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Abstract. In this paper, using a fractional order partial derivative with non-singular kernel we investigate, the
stability and its generalization on semi-closed and semi-open interval for the solution of a fractional order partial
differential equation with the help of an inequality.

In this paper, we will consider the following fractional order partial differential equation
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where, aﬁ?iv‘/‘jc’o,u(x,y, 7) is the y - Hilfer fractional partial derivative [1], with parameter 0 < ¢ < 1 and 0 < § < 1,
0<x<a, 0<y<bh, 0<x<cand fcC([0,a) x [0,b) x [0,c) x B*,B) and (B, | . |) a real or complex Banach
space.
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1. INTRODUCTION

In recent years, the fractional calculus plays an significant role in numerous fields, such as a
pure and applied Mathematics, Science and Engineering Technology.

Recently, the class of fractional integro - differential equations allows the stability of Ulam-
Hyers, Ulam- Hyers-Rassias and semi-Ulam -Hyers in the interval [a,b] and [a,0)[1].

There has been a considerable development in fractional ordinary differential equations and
partial differential equations. For more details on fractional calculus theory, one see the mono-
graphs of Kilbas et. al.[2], Hermann [3], Podlumny [4], Oldhan K., Spanier [5], Samko, Kilbas
[6] and the papers of Sousa [7,8] , Abbas and Benchohra [9, 10].

Furthermore, this is concerned with existence of mild solution of evolution with Hilfer frac-
tional derivative generalized the well-known Riemann -Liouville fractional derivative by non-
compact measure method and acquire some sufficient conditions to make certain the existence
of mild solution [11], An initial value problem for a class of non-linear fractional differential
equations concerning Hilfer fractional derivative and prove the existence and uniqueness of uni-
versal solutions in the space of weighted continuous functions. Also analyze the stability of the
solution for a weighted Cauchy - type problem [12].

They found the existence and the uniqueness of a positive solution in the space of weighted
continuous functions and boundary performance of such solution [13], Particularly, sufficient
conditions for the existence of solution for a class of initial value problems for impulsive frac-
tional differential equations connecting the Caputo fractional derivative [14].

Additionally, the existence and uniqueness of a solution of a class of initial boundary value
problems for implicit fractional differential equations with fractional derivative and the out-
come are based upon technique of measures of compactness and the fixed point theorems of
Darbo and Monch [15], in addition the existence and uniqueness results for implicit differential
equations of Hilfer type fractional order via Schaeder’s fixed point theorem and Banach con-
traction principle [16], Ulam stability and data dependence for fractional differential equations
with Caputo fractional derivative of order o and presents four types of Ulam stability results

for the fractional differential equation [17], Ulam y -Hilfer fractional derivative and present the
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Hyers -Ulam -Rassias stability and the Hyers-Ulam stability of the fractional Voltera integral
-differential equation by means of fixed point method [18].

In continuation of this are the generalization of semi- group property [19], Mittag-Lefller func-
tion [20], the existence of non-local fractional differential equations and its approximations
[21-24], bounds for these solutions [25-27] and monotone nature of the solution [28].

We organize this paper as : In the second section, we define some basic definitions and nota-
tions, in the third section, we investigate the stability and its generalization on semi-closed and
semi-open interval for the solution of a fractional order partial differential equation with the

help of inequality.

2. TECHNICAL BACKGROUND

In this section, we use some definitions and notations which are given in [1] with details and

present technical preparation needed for further discussion.

Definition 2.1. [1] Let 6 = (61,60,,......0y) and a = (04,0,......,07),where 0 <
0,00, ..... oy <1, NeN. AlSOPMIiZlelzx ..... XIN:[91,611))([Gz,az)x...X[QN,aN),

where ay,a....,ay and 01,6;....,0y are positive constants. Also let y(.) be an increasing

and positive monotone function on [0y,a1),[62,a2),....,|0y,an) having a continuous deriva-
tive Y'(.) on [61,a1),[62,a2),....,[0n,an). The W - Riemann - Liouville partial integral of N
variables.

u=(uy,uz,...,uy) € L'(I) is defined by

@ ) = g [ v — wls) tuts s

with

v (s)(w(x;) —w(s;)%!
— () (W) — (s )P W (s2) (W) — w(sa)) @

oy—1

W (sn) (wxn) — wisw))

and using the notation

I'oy) =T(a1),['(0),....,[(cty)
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and u(s;) = u(s,s2,...,5N)
dsj=dsy,ds,.....dsy, j€{1,2,.....,N} with N € N.
In particular, take N =3,0, =6, =63 =0

Ig’wu(xl,xz,)@)

1 X1 X2 X3 ,
~ T(o)T(0n)T(a3) /0 /o /o W (s) ¥ (s2) ¥ (s3) %
[(W(Xl) - W(Sl))alfl(ll/(xz) — y/(sz))azfl(l,/(x?)) . W(SS))%ildS]dSzdS:;]

with O < oy, 00,03 <1

Also, we have

Ial 7“’

0 x, U1, X2,%3) —y(s))* u(sy, 52,53)dsy

102 Y u(xi,22,%3) W(x2) — w(s2)) 2 u(sy,52,53)ds

It} u(xr,xp,x3) = (o) /0 Y (53) (W) — W(53) ™ uls,52.53)ds3

with O < oy, 00,03 <1

Definition 2.2. [1] Ler 6 = (6,65,.....,60y) and a = (a,0,.....,0y), where 6 <
ay,00,03,.....,0y < LN €N,. Also put [ =Ty x [0 X ..... x [ogy = [01,a1) X [62,a2) X ... X
[Oy,ay), where ay,a....,ay and 61,65....,0y are positive constants. Also let u,y € C"(I,R)
are two functions such that y is increasing and W' (x;) # 0,i € {1,2,....N}, x; € LN € N. The
v is Hilfer fractional partial derivative of N variables denoted by * ]D)a P l’/( ) of a derivative of
order atand 0 < By, B ....., By < 1 is defined by

B, 1-a), 1o -
HDgf"”u(x):Ig;j %) W(max )Iéx] J(1-a), Yu(x;))

with dxj = dx1,0xy,....,0xy and Y (x;) = W' (x1), ¥/ (x2), ..., ¥ (xn),
je{1,2,...N} N eN.
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taking N = 3,

HyaBoy _ Bl-a)y 1 9’ -B-a)y
De l/l(xl,)Cz,X3) =1 (W/(XI)WI(XZ)W,(X3) axlax2ax3 )19

M(X1,X2,X3)

We use notation

ag?:,,”(-xl 7x27x3)

Hyy 0B,
D u(xy,xp,x3) =
[¢] L) a o a
9B,y x| I yX3 OB X3

Lemma 2.1. 2] If
(i) u,v,h € C([a,b]; Ry)

(ii) for any t > a and y(t) is increasing and ' (t) V't € [a,b]
u(t) < v(t)+h(r) Jo v (s)(w(t) — w(s)* uls)ds

(iii) h(t) is non - negative and non decreasing then,
u(t) < v(t)Eq[h()I () (w(t) — y(a))"]

foranyt > o and being Ey(.) the one-parameter Mittag-Leffler function.

Definition 2.3. [1]. Let (a,b) (—oo < a < b < ) be a finite interval (or infinite) of the real line
R and let o > 0 . Also let y(x) be an increasing and positive monotone function on (a,b),
having a continuous derivative W' (x) ( we denote first derivative as %l//(x) = y/(x) on (a,b)).

The left-sided fractional integral of a function f with respect to a function on |a,b] is defined by

1YW = g [ VO )™ s

The right-sided fractional integral is defined in an analogous form.

Definition 2.4. [1]. Letn—1 < oo <nwithn € N, let I = [a,b] be an interval such that —oo <
a<b<oandlet f,y € C"[a,b] be two functions such that ¥ is increasing and y'(x) # 0, for
all x € I. The left-sided y - Hilfer fractional derivative Dg;ﬁ 'l/() of a function of order o and

type 0 < B <1, is defined by

n— 1 d nyl=-p)n—c),
MDY f ) = Y (s P ()

' (x) dx

The right-sided y-Hilfer fractional derivative is defined in an analogous form.
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Theorem 2.2. [1] If f € C'[a,b],0 < a < 1 and 0 < B < 1, then

1Y DY £() = f(x) - (y(x) ;(‘5}(61)>yIIa(l—ﬁ)(l—a):"’f(a)

Theorem 2.3. [1] If f € C'[a,b],0 < a < 1 and 0 < B < 1, then
TGPV IV F(x) = ()
Definition 2.5. [1] For each function y satisfying
DYy = £y, [ K ey(2).5(3(0)de) |< 0

x € [a,b], where 0 > 0, there is a solution yq of the fractional integro-differential equation and

a constant C > 0 independent of y and yq such that

[ y(x) =yo(x) [< CO

for all x € [a,D], then we say that the integro-differential equation has the Ulam-Hyers stability.
Definition 2.6. [1] If for each function y satisfying

DAY~ £, [ Ko my(1)(8(2)de) |< 6

x € [a,b], where 0 > 0, there is a solution yq of the fractional integro-differential equation and

a constant C > 0 independent of y and yq such that

| y(x) =yo(x) [< Co(x)

X € [a,b], for some non-negative function ¢ defined on [a,b] , then we say that the fractional

integro-differential equation has the so-called semi-Ulam-Hyers-Rassias stability.

Definition 2.7. [1] We say that d : X x X — [0, 0| is a generalized metric on X if:

(i) d(x,y) = 0 if and only if x =y,
(”) d(X,y) = d(y,x),forallx,y €X,

(iii) d(x,z) <d(x,y)+d(y,z)forallx,y,z € X.
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Theorem 2.4. [1] (Banach) Let (X, d) be a generalized complete metric space and T : X — X a
strictly contractive operator with Lipschtiz constant L > 1. If there exist a non-negative integer

k such that d (Tka, Tkx) < oo for some x € X, then the following three propositions hold true:

(i) The sequence (T"x),cN converges to a fixed point x* of T:
(ii) x* is the unique fixed point of T in X* = {y € X;d(T*x,y) < o0},
(iii) If y € X*, then

3. MAIN RESULT

In this paper, our aim is to investigate the stability and its generalization on semi-closed and
semi-open interval for the solution of a fractional order partial differential equation with the
help of inequality.

For our convenience in the calculations, we consider the following set of considerations and

notations

() A% 0 f(63,2) = J§ £ (23,2 (3,3, 2)v1 (3,3, 2)v2 (%, 3, 2)v3 (%, 3, 2)d p
(L) A s (6, 3,2) = ST F (3 2)u(ox, y,2)u (x, 9, 2)un (x,y,2)uz (x,y,2)dp
(iii) A f(x,y,2)

=[5 1 F(6,3,2)v(x,3,2)v1 (x,3,2)v2 (%, 3, 2)v3(x,,2)
— [y, 2)ux,y, 2)ur (x, 3, 2)uz (x, 3, 2)uz (x,3,2) | dp
(v) APP(x,y,2) = J§ ¢ (x,y.2)dp
(v) ¥7(x,0,0) = (y)—y()"!

I'(y) 1

. _ (wO)—w(0)"”

(vi) ¥7(0,,0) = T

r _ (w(@)—w(0)""
(vii) W7(0,0,2) = I(y)

(viii) Let a,b,c € (0,00],€> 0,¢(x,y,2) € C([0,a) x [0,b) x [0,¢),R) and (B,].]) be a real
or complex Banach space.
Consider,

93%v(x,y,z) Igyy gy IpyY

(31) —f(X,y,Z,V(x,y,Z), aﬁ th?aB ya,aﬁ Za
14 W W

)| <€

| 8/37y,x°‘ 0 W 8B,WZOL
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x€[0,a),y€[0,b),z€0,c)

3¢ 80‘ \ 80‘ v &O‘ v
O v(x,3,2) Fley v y,z), ot By BV

(3.2) Z), ; )
IpyxX* g yy* Ip yi®

’ - )| S (I)(X,y,z)
Ip yX* 9 yy* O y2*

x€0,a),y€[0,b),z€[0,¢),0<a<1,0<B<1.

(ix) If function u : [0,a) x [0,b) x [0,c) — B is a solution of equation (0.1) ,

if u € C([0,a) x [0,b) x [0,¢)) NC'([0,a) x [0,5) x [0,¢))

y&%eqp@xmmxmﬂ)
B.yX

%.
¥ e c([0,a) x [0,b) x [0,¢))
9B, yY

(04
aﬁ,w

9 y2®

€ C([0,a) x [0,b) x [0,c))

and u satisfies (0.1)

Definition 3.1. The solution of equation (0.1) is U-H stability , if there exist a real number

C },C},Cfc and C;ﬁ > 0 such that, for any €> 0 and for any solution v to the inequality (3.1),

with
| V(X,y,Z) —M(X,y,z) ’S C} <,
o ;
7lll . 7W < 2
’ a&wxav(xuy?Z) aﬁwfxau(xvyvz) |— Cf <,
a(x a(x
B.y By 3
5 /W »hi)— ux,y,z <C <,
G I gy IS
and
g ¥
B.v B.v 4
| a&qua‘}(x’y’Z) - aﬁ’wzau(xvyvz) |S Cf €

x€[0,a),y€[0,b),z€[0,c) with, 0<a<1,0<pB<1.
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Definition 3.2. The solution of equation (0.1)admit generalised U-H-R stability ,if there exist a
real number C}-.q),Cz- ¢,C]3c p and C}? 6> 0 such that, for any €> 0 and for any solution v to the

inequality (3.2), with

| V(X,y,Z) - u(x,y,z) |S C},([)(P(xayaz)

85‘ aéx

| aﬁ q;llx/a V(Xaya Z) - —8;3 q;llx/a u(x,y,z) |§ C]%,¢¢(X,y,z)
9¢ Ja

| aﬁﬁl;‘gav(x,y,z) —~ aﬁﬁxau(x,y,z) 1< Cy0(x,3,2)
b 9%

| % q’zav(x,y, z) — % y’/yzlau(x,y,z) < Ch 0 (x,y,2)

x€10,a),y€[0,b),z€[0,c) with0<a<1,0<B <.

Remark 1: If function v is a solution to the inequality (3.1), if and only if, there ex-
ist a function g € C([0,a) x [0,b) x [0,c),B), which depends on v, such that a) for all
€>0,| g(x,y,2) |<€,Vx € [0,a),y €[0,b),z € [0,c)

b)Vx e [0,a),y€[0,b),z€[0,¢),0<a<1,0<B<1.

830611()6,)7,2) —f(x z V(X Z) agallfv al‘;"wv agvlllv
7y7 ) 7y7 b 8B7ll/xa7 aﬁ’lllya7 aﬁ’v/za

(3.3) ) +g(x,,2)

Ip.yx* Ip,yy* Ip y2*
Theorem 3.1. If v is a solution to the inequality (3.1), then (v,vi,v2,v3) in a solution of the

following system of integral inequality

| v—¥7(0,0,7)v(x,0,0) —¥¥(0,y,0)v(x,0,0)
- \PY(X, 0, O)V(anv O) o le«)a 0,z)v(0,y, O) - le(anv O)V(07 O7Z)

— W (x,0,0)v(0,0,2) — Iy ¥ (AP, F(x,3,2)) |

V1,V2,V3

(w(x) —w(0)" (w(y) — w(0))*®(w(z) — w(0))"

<ex
- F((X1+1)F((X2—|—1)F((X3—|—l)

| vi(x,3,2) = ¥7(x,0,0)v1(0,0,2) —¥7(0,y,00v1(0,0,2) — IgtY (ALY, f(x,,2)) |

6+ x V1,V2,V3
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(y(x) —y(0)*™
YT

| VZ(x7y7 Z) - le(0,0,Z)Vz(X,0,0) - lPY(anJ O)VZ(XJ()?O) az’ ('%VI?,‘\}Q Wf(x?y?Z)) |

(y(y) —w(0))*
- F((X2—|— 1)

| V3(X Y2 ) \PY(X 0 0)\/’3(0 y70) —\PY(O,O,Z)VT,(O,_)/, 0) O‘S W(%\?Vz,\qf(xayvz)) ‘
)—

(v(z) —w(0)*
F(Otg,—i—l)

<e

x€[0,a),y€[0,b),z€[0,c), 0 < <1,0<y<I.
[0 [0 [0
aBJI/V 813 yV aﬁywv

V)=, V3 =
g y2” dp yx* Ip yy*

V] =

Proof: From equation (3.2), we have
| V= le(OvO?Z)v(an?O) - IPY(O,)@O)V(X 0 0) - \PY(X,O,O)V(O,)/,O) - ‘PY(O,O,Z)V(O,y, 0) -
¥¥(x,0,0)v(0,0,z) —¥¥(0,y,0)v(0,0,z) — Iy w(«//vl,V2,V3f(xa)’7 2)) |

<[ 1y (A9 (x,y,2)) |

aw, [P (w(x) —w(0)" (w(y) —w(0)®(y(z) — w(0))*
=l W(/o €dp)<ex (o + (o + DI(0+ 1)

In the similar manner, we have the inequalities

| V1 (X,y,Z) —\PY(X,O,O)Vl(O,O,Z) _‘Py(ovyv O)Vl (0707Z) al W(%\£7V2,V3f(x’yv Z)) |

(y(x) — w(0))*
F(Otl + 1)

<ex

| VZ(x7y7 Z) - TY(O,O,Z)VQ(X,O,O) - lPY(()’y, 0)\/2()6,0,0) O‘2’ (%p N f(x,y,z)) |

c (y(y) — w(0))*
- F(OC2—|— 1)

and

| V3(X,y,Z) —lPY(x,O,O)v:;(O,y,O) _le(()?O;Z)V?ﬁ(O?ya O) 0537 (%\g’w V3f(x7yaz)) ‘
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(y(z) —y(0)*
F(a3 + 1)

<e

Remark 2: If function v is a solution to the inequality (3.1), if and only if there exist a function
g € C(]0,a) x [0,b) x [0,c),B), which depends on v, such that

@) | g(x,32) [< 9 (x,2), VX €[0,a),y €[0,b),z € [0,c).

(b) Vx €[0,a),y € [0,b),z€[0,¢),0< 0 <1,0<B < 1.

3 0 v 9% v 9% v
. &a&v(x%? = f(ryavng), P By By
B.yr” OByY” OByl

2), : : ) +8(x,y,2)
Ipyx* g yy* Ip yi®

Remark 3: If function v is a solution to the inequality (3.2), then (v,vy,v2,v3) is a solution of
the following system of integral inequalities.
| v—27(0,0,z)v(x,0,0) — ¥¥(0,y,0)v(x,0,0)
—¥Y(x,0,0)v(0,y,0) —¥¥(0,0,2)v(0,y,0) — ¥¥(x,0,0)v(0,0,z)
—¥7(0,y,0)v(0,0,2) — IV (ALY, . f(x,7,2)) |

<1V (AMPP(x,y,2))

| vi(x,3,2) = ¥7(x,0,0)v1(0,0,2) = 7(0,y,0)v1(0,0,2) — [t (AL, . f(x,3,2)) |

< ItV (AP (x,y,2))

| VZ(xvy’ Z) —‘PY(O,O,Z)VZ(X,O,O) - \Py(07y30>v2(x3070) _Ingr’,g(//\ﬁ’,\;z,V3f<x7y7Z)) |

<Ig2V (A9 (x,y,2))

| V3(X,y,Z) - lPY(x,O,O)V:;(O,y, 0) - lPY(O7O>Z)V3(07y7 O) _Igi:z/(%g’:\/)z,%f(xayaZ)) ‘
<0 (M9 (x,,2))

x€[0,a),y€[0,b),z€[0,¢),0 < <1,0<y<1.

o o o
aBJI/V B 8ﬁ7wv . aﬁywv
9B, yy*

V] = o
9B, yZ

)

gy
Theorem 3.2. We suppose that,

(1) a<oo,b < oo ¢ < oo
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() f€C([0,a) x[0,b) x [0,c) x B*,B).
(3) Ly > 0, such that

| f(x,y,z,u1,u0,u3,u8) — f(X,9,2,v1,v2,v3,v4) [< Ly max |u;—v;
ic{1,2.3,4)

Vx € [0,a),y€[0,b),z€ [0,¢),vi,u; €B
Then, we have
a) for h € C'([0,a),B), g € C'([0,0),B) and k € C'(]0,c),B), the equation (3.2) has a unique

solution with

Ié_y’wu(x,0,0) = h(x),x € [0,a)
(3.4) Iy "Yu(0,,0) = g(v). y € [0,b)
Iéfy’wu(0,0,z) =k(z),z€[0,¢)

b) The equation (3.2) is stable.

Proof a) : If u(x,y,z) is a solution to the problem (0.1) and (3.3), then

[0 [0 o
(I/t aﬁku aﬁawu aﬁ7wu

"0 yx® dp yy* dp y2*

is a solution to the system.
u(x,y,z) = P7(0,0,z)h(x) +P7(0,y,0)h(x) + P (x,0,0)g(y) +¥?(0,0,2)g(y)
+¥7(x,0,0)k(z) +P7(0,y,0)k(z) +Ig’w(=///j’l’f;2,usf(x,y, 2))
(3.5) w1 (x,y,2) = ¥ (x,0,0)kze (2) +P7(0,y,0)kea (2) + L5} (AL, 1 f(3,3,2))
w2(x,,2) = W7(0,0,2)hea (x) +¥¥(0,, 0 e (x) + 102 ¥ (AP 1 f(6,3,2))
w3 (x,3,2) = W7(x,0,0) gy (y) +7(0,0,2) 00 (v) + Igt Y (AL 1 f (%:3:2))

Here,
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Iy (X ,2)

MZ(xLy?Z) - aﬁ,y/xa
% u(x,y,z)
Bvl// »)
uz(x,y,z) = —4——
A _ algiwu(x)
x% (x> a o
B.y*
o
gy (y) = %)
9B, yy*
o
tale) = B2
Ip,y2”

Let us denote right hand side of the system (3.5) by operators, A1,A3,A3 and A4 resply.

The system (3.5), then becomes

u(x,y,z) = Ay (u,uy,up,u3)(x,y,2)
ui (x,y,z) = Ag(u,uy,uz,u3)(x,y,2)
ur (x,y,2) = Az (u,uy, up, u3)(x,,2)
us(x,v,z) = Ag(u,uy,up,u3)(x,y,2)

up,up,uz € C([0,a) x [0,b) x [0,c))
Let X : C([0,a) x [0,b) x [0,¢)) x C([0,a) x [0,b) x [0,¢)) x C([0,a) x [0,b) X [0,c)) x C([0,a) x
[0,b) x [0,¢))

and for any & > 0, consider the Bielecki norm on v

| (u,ur,u2,u3) ||p:= max{M,M>, M3, M4}

M = max | u(x,y,z) | e d&H+7)

(x,y,2)€]0,a) x[0,b) x[0,c)

M, = max |y (x,y,2) | e 20Hy+2)

(x,y,2)€[0,a) x[0,b) x[0,c)

Ms = max | ua(x,y,2) | e d0Hy+d)
(x,3,2)€[0,a) x[0,0) x[0,¢)
My = max | u3(x,y,2) | e 20Hy+2)

(x,y,2)€[0,a) x[0,b) x[0,c)
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Then (X, || . ||g) is an ordered L - space. We will define the operator A : X — X by

(v, uy,up,u3) — (Ay(u,ur,uz,u3),As(u,ur,uz,uz), Az (u,uy,uz,uz),Ag(u,uy,uz,u3))

Using the hypothesis 1-3, we have

_ . - L - - -
(36) H A<ﬂ7ﬁ17ﬁ27ﬁ3) _A(I/_t; ]7”2;”3) ||B§ Ff ||A<ﬂ;ﬁlalz2;lz3) _A(L_tau_]au_27u_3) HB

taking & > 0, such that %f < 1 in relation (3.6), the operator A is a contradiction and hence
equation (0.1) has unique solution.

(b)Let v be a solution to the inequality (3.2), let v be the unique solution of (0.1) satisfying

[é_%wu(X,0,0) = V(X,O,O); X e [O,d)
[éfy’wu(O,y, 0) = V(07y70)a ye [O’b>

Ié*%‘”u(O,O,Z) =v(0,0,z),z € [0,c)

withy=a+B(1-7)

from remark (2), the hypothesis 3 and lemma, we have

| v(x,3,2) —u(x,y,2) |

<[ v(x,y,2) —P7(0,0,2)v(x,0,0) —P¥(0,y,0)v(x,0,0) — ¥¥(0,0,2)v(0,y,0)—
W7(x,0,0)v(0,0,z) — ¥7(0,y,0)1(0,0,z) |

— Ig"’/(///p’v f(x,3,2)) +I§""’(%/—£vf(x>y, z))

V1,V2,V3

<o W) = v(0)H (wly) - w(0))* (w(z) — w(0))™
- F(OC] +1)F((X2+1)F(Ot3+l)

+ LY max u(x,y,z) —vi(x,y,z
Lo (Pie{172’3,4}| 1(6,3,2) =vi(x,3,2) |)

< W) —w(0)* (w(b) — w(0))*(w(a) — y(0))™
- F(a1+1)F(a2+1)F(a3+l)

(w(e) = w(0)* (w(b) — w(0))*(y(a) — w(0)*]] =Cj €

X [Ea [Lfal“(ocl)l"(ocz)l"(og)
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where,

(W(e) = w(0)* (y(b) — w(0)*(y(a) —y(0)* [
F(OC] + 1)F(O£2 + 1)F(OC3 + 1)

(w(c) = w(0)%(y(b) — y(0))*(y(a) — w(0))™]]

Ci=a Eq[Lsal' (o)L (o) ()

By performing the same process as above, we obtain the following inequalities

(w(a) — w(0))*

‘ vl(x7yﬂz) - ul(xvyvz) ’SG a Ea[Lfa(l//(a) - W(O))alr(al)] = Cjzf

F((Xl + 1)
where,
G = MO Bl (o) — w(0)Ten)
and
ratred) —atena) 1< LYl (o) — wi0) = (o)) = CF
where,
G = R Yl ((b) ~ w(0) T (a)
and
rated) —un(ea) [ O bl (o) - w0 T =€}
where,
o = e O Eal (vie) - w(0) " T(aw)]

so the equation (0.1) is stable.

4. CONCLUSION

In this paper, we have proposed stability remarks of the solution of fractional partial differen-
tial equation which is growing and gains special attention in the solution of linear heat equations

and diffusion equations.
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