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Abstract. In this paper, we establish some common best proximity point theorems for generalised rational α-φ -

Geraghaty proximal contraction mappings in complete metric spaces. Examples are also given to illustrate our

results.
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1. INTRODUCTION

Fixed point theory has wide application in various branches of science, engineering and other

allied fields. It deals with solving an equation of the form T x = x where T : A→ A defined on

a subset A of a space X . If T : A→ B be a non self mapping and A,B ∈ X then the equation

T x = x may not have a solution. In this case, it can be considered an element x for which the

error d(x,T x) is the global minimum and x is said to be in close proximity with T x. With this

concept K. Fan [3] state the following theorems.

∗Corresponding author

E-mail address: ningthoujampriyo9@gmail.com

Received January 14, 2020
713



714 MAIREMBAM BINA DEVI, N. PRIYOBARTA, YUMNAM ROHEN

Theorem 1.1. Let K be a non-empty compact convex subset of a normal space X and T : K→ X

be a continuous non-self mapping. There exists x ∈ K such that

‖x−T x‖= d(K,T x) = inf{‖T x−u‖ : u ∈ K}.

When a non-self mapping T : A→ B has no fixed point, it is quite natural to find an element x∗

such that d(x∗,T x∗) is minimum. The best proximity point theorem assure the existence of an

element x∗ such that

d(x∗,T x∗) = d(A,B) = inf{d(x,y) : x ∈ A,y ∈ B}.

This element x∗ is called the best proximity point of T . If the mapping T under discussion is a

self-mapping, then the best proximity point theorem becomes to a fixed point results.

Geraghty [1] introduced an important generalisation of Banach contraction Principle.

Theorem 1.2. Let (X ,d) be a complete metric space and T : X→X be a self-mapping. Suppose

that there exists β ∈ F such that, for any x,y ∈ X,

d(T x,Ty)≤ β (d(x,y))d(x,y).

Then T has a unique fixed point, where the class F is the set of function β : [0,∞)→ [0,∞)

satisfying

β (tn)→ 1⇒ tn→ 0.

Since the constant function f (t) = k, where k ∈ [0,1) in F, Theorem 1.2 extent Theorem 1.1

In 2014, Karapinar [7] introduced a generalized α-φ -Geraghaty contraction type mapping

and, in 2016, Hamzehnejadi and Lashkaripour [8] introduced a generalized α-φ -Geraghaty

proximal contraction mapping. They also established some best proximity point theorems for

this mapping.

The aim of this paper is to prove some common best proximity theorems for generalised

rational α-φ -Geraghty proximal contraction mappings in complete metric space.
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2. PRELIMINARIES

Now, we recall some elementary results and basic definitions for our main results in this

paper.

Let Φ be the class of all functions φ : [0,∞)→ [0,∞) satisfying the following conditions:

(i): φ is nondecreasing

(ii): φ is continuous

(iii): φ(t) = 0 if and only if t = 0.

Let A and B are non-empty subsets of a metric space (X ,d).

A0 = {a ∈ A : d(a,b) = d(A,B) f or some b ∈ B}

B0 = {b ∈ B : d(a,b) = d(A,B) f or some a ∈ A},

d(A,B) = inf{d(a,b) : a ∈ A,b ∈ B}.

Definition 2.1. Let (X ,d) be a metric space and A, B two nonempty subsets of X. A point u ∈ X

is called a common best proximity point of non-self mappings S,T : A→ B if

d(u,Su) = d(u,Tu) = d(A,B).

It is clear that a common fixed point coincides with a common best proximity point if

d(A,B) = 0.

Definition 2.2. [10] Let A, B be nonempty subsets of a metric space (X ,d) and α : X ×X →

[0,∞) be a function. A pair (S,T ) of non-self mappings S,T : A→ B is said to be α-proximal

admissible if 
α(x1,x2)≥ 1.

d(u1,Sx1) = d(A,B)⇒min{α(u1,u2),α(u2,u1)} ≥ 1.

d(u2,T x2) = d(A,B)

for all x1,x2,u1,u2 ∈ A.
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Konrawut et. al. [6] introduced a generalised α−φ -Geraghty proximal contraction mappings

in metric spaces.

Definition 2.3. Let A and B be nonempty subsets of a metric space (X ,d). Let φ ∈ Φ, α :

X×X→ [0,∞) be a function, S,T : A→B be a non-self mappings. (S,T ) is called a generalised

α-φ -Geraghaty proximal contraction pair if
α(x,y)≥ 1.

d(u,Sx) = d(A,B)

d(v,Ty) = d(A,B)

⇒ α(x,y)φ(d(u,v))≤ β (φ(M(x,y)))φ(M(x,y)−d(A,B))

for all x,y,u,v ∈ A with α(x,y)≥ 1, where β ∈ F and M(x,y) = max{d(x,y),d(x,u),d(y,u)}.

Now, we introduce a generalized rational α-φ -Geraghty proximal contraction mappings in

metric spaces.

Definition 2.4. Let A and B be nonempty subsets of a metric space (X ,d). Let φ ∈ Φ, α :

X×X → [0,∞) be a function, S,T : A→ B be non-self mappings. (S,T ) is called a generalized

rational α-φ -Geraghty proximal contraction pair if
α(x,y)≥ 1.

d(u,Sx) = d(A,B)

d(v,Ty) = d(A,B)

⇒ α(x,y)φ(d(u,v))≤ β (φ(M(x,y)))φ(M(x,y)−d(A,B))

for all x,y,u,v ∈ A with α(x,y)≥ 1, where β ∈ F and

(1) M(x,y) = max
{

d(x,y),
d(x,u)d(y,v)

1+d(x,y)
,
d(y,u)d(y,v)
1+d(u,v)

}
3. MAIN RESULTS

Now, we prove some common best proximity point theorems for a generalized rational α-φ -

Geraghty proximal contraction pair in metric spaces.
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Theorem 3.1. Let A and B be nonempty subsets of a complete metric space (X ,d) such that

A0 6= φ and A is closed. Let S,T : A→ B be a generalized rational α-φ -Geraghty proximal

contraction pair. Suppose that

(i): S(A0)⊆ B0 and T (A0)⊆ B0

(ii): there exists x0,x1 ∈ A0 such that

d(x1,Sx0) = d(A,B)min{α(x0,x1),α(x1,x0)} ≥ 1,

(iii): the pair (S,T ) is α-proximal admissible.

(iv): S and T are continuous.

Then S and T have a common best proximity point, that is, there exists a point x∗ ∈ A such that

d(x∗,Sx∗) = d(x∗,T x∗) = d(A,B).

Proof. By the condition (ii), there exists x0,x1 ∈ A0 such that

(2) d(x1,Sx0) = d(A,B),min{α(x0,x1),α(x1,x0)} ≥ 1

From the condition (i), we have T x1 ∈ B0 and so there exists x2 ∈ A0 such that

(3) d(x2,T x1) = d(A,B)

From (2) and (3), since the pair (S,T ) is α-proximal admissible, we obtain

(4) min{α(x1,x2),α(x2,x1)} ≥ 1

Again, by the condition (i), we have Sx2 ∈ B0 and so there exists x3 ∈ A0 such that

(5) d(x3,Sx2) = d(A,B)

By induction, we can find the sequence {xn} in A0 such that

(6) min{α(xn,xn+1),α(xn+1,xn)} ≥ 1

and

(7) d(xn+1,Sxn) = d(xn+1,T xn+1) = d(A,B)
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for all n ≥ 0. Since (S,T ) is a generalized rational α-φ -Geraghty proximal contraction pair,

using (6) and α(xn,xn+1)≥ 1, it follows that, for all n≥ 0,

φ(d(xn+1,xn+2)) ≤ α(xn,xn+1)φ(d(xn+1,xn+2))

≤ β (φ(M(xn,xn+1)))φ(M(xn,xn+1)−d(A,B))

< φ(M(xn,xn+1))−d(A,B)(8)

where

M(xn,xn+1) = max
{

d(xn,xn+1),
d(xn,xn+1)d(xn+1,xn+2)

1+d(xn,xn+1)
,
d(xn,xn+1)d(xn+1,xn+2)

1+d(xn+1,xn+2)

}
≤ max{d(xn,xn+1),d(xn+1,xn+2)}

≤ max{d(xn,xn+1),d(xn+1,xn+2)}+d(A,B)(9)

If M(xn,xn+1) = d(xn+1,xn+2), then, from (8), it follows that

φ(d(xn+1,xn+2)) < φ(M(xn,xn+1)−d(A,B))

= φ(d(xn+1,xn+2)−d(A,B))

which, from the properties of φ , implies that

d(xn+1,xn+2) < d(xn+1,xn+2)−d(A,B)

< d(xn+1,xn+2)

which is a contradiction. Therefore, we have

(10) M(xn,xn+1) = d(xn,xn+1)

for all n≥ 0.

Next, from (8) and (10), we obtain

φ(d(xn+1,xn+2)) < φ(d(xn,xn+1)−d(A,B))

for all n≥ 0, which, from the properties of φ , implies that

d(xn+1,xn+2)< d(xn,xn+1)
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for all n ≥ 0 and hence we deduce that the sequence {d(xn+1,xn+2)} is non-negative and de-

creasing. Consequently, there exists r ≥ 0 such that limn→∞ d(xn+1,xn+2) = r. Assume that

there exists n0 ∈ N such that d(xn0,xn0+1) = 0. From (8) and the property of φ , it follows that

d(xn0+1,xn0+2) < M(xn0,xn0+1)−d(A,B)

≤ M(xn0,xn0+1)

≤ d(xn0,xn0+1).

Since d(xn0 ,xn0+1) = 0, we have 0 ≤ d(xn0+1,xn0+2) ≤ 0 and so d(xn0+1,xn0+2) = 0. This

implies that xn0 = xn0+1 = xn0+2. By (7), we obtain

(11) d(xn0,Sxn0) = d(xn0,T xn0) = d(A,B)

which is the desired result.

Now, let r = d(xn,xn+1) 6= 0 for all n ≥ 0. In the sequel, we prove that r = 0. Suppose that

r > 0. From (8) and (10), we have

0 <
φ(d(xn+1,xn+2))

φ(d(xn,xn+1)−d(A,B))
≤ β (φ(d(xn,xn+1))).

Using the fact that φ is non-decreasing, we have

0 <
φ(d(xn+1,xn+2))

φ(d(xn,xn+1))
≤ φ(d(xn+1,xn+2))

φ(d(xn,xn+1)−d(A,B))
≤ β (φ(d(xn,xn+1)))

which implies that limn→∞ β (φ(d(xn,xn+1))) = 1. By the property of β ∈ F, we have

lim
n→∞

φ(d(xn,xn+1)) = 0.

Hence, we get r = 0, which is a contradiction. Therefore, limn→∞ φ(d(xn+1,xn+2)) = 0. Note

that, for all m,n≥ 0,

(12) min{α(xn,xm),α(xm,xn)} ≥ 1

and

(13) d(xn+1,Sxn) = d(xm+1,T xm) = d(A,B).
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Thus, for all m,n≥ 0, we obtain

φ(d(xn+1,xm+1)) ≤ α(xn,xm)φ(d(xn+1,xm+1))

≤ β (φ(M(xn+1,xm+1)))φ(M(xn+1,xm+1)−d(A,B))(14)

where

M(xn+1,xm+1) = max
{

d(xn,xm),
d(xn,xn+1)d(xm,xm+1)

1+d(xn,xm)
,
d(xn,xn+1)d(xm,xm+1)

1+d(xn+1,xm+1)

}
≤ max

{
d(xn,xm),

d(xn,xn+1)d(xm,xm+1)

1+d(xn,xm)
,
d(xn,xn+1)d(xm,xm+1)

1+d(xn+1,xm+1)

}
+d(A,B)

Since limn→∞ φ(d(xn,xn+1)) = 0, we have

(15) lim
m,n→∞

supM(xn+1,xm+1) = lim
m,n→∞

supd(xn,xm)≤ lim
m,n→∞

supd(xn,xm)+d(A,B)

Now, we show that {xn} is a Cauchy sequence. In the contrary, we suppose that

lim
m,n→∞

supd(xn,xm) = r > 0.

Letting m,n→ ∞ and using the triangular inequality, we have

lim
m,n→∞

supd(xn,xm) ≤ lim
m,n→∞

sup(d(xn,xn+1)+d(xn+1,xm+1)+d(xm+1,xm))

≤ lim
m,n→∞

supd(xn+1,xm+1)(16)

Combining (14), (15) and (16) with the continuous property of φ , we obtain

lim
m,n→∞

supd(xn,xm)≤ lim
m,n→∞

supβ (φ(M(xn+1,xm+1))) lim
m,n→∞

supφ(d(xn,xm))

Since, limm,n→∞ supφ(d(xn,xm)) = r > 0, it follows that

lim
m,n→∞

supβ (φ(M(xn+1,xm+1))) = 1.

Since β ∈ F, we have

lim
m,n→∞

supd(xn,xm) = lim
m,n→∞

supM(xn+1,xm+1) = 0

which is a contradiction. Therefore, {xn} is a Cauchy sequence in A. Since A is a closed subset

of a complete metric space (X ,d), there exists x∗ ∈ A such that xn→ x∗ as n→ ∞. Since S is
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continuous at x∗, limn→∞ Sxn = Sx∗. Moreover, from the continuous property of the metric d, it

follows that limn→∞ d(xn+1,Sxn) = d(x∗,Sx∗). Thus, by (7), d(x∗,Sx∗) = d(A,B). Similarly by

the continuity of T , we have d(x∗,T x∗) = d(A,B). Therefore, x∗ is a common best proximity

point of S and T . This completes the proof. �

In the next result we remove the continuity condition.

Theorem 3.2. Let A and B be nonempty subsets of a complete metric space (X ,d) such that

A0 6= φ and A is closed. Let S,T : A→ B be a generalized rational α-φ -Geraghty proximal

contraction pair. Suppose that

(i): S(A0)⊆ B0 and T (A0)⊆ B0

(ii): there exists x0,x1 ∈ A0 such that

d(x1,Sx0) = d(A,B),min{α(x0,x1),α(x1,x0)} ≥ 1,

(iii): the pair (S,T ) is α-proximal admissible.

(iv): If {xn} is a sequence in A such that min{α(xn,xn+1),α(xn+1,xn)} ≥ 1 for all n ≥

1 and xn → x ∈ A as n→ ∞, then there exists a subsequence {xnk} of xn such that

min{α(xnk ,x),α(x,xnk)} ≥ 1 for all k ≥ 1.

Then there exists x∗ ∈ A such that d(x∗,Sx∗) = d(x∗,T x∗) = d(A,B).

Proof. Following the proof of Theorem 3.1, we obtain a sequence {xn} in A0 such that (6) and

(7) hold. Aiso, we can show that {xn} is a Cauchy sequence in A. Since A is a closed subset of a

complete metric space (X ,d), there exists x∗ ∈ A such that xn→ x∗ as n→ ∞. By the condition

(iv), we have α(x∗,x2n(k)+1)≥ 1. Next, from (7), it follows that

(17) d(x2n(k)+1,Sx∗) = d(x2n(k)+2,T xn(k)+1) = d(A,B).

On the other hand, by using the triangle inequality we obtain

d(x∗,Sx∗) ≤ d(x∗,x2n(k)+2)+d(x2n(k)+2,x2n(k)+1)+d(x2n(k)+2,Sx∗)

≤ d(x∗,x2n(k)+2)+d(x2n(k)+2,x2n(k)+1)+d(A,B)
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which implies that

d(x∗,Sx∗)−d(x∗,x2n(k)+2)−d(A,B)≤ d(x2n(k)+2,x2n(k)+1).

Since (S,T ) is a generalized rational α-φ -Geraghty proximal contraction pair, using the prop-

erty of φ and α(x∗,x2n(k)+1)≥ 1, we have

φ(d(x∗,Sx∗)−d(x∗,x2n(k)+2)−d(A,B))

≤ φ(d(x2n(k)+2,x2n(k)+1))

≤ α(x∗,x2n(k)+1)φ(d(x2n(k)+2,x2n(k)+1))

≤ β (φ(M(x∗,x2n(k)+1)))φ(M(x∗,x2n(k)+1)−d(A,B))

≤ φ(M(x∗,x2n(k)+1))−d(A,B)(18)

where

M(x∗,x2n(k)+1) = max
{

d(x∗,x2n(k)+1),
d(x∗,Sx∗)d(x2n(k)+1,x2n(k)+2)

1+d(x∗,x2n(k)+1)
,

d(x∗,Sx∗)d(x2n(k)+1,x2n(k)+2)

1+d(Sx∗,x2n(k)+2)

}
≤ max

{
d(x∗,x2n(k)+1),

d(x∗,Sx∗)d(x2n(k)+1,x2n(k)+2)

1+d(x∗,x2n(k)+1)
,

d(x∗,Sx∗)d(x2n(k)+1,x2n(k)+2)

1+d(Sx∗,x2n(k)+2)

}
+d(A,B)

Observe that

lim
n→∞

d(x∗,x2n(k)+1) = lim
n→∞

d(x2n(k)+1,x2n(k)+2) = 0.

Thus there exists N ∈ N such that for all k ≥ N

(19) M(x∗,x2n(k)+1) = 0 < d(A,B)

From (18), (19) and the property of φ , it follows that, for all k ≥ N,

d(x∗,Sx∗)−d(x∗,x2n(k)+2)−d(A,B) < M(x∗,x2n(k)+1)−d(A,B)

≤ d(A,B)−d(A,B)

≤ 0
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and so

d(x∗,Sx∗) = d(x∗,x2n(k)+2)+d(A,B).

Letting k→∞, we obtain d(x∗,Sx∗) = d(A,B). Similarly, we have d(x∗,T x∗) = d(A,B). There-

fore, x∗ is a common best proximity point of S and T . This complete the proof. �

Now, we prove the uniqueness of such a common best proximity point as in Theorems 3.1

and 3.2. Here, we need the following additional condition:

(v): For all x,y ∈CB(S,T ), we have α(x,y)≥ 1, where CB(S,T ) denotes the set of com-

mon best proximity points of S and T .

Theorem 3.3. Adding the condition (v) to the hypothesis of Theorem 3.1(resp. Theorem 3.2),

the point x∗ is the unique best proximity point of S and T .

Proof. Suppose that there exists x∗,y∗ ∈ A such that

d(x∗,Sx∗) = d(x∗,T x∗) = d(y∗,Sy∗) = d(y∗,Ty∗) = d(A,B)

where x∗ 6= y∗. By the condition (v), we have α(x∗,y∗) ≥ 1 and, since (S,T ) is a generalized

rational α-φ -Geraghty proximal contraction pair, we have

φ(d(x∗,y∗)) ≤ α(x∗,y∗)φ(d(x∗,y∗))

≤ β (φ(M(x∗,y∗)))φ(M(x∗,y∗)−d(A,B))

< φ(M(x∗,y∗))−d(A,B)(20)

where

M(x∗,y∗) = max
{

d(x∗,y∗),
d(x∗,Sx∗)(y∗,Ty∗)

1+d(x∗,y∗)
,
d(x∗,Sx∗)d(y∗,Ty∗)

1+d(Sx∗,Ty∗)

}
= d(x∗,y∗)

From (20), we obtain

φ(d(x∗,y∗))< φ(d(x∗,y∗))−d(A,B)< φ(d(x∗,y∗))

which is a contradiction. Hence x∗ = y∗. �

Next, we give an example to illustrate Theorem 3.1.
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Example 1. Let X = [0,∞)× [0,∞) be endowed with the metric

d((x1,x2),(y1,y2)) = |x1− y1|+ |x2− y2|.

Take A = {0}×Q∩ [0,5], and B = {1}× [0,5]. We know that d(A,B) = 1, A0 = A and B0 = B.

Consider the mappings S,T : A→ B defined by

S(0,x) = (1,
4
5

log(1+
x
2
))

T (0,x) = (1,
4
5

log(1+ x))

respectively. Then we have S(A0)⊆ B0 and T (A0)⊆ B0. Also, we define a function α : X×X→

[0,∞) by  α((x,y),(x
′
,y
′
)) = 1, if (x,y),(x

′
,y
′
) ∈ [[0,1]× [0,1];

α((x,y),(x
′
,y
′
)) = 1, otherwise.

Let (0,x1), (0,x2), (0,u1) and (0,u2) in A such that
α(((0,x1),(0,x2)))≥ 1,

d((0,u1),S(0,x1)) = d(A,B),

d((0,u2),T (0,x2)) = d(A,B).

Then we have (x1,x2) ∈ [0,1]× [0,1]. Also, we have u1 =
4
5 log(1+ x1

2 ) and u2 =
4
5 log(1+ x2),

which implies that

min{α((0,u1),(0,u2)),α((0,u2),(0,u1))} ≥ 1.

Thus the pair (S,T ) is α-proximal admissible.

Now, we check that (S,T ) is a generalized α-φ -Geraghty contraction pair. Define the func-

tions φ : [0,∞)→ [0,∞) and φ : [0,∞)→ [0,1) by

φ(t) =
t3

2
, β (t) =

tan−1(t)
t

for all t ≥ 0, respectively. Then β ∈ F and φ ∈Φ.

Let (x,y) ∈ A. Then t = d(x,y) = [0,1]. Also, it is easy to show that

(21)
1
2
(
4
5

log(1+ t))3 ≤ tan−1(
t3

2
)
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for all t ∈ [0,1]. Moreover, we have

α((0,x1),(0,x2)),φ(d(0,u1),(0,u2)) =
1
2
(|u1−u2|)3

=
1
2
(|4

5
log(1+

x1

2
)− 4

5
log(1+ x2)|)3

=
1
2

(
4
5
| log

(
1+ x1

2
1+ x2

)
|
)3

≤ 1
2

(
4
5
| log

(
1+ x1

2
1+ x2

2

)
|
)3

(22)

Now, we show that

| log
(

1+ x1
2

1+ x2
2

)
| ≤ log

(
1+ |x1

2
− x2

2
|
)
≤ log(1+ |x1− x2|).

Suppose that x1 ≥ x2 or x2 ≥ x1. Observe that

log
(

1+ x1
2

1+ x2
2

)
≤ log

(
1+ x2

2 + x1
2 −

x2
2

1+ x2
2

)
≤ log

(
1+ x1

2 −
x2
2

1+ x2
2

)
≤ log

(
1+

x1

2
− x2

2

)
≤ log(1+ |x1− x2|).

From (22), it follows that

α((0,x1),(0,x2)),φ(d(0,u1),(0,u2)) ≤
1
2

(
4
5

log(1+ |x1− x2|)
)3

≤ tan−1
(

1
2
(|x1− x2|)3

)
≤ tan−1

(
1
2
(d(0,u1),(0,u2))

3
)

(23)

Consider

M(x1,x2) = max{d(0,x1),(0,x2),d(0,x1),(0,u1),d(0,x2),(0,u2)}

= max{d(0,x1),(0,x2),d(0,x1),(0,u1),d(0,x2),(0,u2)}+d(A,B).
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Taking M∗(x1,x2) = M(x1,x2)+d(A,B), it follows form (23) that

α((0,x1),(0,x2)),φ(d(0,u1),(0,u2)) ≤ tan−1
(

1
2
(d(0,u1),(0,u2))

3
)

≤ tan−1
(

1
2
(M(x1,x2))

3
)

≤ tan−1
(

1
2
(M(x1,x2))

3
) 1

2(d(0,x1),(0,x2))
3

1
2(d(0,x1),(0,x2))3

≤ tan−1
(

1
2
(M(x1,x2))

3
) 1

2(M(x1,x2)+1−1)3

1
2(M(x1,x2))3

.

Since d(A,B) = 1 and M∗(x1,x2) = M(x1,x2)+d(A,B), we have

α((0,x1),(0,x2)),φ(d(0,u1),(0,u2)) ≤
tan−1

(
1
2(M(x1,x2))

3
)

1
2(M(x1,x2))3

1
2
(M(x1,x2)+d(A,B)−d(A,B))3

≤
tan−1

(
1
2(M(x1,x2))

3
)

1
2(M(x1,x2))3

1
2
(M∗(x1,x2)−d(A,B))3.

Hence, we have

α((0,x1),(0,x2)),φ(d(0,u1),(0,u2)) ≤ β (φ(M(x1,x2)))φ(M∗(x1,x2)−d(A,B))

and so (S,T ) is a generalised α-φ -Geraghty proximal contraction pair. Furthermore, S and T

are continuous. Moreover, the condition (ii) of Theorem 3.1 is verified. Indeed, for x0 = (0,2)

and x1 = (0,0.5545), we get

d(x1,Sx0) = d((0,0.5545),(1,0.5545)) = 1 = d(A,B)

and

min{α(x0,x1),α(x1,x0)} ≥ 1.

Hence all the hypothesis of Theorem 3.1 are verified. So, the pair (S,T ) admits a common best

proximity point, which is x∗ = (0,0). It is easy to show that the common best proximity point

x∗ = (0,0) is unique.
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