, x_3 = x_2 t_2, \dots, x_k = x_{k-1} t_{k-1}$$

for some $t_i \in HS_{i_1}H$.

The above equations can be written as:

$$x_3 = x_1(t_1t_2)$$
$$x_4 = x_1(t_1t_2t_3)$$
$$\vdots$$
$$x_{k-1} = x_1(t_1t_2\cdots t_n)$$

The above equations tells as that $(x_1H, x_3H) \in E_{i_1}, (x_1H, x_4H) \in E_{i_2}, \dots, (x_1H, x_{k-1}H) \in E_{i_{k-1}}$. This completes the proof.

Proposition 2.11 \mathscr{C} is an E_i -k- transitive if and only if $(HS_iH)^n \subseteq (HS_iH)$ for $n = 2, 3, \ldots, k$.

Proposition 2.12 \mathscr{C} is $E_1 E_2 \cdots E_n$ -complete if and only if $G = \bigcup HS_i H$.

Proof. Suppose \mathscr{C} is $E_1E_2\cdots E_n$ complete. Then for every $xH \in G/H$, we have $(H, xH) \in \bigcup E_i$. This implies that $x \in HS_iH$ for some *i*. This implies that $G = \bigcup HS_iH$. Conversely, assume that $G = \bigcup HS_iH$. Let xH and yH be two arbitrary elements in G/H such that y = xz. Then $z \in G$. This implies that $z \in HS_iH$ for some *i*. That is, $(H, zH) \in \bigcup E_i$. That is $(xH, xzH) = (xH, yH) \in \bigcup E_i$. This shows that \mathscr{C} is complete.

Proposition 2.13 \mathscr{C} is E_i complete if and only if $G = HS_iH$.

Proposition 2.14 \mathscr{C} is $E_1 E_2 \cdots E_n$ connected if and only if G = [HSH].

Proof. Suppose \mathscr{C} is $E_1 E_2 \cdots E_n$ connected and let $xH \in G/H$.

Let $(H, y_1H, y_2H, \ldots, y_nH, xH)$ be an $E_1E_2\cdots E_n$ - path leading from H to xH. Then

$$y_1 \in HS_{i_1}H$$
 for some i_1 ;
 $y_1^{-1}y_2 \in HS_{i_2}H$ for some i_2 ;
 $y_2^{-1}y_3 \in HS_{i_3}H$ for some i_3 ;
 \vdots

 $y_n^{-1}x \in HS_{i_{n+1}}H$ for some i_{n+1} .

Note that $x = y_1 y_1^{-1} y_2 y_2^{-1} y_3 \cdots y_n^{-1} x$. Hence from the above equations, we have: $x \in (HS_{i_1}H)(HS_{i_2}H)(HS_{i_3}H) \cdots (HS_{i_n}H) \subseteq [HSH]$. Since x is arbitrary, G = [HSH]. Conversely, assume that G = [HSH]. Let x and y be any arbitrary elements in G. Let y = xz. Then $z \in G$. That is, $z \in (HS_iH)(HS_jH) \cdots (HS_kH)$ for some

 i, j, \ldots and k. This implies that $z = s_i s_j \ldots s_k$ for some $i, j \ldots$ and k. Then clearly, $(H, s_i H, s_i s_j H, \ldots, s_i s_j \ldots s_k H)$ is an $E_1 E_2 \cdots E_n$ - path from H to zH. That is $(xH, xs_i H, xs_i s_j H, \ldots, xs_i s_j \ldots s_k H)$ is a $E_1 E_2 \cdots E_n$ - path from xH to yH. Hence \mathscr{C} is

connected.

Proposition 2.15 \mathscr{C} is E_i connected if and only if $G = \langle HS_iH \rangle$, where $\langle HS_iH \rangle$ is the semigroup generated by HS_iH .

Proposition 2.16 \mathscr{C} is $E_1E_2\cdots E_n$ quasi connected if and only if $G = [HSH]^{-1}[HSH]$.

Proof. First, assume that \mathscr{C} is quasi strongly connected. Let xH be any arbitrary element in G/H. Then there exits a vertex $yH \in G$ such that there is a path from yH to xH, say: $(yH, y_1H, y_2H, \dots, y_nH, H)$ and a path from yH to H, say: $(yH, x_1H, x_2H, \dots, x_mH, xH)$. Then we have the following system of equations:

(1)

$$y^{-1}y_{1} \in HS_{i_{1}}H;$$

$$y_{1}^{-1}y_{2} \in HS_{i_{2}}H;$$

$$y_{2}^{-1}y_{3} \in HS_{i_{3}}H;$$

$$\vdots$$

$$y_{n}^{-1} \in HS_{i_{n+1}}H.$$

and

(2)
$$y^{-1}x_{1} \in HS_{i_{1}}H;$$
$$x_{1}^{-1}x_{2} \in HS_{i_{2}}H;$$
$$x_{2}^{-1}x_{3} \in HS_{i_{3}}H;$$

 $x_m^{-1}x \in HS_{i_{m+1}}H.$

From equation (1) we obtain the following:

$$y^{-1} = (y^{-1}y_1)(y_1^{-1}y_2)(y_2^{-1}y_3)\cdots(y_n^{-1}) \in S_{i_2} \in (HS_{i_1}H)(HS_{i_2}H)\cdots(HS_{i_{n+1}}H).$$

This implies that

(3)
$$y \in (HS_{i_1}^{-1}H)(HS_{i_2}^{-1}H) \cdots (HS_{i_{n+1}}^{-1}H) \in [HS^{-1}H].$$

Similarly, from equation (2) we obtain the following:

(4)
$$y^{-1}x = (y^{-1}x_1)(x_1^{-1}x_2)\cdots(x_m^{-1}x) \in (HS_{i_1}H)(HS_{i_2}H)\cdots(HS_{i_{m+1}}H).$$

That is

$$y^{-1}x \in [HSH].$$

That is

$$x \in y[HSH] \subseteq [HS^{-1}H][HSH].$$

Since x is arbitrary, we have

$$G = [HS^{-1}H][HSH].$$

Conversely, assume that $G = [HS^{-1}H][HSH]$. Let x and y be two arbitrary vertices in G. Let y = xz. Then $z \in G$. This implies that $z \in [HS^{-1}H][HSH]$. Then there exits $z_1 \in [HS^{-1}H]$ and $z_2 \in [HSH]$ such that $z = z_1z_2$. $z_1 \in [HS^{-1}H]$ implies that there exits $t_k \in HS_{i_k}H$ such that

$$z_1 = t_1 t_2 \dots t_n$$
 for some $t_k \in HS_{i_k}^{-1}H, k = 1, 2, \dots, n$.

This implies that

$$(z_1H, t_1t_2H \dots t_{n-1}, \dots, H)$$

is a path from z_1H to H. That is

$$(yz_1H, yt_1t_2H\ldots t_{n-1}H, \ldots, yH)$$

is a path from yz_1H to yH.

Similarly, $z_2 \in [HSH]$ implies that there exits $a_k \in S_{i_k}$ such that

$$z_2 = a_1 a_2 \dots a_m.$$

Observe that

 $(z_2H, a_1a_2H, a_1a_2a_3H, \ldots, H)$

is a path from z_2H to H. That is,

$$(z_1z_2H, z_1a_1a_2H, a_1a_2a_3H, \ldots, z_1H)$$

is a path from zH to z_1H . That is

$$(yzH, yz_1a_1a_2H, ya_1a_2a_3H, \dots, z_1H)$$

is a path from xH to z_1H .

Proposition 2.17 \mathscr{C} is E_i - quasi connected if and only if $G = \langle HS_i^{-1}H \rangle \langle HS_iH \rangle$.

Proposition 2.18 \mathscr{C} is $E_1 E_2 \cdots E_n$ - locally connected if and only if $[HSH] = [HS^{-1}H]$.

Proof.

Assume that \mathscr{C} is $E_1 E_2 \cdots E_n$ - locally connected. Let $x \in [HSH]$. Then $x \in A_m$ for some m. Then $x = s_i s_j \dots s_m$. Let $x_0 = 1, x_1 = s_i, x_2 = s_i s_j, \dots, x_m = s_i s_j \dots s_m$. Then

$$(x_0H, x_1H, x_2H, \ldots, x_mH)$$

is a path leading from 1 to x. Since \mathscr{C} is locally connected, there exits a path from xH to H, say:

$$(xH, y_1H, y_2H, \ldots, y_mH, H)$$

This implies that

$$x^{-1}y_1 \in S_{i_1}$$
$$y_1^{-1}y_2 \in S_{i_2}$$
$$\vdots$$
$$y_m^{-1} \in S_{i_m}$$

The above equations tells us that $x^{-1} \in [HSH]$. That is $x \in [HS^{-1}H]$. Hence $[HSH] = [HS^{-1}H]$. Conversely, if $[HSH] = [HS^{-1}H]$, one can easily verify that \mathscr{C} is $E_1E_2\cdots E_n$ - locally connected.

Proposition 2.19 \mathscr{C} is E_i - locally connected if and only if $\langle HS_i^{-1}H \rangle = \langle HS_iH \rangle$. **Proposition 2.20** \mathscr{C} is $E_1E_2\cdots E_n$ - semi connected if and only if $G = [HSH] \cup [HS^{-1}H]$. **Proof.** Assume that \mathscr{C} is $E_1E_2\cdots E_n$ - semi connected and let $xH \in G/H$. Then there is a path from H to xH, say

$$(H, x_1H, x_2H, \cdots, x_nH, xH)$$

or a path from xH to H, say

$$(xH, y_1H, y_2H, \cdots, y_mH, H)$$

This implies that $x \in [HSH]$ or $x \in [HS^{-1}H]$. This implies that $G = [HSH] \cup [HS^{-1}H]$. Similarly, if $G = [HSH] \cup [HS^{-1}H]$, then one can prove that \mathscr{C} is $E_1E_2 \cdots E_n$ - semi connected.

Proposition 2.21 \mathscr{C} is E_i - semi connected if and only if $G = \langle HS_iH \rangle \cup \langle HS_i^{-1}H \rangle$. **Proposition 2.22** \mathscr{C} is an $E_1E_2\cdots E_n$ - quasi ordered set if and only if

 $(i)1 \in (HS_1H) \cup (HS_2H) \cdots \cup (HS_nH),$ $(ii) \text{for every}(i,j), HS_iHS_jH \subseteq HS_kH \text{ for some } k.$

Proposition 2.23 \mathscr{C} is an E_i quasi ordered set if and only if

$$(i)1 \in HS_iH,$$
$$(ii)(HS_iH)^2 \subseteq HS_iH$$

Proposition 2.24 \mathscr{C} if an $E_1E_2\cdots E_n$ - partially ordered set if and only if

$$(i)1 \in (HS_1H) \cup (HS_2H) \cdots \cup (HS_nH),$$

(ii)for every $(i, j), (HS_iH)(HS_jH) \subseteq (HS_kH)$ for some k ,
(iii) $\cup (HS_iH) \cap (HS_i^{-1}H) = \{1\}.$

Proof. Observe that

$$x \in \cup (HS_iH) \cap H(S_i)^{-1}H \Leftrightarrow x \in (HS_iH) \cap (HS_i^{-1}H)$$
 for some i

$$\Leftrightarrow x \in HS_iH \text{ and } x \in HS_i^{-1}H$$
$$\Leftrightarrow (H, xH) \in E_i \text{ and } (xH, H) \in E_i$$
$$\Leftrightarrow x = 1.$$

Proposition 2.25 \mathscr{C} if an E_i partially ordered set if and only if

$$(i)1 \in HS_iH,$$

$$(ii)(HS_iH)^2 \subseteq HS_iH$$

$$(iii)(HS_iH) \cap (HS_i^{-1}H) = \{1\}$$

Proposition 2.26 Let $A_m (m \ge 2)$ is the set of m products of the form $S_{i_1}S_{i_2}\cdots S_{i_m}$. Then \mathscr{C} is an $E_1E_2\cdots E_n$ - hasse diagram if and only if $C \cap S_i = \emptyset$ for all i and for all $C \in A_m$.

Proof. Suppose the condition holds. Let x_0H, x_1H, \ldots, x_mH be (m + 1) elements in G/H such that $(x_iH, x_{i+1}H) \in \bigcup E_i$ for $i = 0, 1, \ldots, m - 1$. This implies that

$$x_0^{-1} x_1 \in S_{i_1};$$

$$x_1^{-1} x_2 \in S_{i_2};$$

$$x_2^{-1} x_3 3 \in S_{i_3};$$

$$\vdots$$

$$x_{m-1}^{-1} x_m \in S_{i_m}.$$

The above equation tells us that $x_0^{-1}x_m \in A_m$. Since $C \cap S_i = \emptyset$ for all *i* and for all $C \in A_m$, $(x_0, x_m) \notin \cup E_i$.

Conversely assume that \mathscr{C} is an $E_1 E_2 \cdots E_n$ hasse diagram. We will show that $C \cap S_i = \emptyset$ for all i and for all $C \in A_m$. Let $S_{i_1} S_{i_2} S_{i_3} \cdots S_{i_m}$ be any element in A_m . Let $x \in S_{i_1} S_{i_2} S_{i_3} \cdots S_{i_m}$. Then $x = s_{i_1} s_{i_2} s_{i_3} \cdots s_{i_n}$ for some $s_{i_k} \in S_{i_k}$. This implies that

$$(H, s_{i_1}H, s_{i_2}s_{i_3}H, \ldots, xH)$$

is a path from H to xH. Since \mathscr{C} is an $E_1E_2\cdots E_n$ hasse-diagram, $x\notin S_i$ for any i. That is, $A_m\cap S_i=\emptyset$ for all i.

Proposition 2.27 The $E_1E_2 \cdots E_n$ out-degree of \mathscr{C} is the cardinal number $|S_1 \cup S_2 \cup \cdots \cup S_n/H|$.

Proof. Since \mathscr{C} is vertex- transitive it suffices to consider the out degree of the vertex $H \in G/H$. Observe that

$$\rho(H) = \{ uH : (H, uH) \in E \}$$
$$= \{ uH : u \in HS_iH \text{ for some } i \}$$
$$= (HS_1H) \cup (HS_2H) \cup \dots \cup (HS_nH)/H$$

Hence $|\rho(H)| = |(HS_1H) \cup (HS_2H) \cup \cdots \cup (HS_nH)/H|.$

Proposition 2.28 The E_i out-degree of \mathcal{C} is the cardinal number $|HS_iH/H|$.

Proposition 2.29 The $E_1E_2\cdots E_n$ in-degree of \mathscr{C} is the cardinal number $|(HS_1^{-1}H) \cup (HS_2^{-1}H) \cup \cdots \cup (HS_n^{-1}H)/H|$.

Proof. Since \mathscr{C} is vertex- transitive it suffices to consider the in degree of the vertex $H \in G/H$. Observe that

$$\sigma(H) = \{uH : (uH, H) \in E\}$$
$$= \{uH : (uH, H) \in E_i\}$$
$$= \{uH : u^{-1} \in HS_iH\}$$
$$= \{uH : u \in HS_i^{-1}H\}$$

Hence $|\sigma(H)| = |(HS_1^{-1}H) \cup (HS_2^{-1}H) \cup \dots \cup (HS_n^{-1}H)/H|.$

Proposition 2.30 The E_i in-degree of \mathscr{C} is the cardinal number $|HS_i^{-1}H/H|$.

Proposition 2.31 For k = 1, 2, 3, ... let A_k be the set of all k products of the form $(HS_{i_1}H)(HS_{i_2}H)\cdots(HS_{i_k}H)$. If \mathscr{C} has finite diameter, then the diameter of \mathscr{C} is the least positive integer m such that

$$G = A_m$$

Proof.Let *m* be the smallest positive integer such that $G = A_m$. We will show that the diameter of \mathscr{C} is *m*. Let xH and yH be any two arbitrary elements in *G* such that y = xz. Then $z \in G$. This implies that $x \in A_m$. But then *z* has a representation of the form $x = s_{i_1}s_{i_2}\cdots s_{i_m}$. This implies that

$$(H, s_{i_1}H, s_{i_1}s_{i_2}H, \ldots, zH)$$

is path of m edges from H to zH. That is

$$(xH, xs_{i_1}H, xs_{i_1}s_{i_2}H, \ldots, yH)$$

is a path of length m from xH to yH. This shows that $d(xH, yH) \leq n$. Since xH and yH are arbitrary,

$$\max_{xH,yH\in G}\{d_{1,2,\cdots,n}(xH,yH)\} \le m$$

Therefore the diameter of \mathscr{C} is less than or equal to n. On the other hand let the diameter of \mathscr{C} be k. Let $x \in G$ and $d_{1,2,\dots,n}(H, xH) = k$. Then we have $x \in B$ for some $B \in A_k$. That is

$$G = A_k$$

Now by the minimality of k, we have $m \leq k$. Hence k = m.

Proposition 2.32 The vertex H is an $E_1E_2 \cdots E_n$ -source of \mathscr{C} if and only if G = [HSH].

Proof. First, assume that H is an $E_1E_2\cdots E_n$ -source of \mathscr{C} . Then for any vertex $xH \in G/H$, there is an $E_1E_2\cdots E_n$ - path from H to xH. This implies that G = [HSH]. Conversely, if G = [HSH], one can prove that H is an $E_1E_2\cdots E_n$ - source.

Proposition 2.33 The vertex H is an E_i - source of \mathscr{C} if and only if $G = \langle HS_iH \rangle$.

Proposition 2.34 The vertex H is an $E_1E_2 \cdots E_n$ - sink of \mathscr{C} if and only if $G = [HS^{-1}H]$.

Proof. First, assume that H is an $E_1E_2\cdots E_n$ -sink of \mathscr{C} . Then for each $xH \in G/H$, there is an $E_1E_2\cdots E_n$ - path from xH to H. This implies that $x \in [HS^{-1}H]$. Hence $G = [HS^{-1}H]$.

Conversely, if $G = [HS^{-1}H]$, one can easily prove that H is an $E_1E_2\cdots E_n$ -sink of \mathscr{C} . **Proposition 2.35** The vertex H is an E_i sink of \mathscr{C} if and only if $G = \langle HS_i^{-1}H \rangle$. **Proposition 2.36** The $E_1E_2\cdots E_n$ - reachable set $R_{1,2,\dots,n}(H)$ of the vertex H is the set [HSH].

Proof. By definition,

$$R(H) = \{xH : \text{there exits an } E_1 E_2 \cdots E_n \text{ - path from } H \text{ to } xH\}$$

Observe that

 $xH \in R_{1,2,\dots,n}(H) \Leftrightarrow$ there exits an $E_1E_2\cdots E_n$ -path from H to xH, say $(H, x_1H, x_2H, \dots, x_nH, xH)$ $\Leftrightarrow x \in [HSH]$

Therefore, $R_{1,2,3,...,n}(H) = [HSH].$

Proposition 2.37 The E_i reachable set $R_i(H)$ of the vertex H is the set $\langle S_i \rangle$.

Proposition 2.38 The $E_1E_2 \cdots E_n$ - antecedent set $Q_{1,2,\dots,n}(H)$ of the vertex H is the set $[HS^{-1}H]$.

Proof. Observe that

 $\begin{aligned} x \in Q_{1,2,\dots,n}(H) \Leftrightarrow \text{ there exits an } E_1 E_2 \cdots E_n \text{ path from } xH \text{ to } H, \text{ say} \\ (xH, x_1 H, x_2 H, \dots, x_n H, H) \\ \Leftrightarrow x \in [HS^{-1}H]. \\ \therefore \quad Q_{1,2,\dots,n}(H) = [HS^{-1}H]. \end{aligned}$

Proposition 2.39 The E_i antecedent set $Q_i(H)$ of the vertex H is the set $\langle HS_i^{-1}H \rangle$.

References

- B. Alspach and C. Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combin. 28 (1989), 101 – 108.
- B. Alspach, S. Locke and D. Witte, The Hamilton spaces of Cayley graphs on abelian groups, Discrete Math. 82 (1990), 113 – 126.
- [3] B. Alspach and Y. Qin, Hamilton-connected Cayley graphs on hamiltonian groups, Europ. J. Combin.
 22 (2001), 777 787.

- [4] C. Godsil and R. Gordon, Algebraic Graph Theory, Graduate Texts in Mathematics, New York: Springer-Verlag, 2001.
- [5] D. Witte and K. Keating, On hamilton cycles in Cayley graphs in groups with cyclic commutator subgroup, Ann. Discrete Math. 27 (1985), 89 – 102.
- [6] E. Dobson, Automorphism groups of metacirculant graphs of order a product of two distinct primes, Combinatorics, Probability and Computing 15(2006), 150–130.
- [7] G. Sabidussi, On a class of fixed-point-free graphs, Proc. Amer. Math. Soc. 9(1958), 800 804.
- [8] J. B. Fraleigh, A First course in abstract algebra, Pearson Education, 2008.
- [9] Kumar V., Anil and Nair Parameswaran Ashok, A class of Cayley digraph structures induced by groups, Journal of Mathematics Research 4(2) (2012), 28–33.
- [10] Kumar V. Anil, A class of double coset Cayley digraphs induced by loops, International Journal of Algebra 22(5) (2011), 1073-1084.
- S. B. Akers and B. Krishamurthy, A group theoritic model for symmetric interconnection networks, IEEE Trans. comput. 38 (1989), 555 – 556.
- [12] S. J. Curran and J. A. Gallian, Hamiltonian cycles and paths in cayley graphs and digraphs- A survey, Discrete Math., 156 (1996) 1 – 18.
- [13] S.Lakshmivarahan, J. Jwo and S. K. Dhall, Symmetry in interconnection networks based on cayley graphs of permutation groups- A survey, Parallel Comput. 19(1993), 361 – 407.