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Abstract. In this paper, we present a foundation study for proper colouring of edge-set graphs. The authors

consider that a detailed study of the colouring of edge-set graphs corresponding to the family of paths is best

suitable for such foundation study. The main result is deriving the chromatic number of the edge-set graph of a

path, Pn+1, n≥ 1. It is also shown that edge-set graphs for paths are perfect graphs.
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1. INTRODUCTION

For general notation and concepts in graphs and digraphs see [1, 2, 12]. Unless mentioned

otherwise, all graphs we consider in this paper are finite, simple, connected and undirected

graphs.

For a set of distinct colours C = {c1,c2,c3, . . . ,c`}, a vertex colouring of a graph G is an

assignment ϕ : V (G) 7→C . A vertex colouring is said to be a proper vertex colouring of a graph

G if no two distinct adjacent vertices have the same colour. The cardinality of a minimum set

of colours in a proper vertex colouring of G is called the chromatic number of G and is denoted
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χ(G). A colouring of G with exactly χ(G) colours may be called a χ-colouring or a chromatic

colouring of G.

A minimum parameter colouring of a graph G is a proper colouring of G which consists

of the colours ci; 1 ≤ i ≤ `, with minimum possible values for the subscripts i. Unless stated

otherwise, we consider minimum parameter colouring throughout this paper.

The set of vertices of G having the colour ci is said to be the colour class of ci in G and is

denoted by Ci. The cardinality of the colour class Ci is said to be the weight of the colour ci,

denoted by θ(ci). Note that
`

∑
i=1

θ(ci) = ν(G).

Unless mentioned otherwise, we colour the vertices of a graph G in such a way that C1 = I1,

the maximal independent set in G, C2 = I2, the maximal independent set in G1 = G−C1 and

proceed like this until all vertices are coloured. This convention is called rainbow neighbour-

hood convention (see [5]. The number of vertices in G which yield rainbow neighbourhoods,

denoted by rχ(G), is called the rainbow neighbourhood number of G.

In [5], the bounds on rχ(G) corresponding to of minimum proper colouring, denoted by

r−χ (G) and r+χ (G), have been defined as the minimum value and maximum value of rχ(G) over

all permissible colour allocations. If we relax connectedness, it follows that the null graph Nn of

order n≥ 1 has r−(Nn) = r+(Nn) = n. For bipartite graphs and complete graphs, Kn it follows

that, r−(G) = r+(G) = n and r−(Kn) = r+(Kn) = n.

We observe that if it is possible to permit a chromatic colouring of any graph G of order n

such that the star subgraph obtained from vertex v as center and its open neighbourhood N(v)

the pendant vertices, has at least one coloured vertex from each colour for all v ∈ V (G) then

rχ(G) = n. Certainly, examining this property for any given graph is complex.

Lemma 1.1. [5] For any graph G the graph G′ = K1 +G has rχ(G′) = 1+ rχ(G).

2. RAINBOW NEIGHBOURHOOD NUMBER OF EDGE-SET GRAPHS

Edge-set graphs were introduced in [4]. As the notion of an edge-set graph seems to be

largely unknown. Therefore, the main definition and some important observations from [4] will

be presented in this section.
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Let A be a non-empty finite set. Let the set of all s-element subsets of A (arranged in some

order), where 1≤ s≤ |A|, be denoted by S and the i-th element of S by, Ai,s.

Definition 2.1. [4] Let G(V,E) be a non-empty finite graph with |E|= ε ≥ 1 and E= P(E)−

{ /0}, where P(E) is the power set of the edge set E(G). For 1 ≤ s ≤ ε , let S be the collection

of all s-element subsets of E(G) and Es,i be the i-th element of S. Then, the edge-set graph

corresponding to G, denoted by GG, is the graph with the following properties.

(i) |V (GG)| = 2ε − 1 so that there exists a one to one correspondence between V (GG) and

E;

(ii) Two vertices, say vs,i and vt, j, in GG are adjacent if some elements (edges of G) in Es,i

is adjacent to some elements of Et, j in G.

From the above definition, it can be seen that the edge-set graph GG of a given graph G is

dependent not only on the number of edges ε , but the structure of G also. Note that it was

erroneously remarked in [4] that non-isomorphic graphs of the same size have distinct edge-set

graphs. Figure 2 illustrates one contradictory case.

Note that an edge-set graph GG has an odd number of vertices. If G is a trivial graph, then GG

is an empty graph (since ε = 0). Also, GP2 = K1 and GP3 =C3. In [4] the following conventions

were used.

(i) If an edge e j is incident with vertex vk, then we write it as (e j→ vk).

(ii) If the edges ei and e j of a graph G are adjacent, then we write it as ei ∼ e j.

(iii) The n vertices of the path Pn are positioned horizontally and the vertices and edges are

labeled from left to right as v1,v2,v3, . . . ,vn and e1,e2,e3, . . . ,en−1, respectively.

(iv) The n vertices of the cycle Cn are seated on the circumference of a circle and the vertices

and edges are labeled clockwise as v1,v2,v3, . . . ,vn and e1,e2,e3, . . . ,en, respectively

such that ei = vivi+1, in the sense that vn+1 = v1.

Invoking the definition and observations given above, it is noticed that both dt
G(e)(G) and

dG(e)(vi) are single values, while dG(vk)(e j) ≤ dG(vm)(e j),(e j → vk),(e j → vm). The graphs

having three edges e1,e2,e3 are graphs P4,C3, and K1,3. The corresponding edge-set graphs
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on the vertices v1,1 = {e1},v1,2 = {e2},v1,3 = {e3},v2,1 = {e1,e2},v2,2 = {e1,e3},v2,3 =

{e2,e3},v3,1 = {e1,e2,e3} are depicted below.

Figure 1 depicts the edge-set graph GP4 .

FIGURE 1. Edge-set graph GP4 .

Figure 2 depicts the edge-set graph GC3 = GK1,3 = K7.

FIGURE 2. Edge-set graph GC3 = GK1,3 = K7.

Notice that both GC3 and GK1,3 are complete graphs.

3. PROPER COLOURING OF THE EDGE-SET GRAPHS OF PATHS

It is known that for a given size ε ≥ 1 a graph of maximum order ν , is a tree. Hence,

for a given size the graphs with maximum structor index si(G) are the corresponding trees,
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T . It easily follows that for ε(T ) ≥ 3 only the star graphs have GSε+1 , complete. Put another

way, a tree T has GT complete if and only if diam(T ) ≤ 2. From the family of trees, a path

corresponding to a given ε , denoted by Pε , has largest diameter. These observations motivate a

detailed study of the proper colouring and associated colour parameters of edge-set graphs of

paths to lay the foundation for studying more complex graph classes.

For this section paths of the form Pn+1 = v1e1v2e2v3 · · ·envn+1, will be considered. Such

graph will be abbreviated to Pn+1 = v1eivi �, 1 ≤ i ≤ n. To easily relate the results with Defi-

nition 2.1, note that ε(Pn+1) = n. It can be easily verified that GP2 = K1. Hence, χ(GP2) = 1.

Also, GP3 = K3 and hence, χ(GP3) = 3. These observations bring the main results. First, we

state an important lemma.

Lemma 3.1. Let G(V,E) be a non-empty finite graph with |E| = ε ≥ 1 and E = P(E)−{ /0},

where P(E) is the power set of the edge set E(G). Then each edge ei is in exactly 2ε−1 subsets

of E.

Proof. The result follows directly from the well-definedness and well-ordering of the power set,

P(E). �

It is observed that if the number of subsets which has say, ei as element is t, then within the

corresponding t subsets the edge e j, j 6= i will be in t
2 = 2ε−2 of those subsets.

Theorem 3.2. The edge-set graph GPn+1 , n≥ 1 has

χ(GPn+1) =


1 or 3, if P2 or P3 respectively,

5, if P4,

2n−1 +2n−2−2, for Pn+1, n≥ 4.

Proof. Part 1: Trivial is the observation that GP2 = K1 and that result in equality. It has been

observed that GP3 = K3 and hence χ(GP3) = 3.

Part 2: In constructing GP4 begin with GP3 which has vertices {e1}, {e2}, {e1,e2}. Add a

disjoint copy of GP3 and relabel the vertices of this copy to be {e1,e3}, {e2,e3}, {e1,e2,e3} to

obtain, G ′P3
. Clearly, G ′P3

complies with Definition 2.1.
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Consider H = GP3 ∪G ′P3
and add the cut edges, {e2}{e1,e3}, {e2}{e2,e3}, {e2}{e1,e2,e3},

{e1,e2}{e1,e3}, {e1,e2}{e2,e3}, {e1,e2}{e1,e2,e3}. Clearly, the induced subgraph, 〈{e2},

{e1,e2},{e1,e3},{e2,e3},{e1,e2,e3}〉= K5. Now add all additional bridges in accordance with

Definition 2.1 to obtain graph H ′. Due to symmetry considerations between edges e1 and e2 in

P3, exactly two maximum cliques K5 come into existence hence, ω(H ′) = 5. Finally, by adding

vertex {e3} and the corresponding edges in accordance with Definition 2.1 and by symmetry

considerations between edges e1 and e3 in P4, the edge-set graph GP4 has exactly four maximum

cliques K5. Therefore, χ(GP4)≥ 5.

Invoking Definition 2.1, consider the following colouring of GP4 . Let c(v1,1) = c1, c(v1,3) =

c1, c(v2,2) = c1, c(v1,2) = c2, c(v2,1) = c3, c(v2,3) = c4, c(v3,1) = c5. Clearly, the colouring is

proper and hence χ(GP4)≤ 5. Hence we have χ(GP4) = 5.

Part 3: For n ≥ 4, and the path path Pn+1 the edge-set graph GP(n−1)+1 of the preceding path

hence, the (n− 1)-edge path P(n−1)+1, is incomplete. In accordance with the procedure de-

scribed in Part 2, consider GP(n−1)+1 and G ′P(n−1)+1
. Since in G ′P(n−1)+1

the edge en has been added

to each vertex corresponding to the vertices vi, j ∈ V (GP(n−1)+1), the new edges in accordance

with Definition 2.1 are those between all pairs of vertices for which at least one vertex has

en−1 ∈ v′i, j. From Lemma 3.1, it follows that at least one complete induced subgraph, K2n−2

exists in G ′P(n−1)+1
. All pairs of vertices which has both en−2,en−1 ∈ v′i, j is an edge in G ′P(n−1)+1

so least one complete induced subgraph, K2n−2+1 exists in G ′P(n−1)+1
. Proceeding to vertices for

which edge en−3 ∈ v′i, j and so on until the edge e1 has been accounted for results in G ′P(n−1)+1

being complete. Hence, χ(G ′P(n−1)+1
) = 2n−1−1.

Finally, by adding the bridges between GP(n−1)+1 and G ′P(n−1)+1
and through similar argu-

ments in respect of edges en−2,en−1 ∈ vi, j ∈ V (GP(n−1)+1) and so on, it follows that at least

one maximum induced clique, of order 2n−2 − 1 + χ(GP(n−1)+1), exists in GPn+1 . Therefore,

χ(GPn+1)≥ 2n−1 +2n−2−2. By allocating colours similar to the procedure described in Part-2,

it follows that 2n−1 + 2n−2− 2 ≤ χ(GPn+1) ≤ 2n−1 + 2n−2− 2⇔ χ(GPn+1) = 2n−1 + 2n−2− 2.

Therefore, by immediate induction, the result follows for all n≥ 4. �

Corollary 3.3. (a) Each vertex in an edge-set graph GPn+1 , n≥ 2 belongs to some maximum

clique in GPn+1 .
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(b) The edge-set graphs GPn+1 , n≥ 1 has clique number, ω(GPn+1) = 2n−1 +2n−2−2.

(c) The edge-set graphs GPn+1 , n≥ 1 are perfect graphs.

(d) The edge-set graph GPn+1 has, r−c hi(GPn+1) = r+c hi(GPn+1) = 2n−1.

Proof. The results are a direct consequence from the proof of Theorem 3.2. �

Theorem 3.4. An edge-set graph GPn+1 , n≥ 1 is a perfect graph.

Proof. For P1, P2 the result is trivial. From Theorem 3.2 and Corollary 3.3(b) we have, n ≥ 2

and hence it follows that ω(GPn+1) = 2n−1 +2n−2−2 = χ(GPn+1). Hence, an edge-set graph is

weakly perfect. From Definition 2.1, it follows that an edge-set graph has a unique maximum

independent set X . Furthermore, 〈X〉 is a null graph hence, any subgraph thereof is perfect.

Also, from Corollary 3.3(a), each vertex in V (GPn+1) is in some induced maximum clique. It

then follows that ω(H) = χ(H), ∀H ⊆ GPn+1 , n≥ 1. Hence the result. �

Conjecture 1. The edge-set graphs of acyclic graphs are perfect graphs.

4. CONCLUSION

Research problem: The notion of a chromatic core subgraph of a graph G was introduced

in [9]. We recall that, for a graph G its structural size is measured by its structor index denoted

and defined as, si(G) = ν(G)+ ε(G). We say that the smaller of graphs G and H is the graph

satisfying the condition, min{si(G),si(H)}. If si(G) = si(H) the graphs are of equal structural

size but not necessarily isomorphic. A straight forward example is the path, P4 and the star

graph, S3.

Definition 4.1. For a finite, undirected simple graph G of order ν(G) = n ≥ 1 a chromatic

core subgraph H is a smallest induced subgraph H (smallest in respect of si(H)) such that,

χ(H) = χ(G).

From the construction used in the proof of Theorem 3.2 it follows that a finite number of dis-

tinct maximum cliques can be associated with a given edge-set graph GPn+1 . As an application,

the largest number of vertices common to the maximum number of chromatic core subgraphs

can be considered the most strategic vertices for protection from a disaster management and
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recovery plan in the event of graph destruction. The aforesaid observation motivates us to in-

troduce a new graph parameter called the chromatic cluster number of a graph G. It is denoted

by {(G). From Theorem 3.2 it follows that {(GP2) = {(GP3) = 1 and {(GP4) = 4. Note that the

vertices v1,1 = {e1}, v1,3 = {e3}, v2,2 = {e1,e3} and v1,3 = {e1,e2,e3} corresponds to {(GP4).

Problem 1. For the edge-set graph GPn+1 , n≥ 4, determine {(GPn+1).

The research on set-graphs (see [3]) and edge-set graphs naturally leads to new concepts

such as vertex degree sequence set-graphs and colour set-graphs and colour-string set-graphs.

Preliminary definitions are provided below.

(1) If the degree sequence of a graph G of order n≥ 1 is (d1 ≤ d2 ≤ d3 ≤ ·· · ,dn), then for a

subsequence (dt+1 = dt+2 = · · ·= dt+` = mi), t ≥ 0, 1≤ `≤ n, label the corresponding

vertices to be mi,1,mi,2,mi,3, . . . ,mi,`. Consider the set V (G) = P(V )− /0 where, P(V )

is the power set of V (G).

Definition 4.2. The degree sequence set-graph corresponding to G, denoted by GV (G),

is the graph with the following properties.

(i) |GV (G)| = 2ν − 1 so that there exists a one to one correspondence between

V (GV (G)) and V (G).

(ii) Two vertices, say vs,i and vt, j, in GV (G) are adjacent if some element(s) (specific

vertex degree(s) of G) in vs,i is adjacent to some element(s) of vt, j in G.

It follows easily that for a complete graph Kn, n ≥ 1 has its corresponding degree

sequence set-graph, a complete graph.

Problem 2. Discuss the properties of the degree sequence set-graph corresponding to

graph G.

(2) Let the minimum colour set C = {c1,c2,c3, . . . ,cχ} permit a chromatic colouring of G

in accordance with the rainbow neighbourhood convention. Let C {}(G) = P(C )− /0

where, P(C ) is the power set of C .

Definition 4.3. The colour set-graph corresponding to G, denoted by GC {}(G), is the

graph with the following properties.
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(i) |GC {}(G)| = 2χ − 1 so that there exists a one to one correspondence between

V (GC {}(G)) and C {}(G).

(ii) Two vertices, say vs,i and vt, j, in GC {}(G) are adjacent if some element(s) (specific

vertex degree(s) of G) in vs,i is adjacent to some element(s) of vt, j in G.

Clearly, for all graphs G with χ(G) = 2 the colour set-graph is K3.

Problem 3. Discuss the properties of the colour set-graph corresponding to a chromatic

colouring of a graph G.

This problem is similar to (1). For a minimum colour set C = {c1,c2,c3, . . . ,cχ} the

corresponding colour weight sequence is (c1,c1,c1, . . . ,c1︸ ︷︷ ︸
θ(c1) entries

, · · · ,cχ ,cχ ,cχ , . . . ,cχ︸ ︷︷ ︸
θ(cχ entries

).

Let C ◦(G) = {c1,1,c1,2,c1,3 . . . ,c1,θ(c1), · · · ,cχ,1,cχ,2,cχ,3, . . . ,cχ,θ(cχ )}. We can de-

fine the colour-string set-graph, GC ◦(G) similar to Definition 4.2.

Problem 4. Research the properties of the colour-string set-graph corresponding to a

chromatic colouring of a graph G.
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