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Abstract. In this paper, we provide explicitly the Adomian polynomials (AP) for transcendental-hyperbolic func-
tions in a linear functional and forced the convergence of inconsistent solution series when Adomian decomposition
method (ADM) is deployed in related problems by nonlinear Shanks transform (NST). These were achievable by
developing a theoretical background of AP for transcendental-hyperbolic functions based upon a thorough exami-
nation of the historical preceding of ADM. Application of the presented polynomials resulted to unreliable series
solutions which was, however, upturned on using NST in the problems considered. This paper has unified the
notion of modified AP for transcendental-hyperbolic nonlinear functions and its application to similar equations.
It further presented a reliable technique that forced convergence in unpredictable and alternating series solutions

that are obtain by ADM.
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1. INTRODUCTION

Over the years ADM [1] and its improvement has become a very powerful technique for

obtaining analytical and approximate analytical solutions to a generalised nonlinear equations.
(1) L'(9)+N(B) = ¢, 9= (1)

Where L" is the nth order derivative of 1% which is a combination of highest order derivative and

other differential operator. Which is corresponding to L™" operator given as

n In In—1 In—2 1
) L :/0/0 /0 /0 (.)dtidtrdts...dt,

N = N(9) is the nonlinear term which is transcendental-hyperbolic in this article and is to be
decomposed into AP. And, { = {(¢) is the source term. The ADM by [1], has been widely
reported in [2] - [15], [17] and [18]. It is a systematic analytical and approximation method
applied to a wide class of equations. The method provided solutions in convergent series form
under physically appropriate conditions. Nonetheless, it successful application, especially on
the nonlinear problems, requires the right AP to be used for ultimate desired results, see [1, 8, 9]
and the literatures therein. However, the nonlinearity in a linear functional varies; polynomial
nonlinearity has been vividly reported in [8], other are [17, 11,6, 12,9, 10, 2, 13]. Trigonometric
nolinearity has extensively been investigated in [9], see also [14] and the literature therein.
Exponential and logarithmic nonlinearity can be seen in [18], transcendental hyperbolic sine
and cosine has been reported in [13].

Reported investigation of AP in the are of transcendental hyperbolic nonlinear terms are still
minimal in literature. The fundamental goal in this paper is to decompose the transcendental-
hyperbolic nonlinear term N (%) in a linear functional (1) into series of polynomials X (A,
using the modified AP as contain in [8]. Where the A, are the AP. These polynomials are in
hyperbolic form and equivalently in their respective exponential form for each N(?}). Due to the
presence of noise term in each polynomial, convergence to a solution in the illustrative problems
considered were far fetched by the traditional ADM. However, this was reversed on application

of NST.
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2. THE ADOMIAN POLYNOMIAL IN ADOMIAN DECOMPOSITION METHOD

These polynomials were introduced by [1] and it is given as

1

A, = EW[N(Z?:OAZ&)])L:O

3)

A is a parameter introduced for convenient. A,, depends on ¥, ¥,
. ¥_2,8,_1,9,, where n € Z*. Implementation of (3) on (1) basically gives
Ao =A(D)
A} =A(Y, %)
Ay = A(Vy, %, %)
Az = A(Do, D1, B2, B3)
Ay = A(Dy, V1, B, 03, 04)

As =A(Dy, O, 0, 03,04, 0s)

Al’l :A(%a ﬁh 1927 ceey ﬁn—27 ﬁn—lﬂ%l)

From its inception till date, several modifications has been carried out on how these polynomials
can be generated. These somewhat feasible form calculates the AP in a simple way using any
known computer algebra software like Maple, Mathematica, etc. All these other forms of AP

has been implemented and reported in [2] - [15], [17] and [18].

3. THE ADOMIAN POLYNOMIALS OF MAJOR TRANSCENDENTAL-HYPERBOLIC NON-

LINEAR TERMS

In this section, we apply equation (3) to (1) to obtain the AP of the first five terms for each ma-
jor hyperbolic functions; sinh®, cosh, tanh®, sech?, csch?® and coth?®. And, to avoid
excessively long expressions, we denote e — e~ as 9_ and e 4+ ¢~ as 9.

3.1: For N(®) = sinh®

A() = sinh 19()
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A1 = 1Y coshdy
|
Ay = 51912 sinh ¥y + 1% cosh Yy

1
Az = 51913 cosh ¥y + 1 B, sinh ¥y + 93 cosh %y

1 1

Ag= 4'1914sinh190+ 2'1912192005h190+%1922 sinh ¥y + ¥3 9 sinh ¥y + ¥4 cosh ¥
Equivalently,

1

A() = 519_

A= 119119+
2

Ay = 119219++1191219,
2 4

Az = lﬁzﬁ++lﬁlﬁzﬁ_+iﬁfﬁ+
2 2 12

Ay = 119419++1191193197+1191219219++11922197+i19f197
2 2 4 4 48

3.2:  For N(®¥) =coshd

Ag = cosh
A1 = 191 Sinh‘&o

1
Ay = 51912 cosh ¥y + ¥ sinh ¥y
1

A3=73

1913 sinh ¥y + ¥ %, cosh ¥y + Y3 sinh ¥

1 1 1
Ay = Zﬁf cosh ¥y + 51912192 sinh ¥y + 51922 cosh ¥y + Y319 cosh ¥y + Y4 sinh By

Alternatively,
A() - %ﬁ+
1
Al = 5191 Vo
Ay = 119219_ + Lsfm
2 4
1 1 1

Ay = -0 + - — 930
3= 5030+ 50+ 5070
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1 1 1
Ay = 50a0- + SO0, + 11912192197 +

1
: o,

1
- 920
YU+ 5 43

4

3.3: For N(¥) =tanh ¥
Ag = tanh 9y
=1 sech? Vo
Ay = ¥ sech? Vo — 1912 sech? Up tanh Yy
A3 = B3 sech? ¥y — 219 O, tanh B sech? B + %1913 tanh® % sech® ¥ — %1913 sech* %
Ay = %19{‘ tanh ¥ sech? % — 0719, sech* %) — %19{‘ tanh® 1% sech® 1%

+ 21912 ¥, tanh? 0 sech? Vo — 1922 tanh Y sech? U — 291 93 tanh %y sech? )

+194sech2 00
Alternatively,
O_
Ap = —
0 N
¥ 02
Aj =0 — —
e
92 0?2 v?
Ay= 9y 0= 13 B )
Oy 3 v2
Ay=—o (- 30:9F + 07 0% — 20792092 — 3970920 +39,9F — 6019, 2
+
—330292)
Ay = (240404 + 240130 4 12070 + 12078, + 07 9_)

249,

6192 (6030 + 600 + 9]0, )(H D)

1 1
+ 5 (200 + B0 ) (1 0-)* — 5 (%104 + 8 9-) 20 + 07 D:)
2093 492

oo 1 O
53 5 (9704 0-) (020 + 07 0,) — 607 — (6050 + 680104 + 070
+
9 3 3
195 2194 (19119 )(219219—4‘191 19+) 193 (2‘19219_4—191 19+)
+
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02 O
+ 31193 (619319,+619119219++1913197)+¥(24ﬁ40*+246103ﬁ3+12ﬁ22ﬁ+
7 +

+ 120390 + 07 9y)
3.4: For N(¥) =cschd

Ag = cschy
A1 = —1 csch Yy coth ¥y
A — 192 ecch 29 Lo 3o
2=5 i csch Y9 coth 190—1—2191 csch” ¥y — B csch Yy coth Yy
1 5
- —1913 csch Yy coth ¥y + —1913 csch? Vg coth ¥y + 19 ¥, csch iy coth? Y

6 6
+ 199 csch® ¥y — 5 csch ¥ coth ¥y

Az =

1 3 1
Ay = ﬁﬁf csch coth? Vo — Zﬁf csch? ) coth? Vg — 51912 1 csch coth? 0

5 5 1
+ ﬁﬁf‘ csch® 9 + 51922192 csch 9 coth ¥ + 51922 csch ¥y coth?

1
+ Y93 csch iy coth? Vo — 5 1922 csch? Vg — 1k csch? Vg — Y4 csch ¥y coth §y

Alternatively,
2
Ag=—
07
20919
M=
Ao 2029 20194 + 030
2T 2
20707 20104 (20h 04 +020-) 60301 + 6050 + 04
As=-——g + 3 T 2
vt o3 3092
_290f 3070120 +970) L2004 v702)?
TS o4 2093
N 20104 (60304 + 60289 O + 0 9)

3093

240404 + 2403 O + 120970_ + 1280794 + 079
* 1292
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3.5: For N(¥) = sech ¢
Ag = sech i
A1 = —1 sech ¥y tanh ¥

_ l 2 2.9 l 2 39
Ay = > Uy sech ¥y tanh” Oy > Uy sech” ¥y — ¥, sech ¥y tanh O

13 5.3 3

Az = ~ ¥ sech ¥y tanh ¥y + 6191 sech” Yy tanh 9

4 19 ¥ sech ¥ tanh B — ¥ D sech® ¥ — 3 sech B tanh By

1 3 1 5
Ay = ﬁﬁf sech dytanh ¥y — Zﬁf sech’ 0 tanh? Vo — 5 1912192 sech ¥y tanh ¥ + ﬁﬁf sech’ )
§ 2 3 l 2 2.9 l 2 3
+ 2 U ¥, sech” ¥y tanh Uy + > U5 sech ¥y tanh ¥y + ¥ ¥ 3 sech ¥y tanh” By > U5 sech” ¥y

— sech? U — Y4 sech Yy tanh

Equivalently,
2
Ag=—
0 Oy
20—
A=
7'94-
o 20792 2hY + 079,
Tl 02
A 20792 N 2HO_ (220 +020;) 6830 + 68D + 9
s—— _
o4 o3 392
200t 39707 (20,9 4 970.) N (20— + 704 )?
TS o 203
2010 (6839— + 60,0 Vs + V] V)
+ 3
393
24910304 + 120504 + 121959 + 0794
+ 2
1202

3.6: For N(¥) = coth ¥
Ag = cothy
Al = 191(1 —COth2 190)

Ay = %5(1 — coth? %) — 7 coth (1 — coth? %)
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Az = —%1913(1 —coth? %)% + %1913 coth? ¥y (1 — coth® 1)
— 2091 coth (1 — coth? ¥y) + 13 (1 — coth? )
Ay = %014 coth ¥y (1 — coth? By)? — B2 (1 — coth? ) — %1914 coth? (1 — coth? d)
+ 209719 coth? ¥ (1 — coth? B ) — 195 coth By (1 — coth? %)
— 2993 coth (1 — coth? ) + 4 (1 — coth? %)

Equivalently, with e +1 = 1%, and ™ — 1 = ,_, we have

Ao = Bt
0y
A 201N 20105, &N
Lo 9,
Ay — 20,e2% N 207”497t 4970y et 20 PN 2070 W
Do 02 03 %y s 0
Ay — 205¢*% L4 Dhere®™  87et™ N 493 N 200, e*N 8Bt
Vs B 0 307 Oy 07
B 89t N 80 0 Uy e N 8 0y et™ 20,0362
% 0y o 0y 02
L4 Dyl *N 49y et™
20} 305

4. THEORY OF ADOMIAN DECOMPOSITION METHOD AND NONLINEAR SHANKS

TRANSFORM ON TRANSCENDENTAL-HYPERBOLIC EQUATIONS
The nonlinear hyperbolic-trigonometric equation
“4) f(0)=0
can be expressed as
%) Y =c+N(9), v eR

where N(?) is a nonlinear function and c is a constant. ADM considers the solution equation

(5) as

() O=Y
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And, 9, is calculated recursively. The nonlinear term is decomposed as
) N(8) =) A,

where A, is as defined in equation (3). See [15], [3], [4], [5], [7] and the literature therein.

Substituting equations (6) and (7) in equation (5), we have a recurrence relation
(8) 190 =C
) Byt = An(9)

Suppose {9, } is a sequence of partial sum of the series in equation (6), then the Shanks nonlin-

ear transform by [16], denoted T{3,}, is given as

{On i1 {1} — {On}?
{ﬁn+l}+ {ﬂn—l} - 2{19n}

which the first order iteration is given as

(10) T{%,}=

(11) 1, = T{%,}
Subsequent Shanks nonlinear iterated transform are

K, =T{1,}

tn =T {K}

These iterations, according to [16], often leads to the reasonable results. The more the iterations

the better the results, this can be seen in the numerical illustrations in the following section.

5. MAIN RESULTS

In this section we give examples by adopting the technique stated in the previous section on
the theory of ADM and NST. The numerical calculations were made using Maple Mathemati-
cal software to ensure double precision arithmetic in order to reduce the round-off errors to the
barest minimum.

Numerical Example 1.  Consider the equation

x -+ sinhx = %
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The approximate analytical solution is x = 0.2487139369 . Applying the Adomian polynomial,
the theory of ADM and NST, we have the result as presented in Table 1. Its easy to see from
Table 1 that ¢ =) ", ¥, failed to yield reasonable converging result in column ¥,. This was

quickly upturn on application of NST in column 1, k;,, it,, and finally through column p,,.

TABLE 1. Nonlinear Shanks Transform of Numerical Example 1

n ﬁn 2% Kn Un Pn
0| 0.5000000000 | 0.2550813376 | 0.2484650317 | 0.2487523931 | 0.2468039040

1| —0.0216953055 | 0.2402894297 | 0.2488573072 | 0.2448934649 | 0.2487321902

0.5665052912 | 0.2585674172 | 0.2487140775 | 0.2486770372

—0.1668375910 | 0.2378526863 | 0.2485760245 | 0.2487313987
0.846290120 | 0.2606866501 | 0.2489524909
—0.6767877430 | 0.2348986366 | 0.2484167479

1.761565625 | 0.2657846151

—2.321585858 | 0.2261027720

4.741363540

O [0 [ X [N | | &~ | W |

—7.776280080

Numerical Example 2. Consider the equation

x+sinhx = % + coshx

The approximate analytical solution is x = 0.9046738485 . Also, applying the Adomian poly-
nomial, the theory of ADM and NST, we have the result as presented in Table 2. Its obvious
from Table 2 that & =} ", ¥, failed to yield reasonable converging result in column ,. How-

ever, this was overturn on application of NST in column 1, k;,, i, and finally through column

Pn

6. CONCLUSION

Modified Adomian decomposition method (ADM) has been successfully adapted to obtain
Adomian polynomials (AP) of frequently occuring transcendental-hyperbolic nonlinear terms

in a linear functional. We demonstrated with two test problems of transcendental hyperbolic
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TABLE 2. Nonlinear Shanks Transform of Numerical Example 2

1617

n Oy Iy Kn Uy Pr

0 | 0.5000000000 | 0.8775406695 | 0.9036872640 | 0.9039309631 | 0.9039260151
1| 1.106530660 |0.9139030481 | 0.9049958618 | 0.9048670639

21 0.7386512191 | 0.8996958171 | 0.8992782428 | 1.082847107

3| 1.073346459 | 0.9081495808 | 1.147379091

410.7124523708 | 1.087748017 | 1.060161471

5| 1.139978405 | 1.132515271

6| 1.080479044 | 1.249930499

7| 1.495334687

8 | 0.8945290538

form to show the reliability of the AP so obtained. As a result of the noise term occurrence, the
solution series convergence were contradictory as shown in column 9, of Tables 1 and 2. These
we facilitated to convergence using the nonlinear Shanks transform (NST), although the results
accuracy depended on the order of nonlinear Shanks iteration used. In all, the result obtained
were in excellent agreement with those obtained via analytic method with maximum absolute

error less than 1%.
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