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Abstract: In this paper, we introduce the concept of strongly spZc-connectedness, spZc-continuum using the concept 
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1. INTRODUCTION 

The notion of connectedness [1] is useful not only in General topology but also in other advanced 

branches of Mathematics. In 2011, EL-Magharabi, A.I. and Mubarki, A.M [2] introduced the 

concept of Z-open sets. Throughout this paper, (X,𝜏) represents a topological space on which no 

separation axiom is assumed unless otherwise stated. 

 

2. PRELIMINARIES 

Definition 2.1 [3]: A subset A of a space X is Zc-open if for each x ∈ A∈ ZO(X), there exists a 

closed set F such that x ∈ F ⊂ A. A subset A of a space X is Zc-closed if X−A is Zc-open. The 
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family of all Zc-open (resp. Zc-closed) subsets of a topological space (X, 𝜏 ) is denoted by                           

ZcO (X,𝜏) or ZcO(X) (resp. ZcC (X,𝜏) or ZcC(X)). 

Definition 2.2[4]: A subset A of (X,𝜏) is called 

(i) spZc open if A ⊆Zccl(Zc int(Zccl(A))) and is denoted by spZcO(X); 

(ii) spZc closed if X−A is spZc open and is denoted by spZcC(X). 

Definition 2.2 [4]: 

(i) The semi pre Zc interior of a subset A of X is the union of all semi pre Zc open sets contained 

in A and is denoted by spZcInt (A). 

(ii) The semi pre Zc closure of a subset A of X is the intersection of all semi pre Zc closed sets 

containing A and is denoted by spZcCl(A). 

Example 2.3: `Let X ={a,b,c,d} with  𝜏 ={∅,X,{a},{c,d},{a,c,d}} then the family of  Zc-open 

sets are ZcO(X) = {X, ∅,{a,b}{b,c,d}} and 

spZcO(X ) ={X, ∅,{b},{a,b},{a,c},{a,d},{b,c},{b,d},{a,b,c},{a,b,d},{b,c,d},{a,c,d},{c},{d}}. 

Definition 2.4 [4]: Let f: X→Y is called 

(i) spZc continuous if 𝑓−1(V) is spZc open in X for every open set V in Y. 

(ii) spZc irresolute if 𝑓−1(V) is spZc open in X for each open set V in Y.  

(iii) contra spZc-continuous if 𝑓−1(V) is spZc-closed in X, for every open set in Y. 

Definition 2.5 [4]: Let (X,𝜏) be a topological space. X is spZc-connected if X cannot be written as 

the disjoint union of two non-empty spZc open sets in X. 

Definition 2.6[4]: X =A∪B is said to be a spZc separation of X if A and B are non-empty, disjoint, 

spZc open sets in X. 

 

3. STRONGLY SPZC-CONNECTED SPACES 

Definition 3.1: A Mapping f : (X, 𝜏) → (Y,𝜎) is said to be spZc open (resp. spZc closed) if 

f (V) ∈ ZcO(Y) (resp. ZcC(Y)), for each V ∈ ZcO(X) (resp. ZcC(X)). 

Theorem 3.2: A Mapping f : (X, 𝜏) → (Y,𝜎) is  spZc open if and only if , 

 f (Int(U)) ⊆ spZcInt(f (U)) for each U ⊆  X. 
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Proof: Let f be a spZc open mapping and U ⊆  X, then 

spZcInt(f (Int(U))) = f (Int(U)) ∈ spZcO(Y).  

Therefore spZcInt(f (Int(U))) = f (Int(U)) ⊆ spZcInt(f (U)). 

Conversely, Let U ∈ 𝜏 and f (U) = f (Int(U)) ⊆ spZcInt(f (U)) . Then f (U) = spZcInt(f (U)). Thus, 

f (U) is spZc open in Y and hence f is spZc open. 

Theorem 3.3: Let f : X→Y be a spZc-continuous function of X into a discrete space Y with at least 

two points which is a constant map then empty set and X  are the only subsets of X that are both 

spZc-open and spZc-closed. 

Proof: Let A be both spZc-open and spZc-closed in X and A≠ ∅.Let f : X→Y be a spZc-continuous 

function defined by f(A) ={y} and f(X −A) ={w} for some distinct points y and w in Y. Since f is a 

constant function, we get A=X and hence the proof follows. 

Definition 3.4: A space (X,𝜏) is said to be strongly spZc-connected if and only if it is not a disjoint 

union of countably many but more than one spZc-closed set. In other words, if 𝐸𝑖 are non-empty 

disjoint closed sets of X, then X ≠ 𝐸1⋃𝐸2⋃𝐸3⋃ ……., or else X is said to be strongly spZc-

connected. 

Lemma 3.5: For any surjective spZc-irresolute function f : X→Y .The image f (X) is strongly spZc-

connected if X is strongly spZc-connected. 

Proof: Assume, f (X) is strongly spZc-disconnected. Then by definition 3.4 it is a disjoint union of 

countably many but more than one spZc-closed sets. Since f is spZc-irresolute, then the inverse 

image of spZc-closed sets are still spZc-closed, X is also a disjoint union of spZc-closed sets and 

hence f (X) is strongly spZc-connected. 

Theorem 3.6: A space X is strongly spZc-connected if there exists a constant surjective spZc-

irresolute function f : X→D ,where D denote the discrete space of X. 

Proof: Let X be strongly spZc-connected and function f : X→D be a surjective spZc-irresolute 

function, then by previous lemma, f (X) is strongly spZc-connected. The only strongly spZc-

connected subset of D are the one-point spaces. Hence f is constant. Conversely, suppose X is a 

disjoint union of countably many but more than one spZc-closed sets, X =⋃𝑖 𝐸𝑖. Define f : X→D 
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by taking f (x) =i whenever x ∈ 𝐸𝑖 .This f is a surjective spZc-irresolute and not constant. So X is 

strongly spZc-connected. 

Definition 3.7: A compact spZc-connected set is called a spZc-continuum. 

Definition 3.8:   A space X is called: 

(1) spZc 𝑇1 if for each x, y ∈ X , x ≠y, there exist two disjoint spZc-open sets U,V such that x ∈U, 

y ∉U  and x∉V , y∈V. 

(2) spZc 𝑇2 if for each x, y ∈X , x ≠y ,there exists two disjoint spZc-open sets U,V such that x ∈U, 

y ∈V and U ⋂V = ∅. 

(3) spZc-normal for any pair of disjoint spZc-closed sets 𝐹1 and  𝐹2 ,there exist disjoint spZc-

open sets U and V such that 𝐹1 ⊂U and 𝐹2 ⊂V such that U⋂V =∅. 

Lemma 3.9: If A is any spZc-continuum in a spZc 𝑇2 space X and B is any spZc-open set such 

that A ⋂B ≠  ∅ ≠A ⋂(X −B) , then every component of (A ⋂spZc-cl(B)) ⋂spZc-bd(B) ≠  ∅. 

Theorem 3.10: Let X be a compact spZc 𝑇2-space. Then X is spZc - connected if and only if X is 

strongly spZc-connected. 

Proof: Assume, X is strongly spZc-connected, then X is spZc-connected. Now let us consider that 

X is a compact spZc 𝑇2- spZc-connected space and it is strongly spZc-disconnected, then X is a 

union of a countably many but more than one disjoint spZc-closed sets. Then X = ⋃ 𝐾𝑖 ,where 𝐾𝑖 

are spZc-closed disjoint sets. Since a compact spZc 𝑇2-space is spZc-normal, then X is a spZc-

normal space. So by definition there exists a spZc-open sets U such that 𝐾2 ⊂ U and 

spZccl(U) ⋂𝐾1  = ∅ . Let 𝑋1  be a component of spZccl(U) which intersects 𝐾2 . Then 𝑋1  is 

compact and spZc-connected. Then by previous lemma 𝑋1⋂ spZc-bd(U) ≠ ∅ . So 𝑋1 contains 

a point p ∈ spZc-bd(U) so that p ∈ spZc-bd(U) such that p ∉U and p∉ 𝐾1.Thus 𝑋1 ⋂𝐾𝑖 ≠ ∅ for 

some i >2. Let 𝐾𝑛2
 be the first 𝐾𝑖 for i >2 which intersects 𝑋1 and let V be a spZc-open set 

satisfying 𝐾𝑛2
 ⊂ V, and spZccl(V) ⋂𝐾2 = ∅. Then 𝑋2 be an element of 𝑋1⋂𝑠𝑝𝑍𝑐𝑐𝑙(𝑉) which 

contains a point of 𝐾𝑛2
 .Again we have 𝑋2⋂ spZc-bd(V) ≠  ∅ , and 𝑋2  contains some point 

p ∈spZc-bd(V) such that p∉V, p∉ 𝐾1⋃𝐾2. Thus 𝑋2⋂𝐾𝑖 ≠  ∅ for some i > 𝑛2 and 𝑋2⋂𝐾𝑖 = ∅ 
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for i< 𝑛2. Let 𝐾𝑛3
 be the first 𝐾𝑖 for i > 𝑛2, which intersects 𝑋2, then by methods stated above 

we can find a compact spZc-connected 𝑋3 so that 𝑋3 ⊂ 𝑋2 ⊂ 𝑋1 and 𝑋3 intersects some 𝐾𝑖 

with i > 𝑛3 but 𝑋3⋂𝐾𝑖 = ∅ for i< 𝑛3.In this way, we obtain a sequence of sub continum of 

X : 𝑋1 𝑋2 𝑋3…..,so that for every j, 𝑋𝑗⋂𝐾𝑖 = ∅ for i< 𝑛𝑗 and 𝑛𝑗 → ∞ as j→ ∞. We know that 

⋂𝑖𝑋𝑖 ≠ ∅. Also ,( ⋂𝑖𝑋𝑖) ⋂𝐾𝑗 =  ∅ for all j , so that (⋂𝑖𝑋𝑖) ⋂(⋃𝑖𝐾𝑗) = ∅ or (⋂𝑖𝑋𝑖) ⋂ X= ∅. But 

(⋂𝑖𝑋𝑖) ⊂X , which contradicts the fact that ⋂𝑖𝑋𝑖 ≠  ∅ .Thus X is strongly spZc-connected. 

Lemma 3.11: For a space X the following holds: (i) X is a spZc 𝑇1-space. (ii) For any point x ∈X, 

the singleton set {x} is spZc-closed. 

Corollary 3.12: A strongly spZc-connected spZc  𝑇1 -space having more than one point is 

uncountable. 

Proof: By previous lemma, a one-point set in a spZc 𝑇1-space is spZc-closed. Then by definition 

the proof follows that a spZc 𝑇1 space cannot have countably many but more than one point. 

Theorem 3.13: Let X be a locally compact spZc 𝑇2-space. If X is locally spZc-connected, then X 

is locally strongly spZc-connected. 

Proof: Let O be a spZc-open spZc-nbd of a point x ∈X. Then there exists a compact spZc-nbd U 

of x lying inside O. Let M be a spZc-connected component of U containing x. Since U is a spZc-

nbd of x and X is locally spZc-connected, M is a spZc-nbd of x. Since M is spZc-closed in U and 

U is compact, then M is compact. So M is a compact spZc-connected spZc-nbd of x lying inside O. 

By theorem 3.10, M is strongly spZc-connected. 

Theorem 3.14: Let X be a locally compact spZc 𝑇2-space. If X is locally spZc-connected and spZc-

connected, then X is strongly spZc-connected. 
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