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Abstract. The notion of k-forcing number of a graph was introduced by Amos et al. For a given graph G and a

given subset I of the vertices of the graph G, the vertices in I are known as initially colored black vertices and the

vertices in V (G)− I are known as not initially colored black vertices or white vertices. The set I is a k-forcing

set of a graph G if all vertices in G eventually colored black after applying the following color changing rule: If

a black colored vertex is adjacent to at most k-white vertices, then the white vertices change to be colored black.

The cardinality of a smallest k-forcing set is known as the k-forcing number Zk(G) of the graph G. If the sub graph

induced by the vertices in I are connected, then I is called the connected k-forcing set. The minimum cardinality

of such a set is called the connected k-forcing number of G and is denoted by Zck(G). This manuscript is intended

to study the connected k-forcing number of graphs and the splitting graphs.
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1. INTRODUCTION

Through out this manuscript, we consider graphs without loops and multiple edges. That

is we consider only simple graph G = (V,E) with vertex set V (G) and edge set E(G). The
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splitting graph S(G) of a graph G is the graph derived from a simple graph G by taking a

vertex v′ corresponds to each vertex v ∈ G and join v
′

to all vertices which are adjacent to v.

The concept of Splitting graph was first defined by E. Sampathkumar et al. in [14]. In [5] and

[4] the authors studied about the zero forcing number of the splitting graph of a graph and the

k-forcing number of graphs and their splitting graphs.

Zero forcing number of graphs were introduced by the AIM Special Work Group (See[11]).

The zero forcing number have applications in power network monitoring [10] and quantum

physics [3].

In this paper, we introduce the concept of connected k-forcing number. This can be regarded

as a generalization of connected zero forcing number.

Definition 1. k-color-changing rule: Let G be a graph in which each vertex is colored either

black or white. If a black colored vertex has at most k white neighbors, then change the colors

of k white neighbors to black. When the k-color changing rule is applied to an arbitrary vertex

v to alter the colors of some vertices w1,w2, . . . ,wk to black, then we say the vertex v k-forces

the vertices w1,w2, . . . ,wk and we denote it as v→ w1,v→ w2, . . . ,v→ wk.

The k-forcing number of a graph was introduced by D Amos, Y Caro, R Davila and R Pepper

in [1].

Definition 2. A k-forcing set of a graph G is a subset Zk of vertices such that if at first the

vertices in Zk are colored black and V (G)−Zk are colored white, the whole graph G may be

colored black by continuously applying the k-color changing rule. The k-forcing number of G,

denoted by Zk(G), is the minimum cardinality of a k-forcing set in G. If the subgraph induced by

the vertices in Zk (that is 〈Zk〉) is connected, then Zk is known as the k-conneted zero forcing set.

The minimum size of such a set is called the connected k-forcing number of G and is denoted

by Zck(G).

The connected zero forcing set was introduced by M. Khosravi, S. Rashidi and A.

Sheikhhosseni (See[13]). When k = 1, the definition of connected 1-forcing set is equivalent
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to the definition of connected zero forcing set, Zc(G) (See [11]). In this article, we deal with

connected k-forcing number of some graphs and their splitting graphs. We use the following

definitions for the further development of this article.

• Corona Product: For any two graphs G and H, the Corona product G◦H of the graphs

G and H is the graph detemined by taking one copy of G and |V (G) | copies of H and

by connecting each vertex of the jth copy of H to the jth vertex of G, 1≤ j ≤|V (G) |.

• Rooted Product: Let G be a connected graph with vertices v1,v2, . . . ,vn and let H be a

sequence of n-rooted graphs H1,H2, ...,Hn. The rooted product of G and H is defined

as the graph obtained by identifying the root of Hi,1 ≤ i ≤ n with the ith vertex of G

for all i. This graph is denoted by G(H) and is known as the rooted product of G by H

(See[8]).

• Square of a Graph: Let G be a simple graph with vertex set V (G) and edge set E(G).

Then the square of G, denoted by G2, is the graph having the vertex set same as that of

G and such that two vertices in G2 are adjacent if the distance between them is at most

two in G.

• When the k-color changing rule is applied to an arbitrary vertex u to change the color of

the vertex v, we say u, k-forces (if it is zero forcing, then we say u forces v) v and write

u→ v.

For more definitions on graphs, we refer to [9]. From the definitions above, we have the

following proposition.

Proposition 3. Let Pn, n≥ 3 be a path on n vertices. Then

Zck[S(Pn)] =


3 if k = 1

1 if k ≥ 2

Proof. Case 1 Assume that k = 1. It can be easily observed that if we color any two adjacent

vertices as black, it is not possible to obtain a derived coloring. Therefore, Zc1[S(Pn)]≥ 3. Now,

let u1,u2, . . . ,un be the vertices of Pn and u
′
1,u

′
2, . . . ,u

′
n be the corresponding vertices in S(Pn).

Color the vertices u1,u2 and u
′
1 as black. Clearly, the vertex u1 forces u

′
2 as black, the vertex u

′
2

forces the vertex u3 as black, the vertex u2 forces the vertex u
′
3 as black and so on. Therefore,
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Z = {u1,u2,u
′
1} forms a connected zero forcing set for the path Pn. So, Zc1S(Pn) ≤ 3. Hence

the result follows.

Case 2 Assume that k ≥ 2. In this case, the vertex u1 forms a connected zero forcing

set and hence the result follows. �

It can be observed that any conncetd k-forcing set is a k-forcing set. Therefore, we have the

following

Proposition 4. For any simple graph G, and for any fixed k, Zk(G) ≤ Zck(G), where Zk is the

k-forcing number and Zck(G) is the connected k-forcing number of G.

We consider the next proposition from [5] to prove the result concerning the splitting graph

of the cycle Cn.

Proposition 5 ([5]). If G is the cycle Cn on n≥ 4 vertices, then Z[S(G)] = 4.

In the succeeding proposition, we consider the spliting graph of the cycle Cn,n≥ 4.

Proposition 6. Let S(Cn) be the splitting graph of the cycle Cn. Then

Zck[S(Cn)] =


4 if k = 1

3 if k = 2

1 i f k ≥ 3

Proof. Case 1 Assume that k = 1. From Proposition-4 and Proposition-5, we have the follow-

ing:

4≤ Zc1[S(Cn)]

To prove the reverse part, let us consider the vertices of the cycle Cn as v1,v2, . . . ,vn and

v′1,v
′
2, . . . ,v

′
n be the corresponding vertices of v1,v2, . . . ,vn in S(Cn). Consider the set of ver-

tices {v1,v′1,v2,v′2} as black. Now the vertex v′2→ v3 to black, the vertex v2→ v′3 to black, the
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vertex v′3→ v4 to black and so on. Therefore, we can obtain a derived coloring with the set of

black vertices {v1,v′1,v2,v′2}. Clearly,

4≥ Zc1[S(Cn)]

Hence the result follows.

Case 2 Let us assume that k = 2 and Zc2[S(Cn)] = 2. Consider a connected 2-forcing

set consisting of two vertices. Let u and v be the two adjacent vertices in the connected

2-forcing set of S(Cn). Then we have two sub cases:

Subcase 2.1 deg(u) = deg(v) = 4. Since u and v are adjacent to three white neighbors,

color changing rule is not applicable in this case, we get a contradiction to our assumption that

Zc2[S(Cn)] = 2.

Subcase 2.2 deg(u) = 2 and deg(v) = 4. In this case the vertex u can force one more

adjacent vertex of degree 4 to black. Therefore, in this case it is not possible to obtain a derived

coloring. Hence from subcases 2.1 and 2.2, we have Zc2[S(Cn)]≥ 3.

It can be easily observed that the vertices {v1,v′1,v2} forms a zero forcing set for S(Cn) and

hence the result follows. For k = 3 the result is obvious. �

The Friendship graph Fp is the graph obtained by identifying p copies of the cycle graph C3

with a common vertex.

Proposition 7. Let Fp denote the friendship graph with p ≥ 2 triangles. Then Zck(Fp) =
p+1− k

2 i f k is even and k < ∆−2

2p−k+3
2 i f k is odd and k < ∆−2

1 i f k ≥ ∆−2

Proof. Case 1 Assume that k is even and k < ∆− 2. Let v be the vertex with maximum

degree ∆. It can be noted that v should be a member of any connected zeroforcing set.

Otherwise, the zero forcing set will not be connected. Therefore, assume that the vertex
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v is there in any connected zero forcing set of Fp. If we take one vertex from each of the

p− k
2 − 1 triangles, then it is not possible to obtain a derived coloring since deg(v) = 2p

and by using color changing rule we get 2(p− k
2 − 1) = 2p− k− 2 black vertices which are

adjacent to the vertex v. Now we have 2p− (2p− k− 2) = k + 2 white vertices remains. It

is not possible to force these k + 2 vertices by using the vertex v. Therefore, we must take

one black vertex from each of the p− k
2 triangles since the vertex v is black, p+1− k

2 ≤ Zck(Fp).

Let us take one vertex from each of the p− k
2 triangles as black. Since the vertex v is black,

these p− k
2 vertices will force the remaining vertices in the p− k

2 triangles as black. Now we

have 2(p− k
2) black vertices together with the black vertex v in the connected k-forcing set.

It can be observed that at this stage we have 2p− (2p− k) = k white vertices adjacent to the

vertex v. Now the vertex v can force these k-vertices as black. Therefore we get a derived

coloring with p− k
2 +1 black vertices. Hence Zck(Fp)≤ p− k

2 +1.

Case 2 Assume that k is odd and k < ∆− 2. Let v be the vertex with maximum degree

∆. It can be noted that v should be a member of any connected zeroforcing set. Otherwise,

the zero forcing set will not be connected. Therefore, assume that the vertex v is there in any

connected zero forcing set of Fp. Now let us assume that there exist a zero forcing set consisting

of 2p−k+1
2 vertices. Since the vertex v is black we can distribute the remaining 2p−k−1

2 vertices

along the triangles. To force the maximum number of vertices as black, we need to distribute

one black vertex for each 2p−k−1
2 -triangles. Now we have 2(2p−k−1

2 ) + 1 = 2p− k black

vertices and 2p+1− (2p− k) = k+1 white vertices. All these white vertices are adacent to v.

Therefore, color changing rule is not applicable since k+ 1 white vertices are adjacent to the

black v. Therefore, 2p−k+3
2 ≤ Zck(Fp).

Let us take one vertex from each of the 2p−k+3
2 − 1 triangles as black. Since the vertex

v is back, these 2p−k+3
2 − 1 will force the remaining vertices in the 2p−k+3

2 − 1 triangles as

black. At this stage we have 2(2p−k+3
2 −1)+1 = 2p− k+2 black vertices remains. Therefore

the total number of white vertices remains in this stage is 2p+ 1− (2p− k+ 2) = k− 1. All
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these k−1 white vertices are adjacent to v. Therefore, v k forces all these k−1 white vertices

as black. Hence 2p−k+3
2 ≥ Zck(Fp).

It can be easily obseved that if k ≥ ∆−2, then Zck(Fp) = 1. �

Theorem 8. Let G be a connected graph with | V (G) |= p1 and let H be another connected

graph with Zck(H) = p2. Let G be the graph obtained by taking the corona product of G and

H, that is G ≡ G◦H. Then Zck(G )≤ p1(1+ p2).

Proof. With out loss of generality, assume that G is connected, |V (G) |= p1 and Zck(H) = p2.

Color all vertices of G black. To form the k-forcing set for the sub graph induced by v1∪H1,

we need a maximum of 1+ p2 black vertices. That is, Zk(〈v1 ∪H1〉) ≤ 1+ p2 , where H1 is

the first copy of H corresponds to the vertex v1 in G . Zk(〈v2 ∪H2〉) ≤ 1+ p2, where H2 is

the second copy of H corresponds to the vertex v2 in G . Proceeding like this, we can observe

that Zk(〈vp1 ∪Hp1〉) ≤ 1+ p2. Now the graph G ≡ 〈v1 ∪H1〉 ∪ 〈v2 ∪H2〉∪, . . . ,∪〈vp1 ∪Hp1〉.

Therefore, Zk(G ) ≤ (1+ p2)+ (1+ p2)+ . . .+(1+ p2)-p1 times. This follows that Zk(G ) ≤

p1(1+ p2). Since each vertex in G is connected to the vertices of all copies of H, the k-forcing

set obtained here forms a connected k-forcing set. Therefore, Zck(G )≤ p1(1+ p2). �

Proposition 9. Let G be the complete bipartite graph Km,n, and n ≥ 2,m ≥ 2. Then the con-

nected zero forcing number of G is m+n−2. That is, Zc(G) = m+n−2.

Proof. Since G is a complete bipartite graph, therefore, the vertex set of G can be partitioned

into two sets X and Y . Let u1,u2, . . . ,um be the vertices in X and v1,v2, . . . ,vn be the vertices

in Y . Note that the vertices in X are non-adjacent. The vertices in Y are also non-adjacent. To

start the color changing rule , color any vertex, say u1, in X as black. Since each vertex in X is

connected to every vertex in Y , we have to color n−1 vertices in Y as black. Let the only white

vertex in Y be vn. Now u1→ vn to black. In X there are m−1 white vertices. Each vertex in Y

is joined to m−1 white vertices in X . Assign black color to m−2 white vertices in X . Then any

black vertex in Y , say v1 forces the remaining white vertex in X as black. Now the zero forcing

set consists of 1+m−2+n−1 black vertices, which are connected. Hence the connected zero

forcing number of G is m+n−2. That is, Zc(G) = m+n−2. �



CONNECTED k-FORCING SETS OF GRAPHS AND SPLITTING GRAPHS 663

We use the following results from [2] and [11] to prove the next result

Proposition 10. [2] For any connected graph G, Z(G)≤ Zc(G), where Z(G) is the zero forcing

number of G.

Proposition 11. [11] Let G be the graph obtained by taking the Cartesian product of the cycle

Cn with the path Pm. Then Z(G) = min{n,2m}

Proposition 12. Let G be the graph obtained by taking the Cartesian product of the cycle Cn

with the path Pm and let n≥ 2m. Then Zc(G) = 2m.

Proof. Let v1 and v2 be the two adjacent vertices in the cycle Cn. Let A = {v1
1,v

2
1, . . . ,v

m
1 } be

the vertices corresponding to the vertex v1 in G and let B = {v1
2,v

2
2, . . . ,v

m
2 } be the vertices

corresponding to the vertex v2 in G. Now consider the vertices in the set A∪B and color these

vertices as black in G. The vertices in A∪B forces the remaining vertices in G as black. Clearly

these vertices are connected in G and thus forms a connected zero forcing set in G. Hence

(1) Zc(G)≤ 2m

Also we have from proposition-10 and proposition-11 that

(2) Zc(G)≥ 2m

From (1) and (2) the result follows. �

Proposition 13. Let G be the star graph k1,n on n+1 vertices and n > 2. Then Zc(G) = n. In

general, if n≥ k ≥ 2, then Zck(G) = n− k+1.

Proof. Let u1,u2, . . . ,un be the vertices of the star graph k1,n with degree 1. Assume that v

is the vertex having degree n. We generate the connected zero forcing set as follows. Since

deg(v) = n, to apply the color changing rule, we have to color n−1 vertices in G adjacent to v as

black. Then v forces the only remaining white vertex to black. Therefore, Zc(G)= n−1+1= n.

If k = 2,we can easily show that the connected zero forcing number of G is n−2+1 = n−1.

Proceeding like this, we obtain Zck(G) = n− k+1 for any positive integer n≥ k ≥ 2. �
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2. CONNECTED k-FORCING NUMBER OF ROOTED PRODUCT OF GRAPHS

In this section, we deal with the connected k-forcing number of rooted product of cycle with

paths, cycle with cycles.

Proposition 14. Let P1,P2, . . . ,Pn be n-paths (each path is of length n≥ 3) rooted at the pendant

vertex and Cn be a cycle on n ≥ 3 vertices. Let G be the graph obtained by taking the rooted

product of the cycle Cn with the paths P1,P2, . . . ,Pn. Then

Zck(G) =


n i f k = 1

1 i f 2≤ k ≤ ∆,

where ∆(G) = 3.

Proof. Let u1,u2, . . . ,un be the vertices of the cycle Cn,n ≥ 3 and P1,P2, . . . ,Pn be the paths

rooted at the vertices u1,u2, . . . ,un respectively. Each path is of length n,n≥ 3.

Represent the vertices of P1 by p1
1, p1

2, . . . , p1
n, the vertices of P2 by p2

1, p2
2, . . . , p2

n and the

vertices of Pn by pn
1, pn

2, . . . , pn
n. Let u1 be the vertex identified with the vertex p1

1 in G, u2

be the vertex identified with the vertex p2
1 in G., . . . ,un be the vertex identified with the vertex pn

1.

Case 1. Assume that k = 1. This case is similar to that of the connected zero forcing

number of G. Color the vertices u1,u2, . . . ,un in G black. Now one can easily infer that

(3) Zc(G)≤ n

It can be worth mentioning that if we start the color changing rule with vertices of Pi,1≤ i≤ n

other than the vertices identified with the vertices u1,u2, . . . ,un of Cn, we cannot obtain a

connected zero forcing set with at least n black vertices. Therefore, we need to consider the

vertices in the cycle to force the remaining vertices in G.

Now assume that we have a connected zero forcing set consisting of n − 1 black ver-

tices. From the above it can be noted that these vertices must be from the cycle Cn. Without

loss of generality, assume that the vertices are u1,u2, . . . ,un−1. Clearly the black vertex u2
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can force the vertices of the path P2, u3 can force the vertices of the path P3, . . ., the vertex

un−2 can force the vertices of the path Pn−2. Since the black vertex u1 is adjacent to two white

vertices un and p1
2, u1 cannot force the vertices un and p1

2. Similarly the vertex un−1 is adjacent

to two white vertices un and pn−1
2 . Therefore, the vertex un−1 cannot force un and pn−1

2 , this

contradicts our assumption that Zc(G) = n−1. Therefore,

(4) Zc(G)≥ n

Now from (3) and (4) the result follows.

Case 2. Assume that k ≥ 2. In this case, if we consider any pendant vertex of G as a

black vertex , then it can force the remaining white vertices of G as black. Hence Zck(G) = 1.

�

Proposition 15. Let D1,D2, . . . ,Dn be the cycles Cn of order n≥ 3 rooted at a vertex and Cn be

another cycle of order n > 3. Let G be the graph derived from the rooted product of Cn with the

cycles D1,D2, . . . ,Dn. Then

Zck(G) =


2n i f k = 1

n i f k = 2

1 i f 3≤ k ≤ ∆,

where ∆(G) = 4.

Proof. Without loss of generality, assume that u1,u2 . . . ,un be the vertices of the cycle Cn in G

and let D1,D2, . . . ,Dn be the cycles rooted at u1,u2, . . . ,un respectively. Represent the vertices

of the cycle D1 in G by d1
1 ,d

1
2 , . . . ,d

1
n . Similarly the vertices of D2 in G by d2

1 ,d
2
2 , . . . ,d

2
n and

the vertices of Dn by dn
1 ,d

n
2 , . . . ,d

n
n . Assume that the vertex d1

1 be rooted at u1 , the vertex d2
1 be

rooted at u2, . . ., the vertex dn
1 be rooted at un.

Case 1. Let us suppose that k = 1. This case is similar to that of the connected zero

forcing number of G. Color the vertices u1,u2, . . . ,un,d1
2 ,d

2
2 , . . . ,d

n
2 as black. Now we can

easily see that these black vertices forms a connected zero forcing set. Hence
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(5) Zc(G)≤ 2n

It can be easily infer that to form a minimum connected zero forcing set for G, we need to

color the vertices u1,u2, . . . ,un as black and color at least one vertex from each of the cycles

Di,1≤ i≤ n adjacent to each ui,1≤ i≤ n as black, otherwise we cannot form a connected zero

forcing set with at least 2n black vertices . Clearly,

(6) Zc(G)≥ 2n

(5) and (6) concludes the result.

Case 2. Let us suppose that k = 2. Color all vertices of Cn in G black. Each vertex

ui,1≤ i≤ n, is adjacent to exactly two white vertices of Di and k = 2. Therefore, these vertices

forms a 2- forcing set for G. The sub graph induced by these black vertices are connected and

hence it forms a connected 2-forcing forcing set for G. Therefore,

(7) Zc2(G)≤ n

It can be easily infer that to form a minimum connected 2- forcing set for G, we need to color

the vertices u1,u2, . . . ,un as black, otherwise we cannot form a connected 2-forcing set with at

least n black vertices. Clearly,

(8) Zc2(G)≥ n

Therefore from (7) and (8), the result follows.

Case 3. Let us suppose that k ≥ 3. In this case any arbitrary vertex from the cycle

Di,1≤ i≤ n will k-forces the remaining vertices as black in G. Therefore, Zck(G) = 1. �
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Proposition 16. Let G be the rooted product of Pn�P2 (the Ladder graph) with Pt , t ≥ 3 rooted

at the pendant vertex. Then

Zck(G) =



2n i f k = 1

n i f k = 2

1 i f 3≤ k ≤ ∆(G)

where ∆(G) = 4

Proof. Represent the vertices of the graph Pn�P2 by u1,u2,. . . ,un and v1,v2,. . . ,vn. Let

P1,P2,. . . ,Pn be the paths rooted at the vertices u1,u2,. . . ,un respectively. Also let Q1,Q2,. . . ,Qn

be the paths rooted at the vertices v1,v2, . . . ,vn respectively. The vertices of the paths

P1,P2,. . . ,Pn and Q1,Q2,. . . ,Qn in G can be named as follows:

Consider

P1 = {p1
1, p1

2, . . . , p1
t }, Q1 = {q1

1,q
1
2, . . . ,q

1
t }

P2 = {p2
1, p2

2, . . . , p2
t }, Q2 = {q2

1,q
2
2, . . . ,q

2
t }

. . . . . .

. . . . . .

. . . . . .

Pn = {pn
1, pn

2, . . . , pn
t }, Qn = {qn

1,q
n
2, . . . ,q

n
t }

Now color the vertices u1,u2, . . . ,un and v1,v2, . . . ,vn as black. Clearly these vertices forms

a connected zero forcing set for G and hence

(9) Zc(G)≤ 2n

Refer Figure 1.
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FIGURE 1. Rooted product of P8�P2 with P4.

There exists three types of minimum connected zero forcing sets with Zc(G) = 2n. Consider

these three sets as follows. We denote them as A,B and C

A = {u1,u2, . . . ,un,v1,v2 . . . ,vn}

B = {u1,u2, . . . ,un, p1
2, p2

2, . . . , pn
2}

C = {v1,v2, . . . ,vn,q1
2,q

2
2, . . . ,q

n
2}

It can be easily observed that if we take 2n vertices other than these three sets, then it will not

form a minimum connected zero forcing set. Now Assume that there exists a connected zero

forcing set consisting of 2n−1 black vertices.

Case 1. Consider the black vertices as depicted in Figure 2. Assume that the black ver-

tices are from the set A, except the vertex un. Consider the vertex un = u8 as white. The blue

colored vertices represent the vertices which are forced by the black vertices. In this case, if

we consider G, then there are 3t− 2 vertices remain as white. Therefore, we cannot obtain a

derived coloring, a contradiction to our assumption that there exists a connected zero forcing

set consisting of 2n−1 vertices. The case is similar if we consider u1,v1 and vn = v8 as white

vertices.
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Case 2. Consider the black vertices as depicted in Figure 1. If we choose any black

vertex other than u1,v1,un = u8,vn = v8 as white, then one can observe that there are 4t − 3

white vertices remains in G, a contradiction to our assumption that Zc(G) = 2n−1.

FIGURE 2. Rooted product of P8�P2 with P4.

FIGURE 3. Rooted product of P8�P2 with P4.
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Case 3. Consider the black vertices as depicted in Figure- 3. Assume that the black vertices are

from the set B, except the vertex p1
2. Consider the vertex p1

2 as white. The blue colored vertices

represent the vertices which are forced by the black vertices. In this case if we consider the

graph G, then there are 3t−2 vertices remain as white. Therefore, we cannot obtain a derived

coloring with Zc(G) = 2n−1, a contradiction. The case is similar if we consider the vertex pn
2

as white.

Sub Case 3.1. Consider the black vertices as depicted in Figure- 3. Assume that the

black vertices are from the set B, except one the vertices pi
2,2≤ i≤ n−1. Consider the vertex

pi
2 as white. In this case if we consider G, then there are 4t − 3 vertices remain as white.

Color changing rule is not applicable at this stage, a contradiction to our assumption that

Zc(G) = 2n−1.

Sub Case 3.2. Assume that the black vertices are from the set B, except the vertex

ui,1 ≤ i ≤ n. In this case we loose the connectivity of the zero forcing set. That is the zero

forcing set is not connected, again a contradiction.

Case 4. Assume that the black vertices are from the set C, except one. This case is

similar to that of Case 3. Since the sub graph induced by the connected zero forcing sets B and

C are isomorphic. Combining cases 1,2,3 and 4,

(10) Zc(G)≥ 2n

From (9) and (10), Zck(G) = 2n, if k = 1.

Case 5. Let k > 1. If we color any one of the pendant vertices from G as black, then

the pendant vertex forms a connected zero forcing set for G. Hence Zck(G) = 1 if 1 < k ≤ 4,

where ∆(G) = 4. �
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Proposition 17. Let G be the rooted product of Pn�Pn (The Grid graph) with Pt , t ≥ 3 rooted at

the pendant vertex. Then

Zck(G)


≤ n2 i f k = 1

≤ n i f k=2

= 1 i f 3≤ k ≤ 5.

Proof. Case 1. Assume that k = 1. In this case color all the vertices of the Cartesian product

Pn�Pn in G as black. One can easily observe that these n2- black vertices forms a connected

zero forcing set for G. Thus Zc(G)≤ n2.

Case 2. Assume that k = 2. Let u1,u2, . . . ,un be the vertices of the path Pn in Pn�Pn of

G. Color these vertices as black in G. Now one can easily verify that these vertices form a

connected zero forcing set for G. Thus, Zc2(G)≤ n, if k = 2.

Case 3. Assume that 3 ≤ k ≤ 5. Let Pt be the path identified at the vertex u1 in G.

Now color the pendant vertex of the path Pt in G as black. Let it be the vertex v. Clearly the

vertex v forces the remaining vertices in G as black. Therefore we can form a derived coloring

for G. Thus Zck(G) = 1, as desired. �

We strongly believe that the bounds in the above proposition is sharp.

Proposition 18. Let G be the rooted product of Pn�P2 with the cycle Cn. Then

Zck(G) =


4n i f k = 1

2n i f k = 2

1 i f 3≤ k ≤ 5

Proof. Case 1. Assume that k = 1. Let u1,u2, . . . ,un be the vertices of the path Pn in G

and let v1,v2, . . . ,vn be the vertices corresponding to the copy of the path Pn in G. Note that

deg(u1) = deg(v1) = deg(un) = deg(vn) = 4. The remaining vertices of Pn�P2 in G have

degree 5. It can be noted that any connected zero forcing set of G must contain all the vertices

of Pn�P2. Otherwise the zero forcing set will be disconnected. Without loss of generality,
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assume that we have a set consisting of 2n connected black vertices from Pn�P2 in G. To force

the white vertices in each cycle, we must select a vertex adjacent to the rooted vertex of each

Ci,1 ≤ i ≤ 2n. Therefore we need to choose 2n black vertices from the cycle Cn. Now we

have a set of 4n black vertices which forces the remaining vertices of G, which is connected.

Therefore, Zck(G) = 4n.

Case 2. Assume that k = 2. It can be observed that the connected zero forcing set of G

must contain all the vertices of Pn�P2, Otherwise, the zero forcing set will be disconnected.

If we take the 2n black vertices of Pn�P2 in G, then these black vertices will 2-forces the

remaining white vertices as black and hence Zck(G) = 2n.

Case 3. Assume that 5 ≥ k ≥ 3. Consider the cycle identified with the vertex u1, say

C1. Choose a vertex from C1 of degree 2 as black. This vertex will 3-force the remaining

vertices in G as black. Hence Zck(G) = 1. �

Definition 19 ([1]). A connected graph G is defined as a cycle-path graph (CP-graph) if it

contains r vertex disjoint cycles that are connected by r− 1 edges of the path Pr. Thus a CP-

graph with n vertices contains m = n+ r−1 edges and edge between two cycles is a cut edge.

The zero forcing number of CP- graph was studied in some detail in [5]. Here we study the

connected zeroforcing number of the CP- graph considered in [5].

Proposition 20. Let G be the CP-graph C3Pr,r ≥ 3. Then Zc(G) = 2r. Moreover Zck(G) = 1 if

k = 2,3.

Proof. Denote the cycles by C1,C2, . . . ,Cr. Let the vertex sets of the cycles in C3Pr be

V (C1) = {c1
1,c

2
1,c

3
1}

V (C2) = {c2
1,c

2
2,c

2
3}

. . .

. . .
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. . .

V (Cr) = {cr
1,c

r
2,c

r
3}

Case 1. Assume that k = 1. We prove the result by mathematical induction on the number

of cycles r on the CP-graph. Assume that r = 1. In this case G is the cycle C3 therefore,

Zc(C3) = 2 and the result is true for r = 1.

Assume that the result is true for all C3Pr graphs with r− 1 cycles C3, where r ≥ 2. Let

C be the end cycle connected to the rest of the C3Pr graph by an edge e = ab, where

a ∈ V (C3Pr)−V (C) and b ∈ V (C). Let Y = {a,b} be the cut set where a ∈ 〈V (C3Pr)−V (C)〉

and b ∈V (C).

Assume that the result is true for the sub graph induced by 〈V (C3Pr)−V (C)〉. That is

Zc(〈V (C3Pr)−V (C)〉) = 2r−2 = 2(r−1).

Let W be the minimum zero forcing set of 〈V (C3Pr)−V (C)〉 with |W |= 2r−2. Let u1 and

u2 be two white neighbors of the vertex b in C. Since the vertex a is black it forces the vertex b

to black. Since the vertex b has two white neighbors, further forcing is not possible. In order to

make the zero forcing set connected, we have to include the black vertex b in the connected zero

forcing set of G. Therefore, our new connected zero forcing set is W ∪{b}. The set W ∪{b}

cannot force the remaining two white vertices ( u1 and u2) adjacent to b. Therefore, we need to

include either u1 or u2 in the connected zero forcing set of G. Let it be u1. Hence by induction

Zc(G) =|W ∪{b,u1} |

= 2r−2+2 = 2r.

�

Case 2. Assume that either k = 2 or k = 3. In this case any vertex of degree 2 will form a

connected k-forcing set.
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The Cartesian product Cn�K2 is known as the Prism graph or the circular ladder graph. The

length of the shortest cycle in a graph G is called the girth of G. We recall the following

observation from [6].

Proposition 21. [6] Let G be a graph with girth at least 4 and minimum degree δ (G)≥ 3. Then

Zc(G)≥ δ (G)+1.

Proposition 22. Let G be the circular ladder graph of order n ≥ 10. Then Zc(G) = 4. Also,

Zck(G) = 2, if k = 2, Zck(G) = 1, if k = 3.

Proof. Let u1,u2, . . . ,un,v1,v2, . . . ,vn be the vertices of the circular ladder graph G, u1,u2, . . . ,un

being the vertices of the inner circle. By the proposition 21, since ∆(G) = δ (G) = 3 and the

girth is at least 4 ,we have Zc(G)≥ 3+1 = 4.

To establish the reverse inequality, we proceed as follows.

Without loss of generality, choose four vertices u1,u2,u3 and v1. Allow these vertices to

have black color. Then clearly the black vertex u2 → v2 to black. Now the black vertex

v2 → v3 to black. Again,the black vertex u3 → u4 to black,v3 → v4 to black. Apply color

changing rule step by step, the black vertex un−1→ un to black and vn−1→ vn to black.Hence

Z = {u1,u2,u3,v1} forms a connected zero forcing set for G. Here the cardinality of the set Z

is 4. So, Zc(G)≤ 4. This concludes the result.

Case 1 Assume that k = 2. In this case , clearly a set consisting of any two adjacent

black vertices forms a connected zero forcing set for G. Hence, Zc2(G) = 2.

Case 2. Assume that k = 3. It is obvious that any single black vertex gives a derived

coloring for G. Therefore, the result follows. That is Zc3(G) = 1. �

Proposition 23. Let G be the rooted product of the circular ladder graph, Cn�K2 with the path

Pt , a path of length t, t ≥ 4 rooted at the pendent vertex. Then, Zc(G) = 2n.

Proof. Represent the vertices of Cn�K2 as u1,u2, . . . ,un,v1,v2, . . . ,vn in G and the paths rooted

at the pendent vertex by P1,P2, . . . ,Pn of length t. Let v1 = p1
1, v2 = p2

1, . . . ,vn = pn
1, where
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p1
1, p2

1, . . . , pn
1 are the pendent vertices of the paths identified at the vertices v1,v2, . . . ,vn respec-

tively, where

P1 = {p1
1, p1

2, . . . , p1
t }

P2 = {p2
1, p2

2, . . . , p2
t }

. . .

. . .

. . .

Pn = {pn
1, pn

2, . . . , pn
t }

We examine the different possibilities of forming a connected zero forcing set as follows.

Case 1. Assume that we have a connected zero forcing set consisting of 2n− 1 black vertices

{u1,u2, . . . ,unv1,v2, . . . ,vn−1} for G. Then , the black vertex un has two white neighbors vn and

a vertex of the path rooted at un. So, the further forcing from the black vertex un is not possible,

a contradiction.

Case 2. Suppose that Z = {v1,v2, . . . ,vn,u1,u2, . . .un−1} is a connected zero forcing set

for G. Then we can easily observe that further forcing from the black vertex vn is not possible,

since it has two white neighbors, a contradiction to our assumption.

Case 3. The case of forming a connected zero forcing set by taking the 2n− 1 black

pendent vertices of the paths only is ruled out, since the pendent vertices do not form a

connected induced sub graph in G.

Case 4. Consider a connected zero forcing set of 2n− 1 black vertices having the fol-

lowing combinations.

Sub case 4.1. Combination of the vertices of ui, i = 1,2, . . . ,n and the vertices of the

path Pi, i = 1,2, . . . ,n, rooted at ui.
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Sub case 4.2. Combination of the vertices of vi and the vertices of the path Pi, i = 1,2, . . . ,n,

rooted at vi.

Sub case 4.3. Combination of the vertices ui and vi, and the vertices of Pi, i = 1,2, . . . ,n.

Note that the combination of the vertices ui and the vertices of Pi is not considered, since that

combination does not form a connected induced sub graph in G. It is easy to verify that none

of the above combinations will never form a connected zero forcing set for G. Hence from the

above cases, we can infer that

(11) Zc(G)≥ 2n.

To claim Zc(G)≤ 2n, we proceed as follows. Select 2n black vertices

u1,u2, . . . ,un,v1,v2, . . . ,vn. Then the black vertex v1→ p1
2 to black, the black vertex p1

2→ p1
3

to black, . . . , p1
t−1 → p1

t to black. Similarly, all the vertices of the paths rooted at the black

vertices v2,v3, . . . ,vn are colored black. The same argument holds good for the vertices of the

paths rooted at the black vertices u1,u2, . . . ,un. Therefore, Z = {u1,u2, . . . ,un,v1,v2, . . . ,vn}

generates a connected zero forcing set for G. Cardinality of Z is 2n. So,

(12) Zc(G)≤ 2n

From (11) and (12), the result follows. �

Proposition 24. Let G be the rooted product of the circular ladder graph with the cycle Ck,

k ≥ 4. Then Zc(G)≤ 4n.

Proof. Let A = {u1,u2, . . . ,un} and B = {v1,v2, . . . ,vn} be the vertex set of the graph G, A

being the vertex set of the inner cycle. Suppose that C1,C2, . . . .Cn be the cycles rooted at

the vertices v1,v2, . . . .vn and D1,D2, . . . ,Dn be the cycles rooted at the vertices u1,u2, . . . ,un .

Represent the vertices of cycles C1,C2, . . . ,Cn and D1,D2, . . . ,Dn as follows.

C1 = {c1
1,c

1
2, . . . ,c

1
k ,c

1
1}

C2 = {c2
1,c

2
2, . . . ,c

2
k ,c

2
1}

. . .
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. . .

Cn = {cn
1,c

n
2, . . . ,c

n
k ,c

n
1}

D1 = {d1
1 ,d

1
2 , . . . ,d

1
k ,d

1
1}

D2 = {d2
1 ,d

2
2 , . . . ,d

2
k ,d

2
1}

. . .

. . .

Dn = {dn
1 ,d

n
2 , . . . ,d

n
k ,d

n
1}

Let v1 = c1
1,v2 = c2

1, . . . ,vn = cn
1 and u1 = d1

1 ,u2 = d2
1 , . . . ,un = dn

1 .

We generate a zero forcing set for the graph G as follows . Consider the set Z =

{v1,c1
2,v2,c2

2, . . . ,vn,cn
2,u1,u2, . . . ,un,d1

2 ,d
2
2 , . . . ,d

n
2}. Color the vertices in Z as black. Now

the vertices in Z can force the remaining white vertices of the cycles C1,C2, . . . ,Cn and

D1,D2, . . . ,Dn as black by repeatedly applying the color changing rule. Thus, the set

Z = {v1,c1
2,v2,c2

2, . . . ,vn,cn
2,u1,u2, . . . ,un,d1

2 ,d
2
2 , . . . ,d

n
2}

generates a connected zero forcing set for G. The cardinality of the set Z is 4n. Hence,

Zc(G)≤ 4n. �

We strongly believe that the above bound is sharp.

Proposition 25. Let G be the rooted product of the path Pn,n ≥ 3, with Pt , a path of length t,

t ≥ 4 rooted at the pendant vertex. Then Zc(G) = n.

Proof. Denote the vertices of the path Pn by u1,u2, . . . ,un in G. Let u1 =P1
1 ,u2 =P2

1 ,. . . ,un =Pn
1 ,

where P1
1 ,P

2
1 , . . . ,P

n
1 are the vertices of the path rooted at u1,u2, . . . ,un.

Claim: Any set consisting of (n − 1) black vertices will never form a connected zero
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forcing set for the graph G. For, consider the following cases.

Case 1. Select the pendant vertex of each path rooted at the vertices

u1,u2, . . . ,un−1.

Clearly they cannot form a connected zero forcing set for G.

Case 2: Form a set of n− 1 black vertices from the vertices of the paths rooted at the

vertices u1,u2, . . . ,un. We can easily observe that this set will not form a connected zero forcing

set for G.

Case 3: Assume that Z = {u1,u2, . . . ,un−1}. Color the vertices in the set Z as black.

Then we can see that the vertices of the paths rooted at the vertices u1,u2, . . . ,un−2 can be

colored as black by applying color changing rule. Note that the forcing from the black vertex

un−1 is not possible, since un−1 has two white neighbours. So the set Z cannot generate a zero

forcing set for G. In view of the above cases, we have Zc(G)≥ n.

To prove the reverse part, let Z1 = {u1,u2, . . . ,un}. Assign black color to the vertices in

the set Z1. Then it can be seen that the set Z1 generates a connected zero forcing set for G.

Therefore, Zc(G)≤ n. Hence the result follows.

Again, when k = 2, any black vertex of the graph G, other than the vertex having de-

gree 3 , gives a derived coloring for G. Hence, Zc(G) = 1.

When, k = 3, any vertex of G forms a connected zero forcing set, as we wish. �

3. CONNECTED k-FORCING NUMBER OF SQUARE OF GRAPHS

In this section, we deal with the connected k-forcing number of square of path graph Pn,n≥ 4,

the cycle graph Cn,n≥ 5 .

Proposition 26. Let G denotes the square of the path Pn,n≥ 3. Then the connected zero forcing

number of G is 2.
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Proof. Represent the vertices of G by u1,u2, . . . ,un and let u1 and un be the pendant vertices in

G. The vertices in G and G2 are the same. It is obvious that with one black vertex, we cannot

get a derived coloring for G. Since δ (G) = 2≤ Z(G)≤ Zc(G). So, Zc(G)≥ 2.

On the other hand, without loss of generality, color the vertices u1 and u2 as black. Then the

black vertex u1 forces u3 to black, u2 forces u4 to black, u3 forces u5 to black and so on till all

the vertices of G are colored black. So, Z = {u1,u2} forms a connected zero forcing set for G.

| Z |= 2. Therefore, we have Zc(G)≤ 2. Hence the result follows. �

Proposition 27. The connected zero forcing number of the square of a cycle Cn, n≥ 5, is 4.

Proof. Let G denotes the square of the cycle Cn, n ≥ 5. It is clear that G is a 4-regular graph.

That is, ∆(G) = δ (G) = 4. This implies that Zc(G)≥ 4.

In order to establish the reverse inequality, choose any four connected vertices of G. Let they

be u1,u2,u3 and un. Color them as black. In G, the white vertices adjacent to the vertex u1 are

u2,u3,un and un−1. So the black vertex u1 forces the vertex un−1 to black. Now consider the

black vertex u2. The adjacent vertices of u2 are u1,un,u3,and u4. Of these vertices, u1,un,u3

are already black. So, the vertex u2 forces u4 to black. Again, consider the black vertex u3. At

this stage, the vertex u3 has only one white vertex u5. Hence u3 forces u5 to black and so on.

Finally, consider the black vertex un−4. The vertex un−4 has 4 neighbours un−5,un−6,un−3,un−2

of which the only one white vertex is un−2. Therefore, the vertex un−4 forces un−2 to black. The

vertex un−3 is already colored black by the vertex un−5. Therefore, the set Z = {u1,u2,u3,un}

yields a connected zero forcing set for the graph G. Hence, we have Zc(G)≤ 4. This completes

the proof. �

4. CONCLUSION AND OPEN PROBLEMS

In this paper we addressed the problem of determining the connected k-forcing number of

certain graphs. Also we found the exact value of connected zero forcing number of some

classes of graphs. In Section 1, we found an upper bound of Zck(G ) for the corona product

of two graphs G and H. It is an open problem to charaterize the connected graphs for which

Zck(G ) = p1(1+ p2). In Section 2, we found the exact values of the connected k-forcing number
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of rooted product of cycles with paths and cycle with cycles. Section 3, deals with the connected

k-forcing number of square of graphs such as the paths and cycles.
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