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Abstract. In this article, we are going to discuss the mathematics of partial presence of an element

in a set. A similar theory well known as the theory of fuzzy sets is already in existence since 1965.

However, right at the start, the measure theoretic explanations of fuzziness have taken a wrong turn in

the sense that from any given law of fuzziness defined on an interval, workers have since been trying to

extract a law of probability giving rise thereby to all sorts of misinterpretations of probability theory. Such

developments do not have any classical measure theoretic basis. In fact, not one as popularly believed, but

two independent laws of randomness are necessary and sufficient to define a law of fuzziness. Secondly, the

existing definition of complement of a fuzzy set is logically incorrect, and hence every result in which that

definition had been used is incorrect. As long as we would keep on referring to fuzzy sets, the original

definitions that include these two unacceptable points would keep coming up creating an unnecessary

confusion thereby. We are therefore going to introduce the theory of imprecise sets in which the two

fuzzy set theoretic blunders mentioned above would be absent.
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Preconceived knowledge sometimes creates hindrance towards framing new concepts.

If one does not know anything about a particular theory, one may actually end up dis-

covering it all over again. In addition, if in the existing theory there happens to be some

flaws, it may be that those flaws may not appear in the rediscovery. If there are flaws in

any theory, those who work towards further development of that theory are expected to

understand in course of time that there are flaws which should be removed. If however,

the workers simply follow the leader blindly without at all trying to realize that there

are flaws in the theory, it is no wonder that the theory would finally end up taking an

unearthly shape.

This is precisely what has happened to the theory of fuzzy sets. The discovery of fuzzy

sets was a paradigm changing event in the history of mathematics. Its discoverer, L. A.

Zadeh, would always be hailed for putting forward a new concept of uncertainty way back

in 1965. However, soon after this great discovery, he forwarded a Probability-Possibility

Consistency Principle with a view to linking fuzziness with probability. First saying that a

particular type of uncertainty can not be handled by the theory of probability, and that it

is indeed a case where the theory of fuzziness would be the only alternative, and thereafter

trying to frame a law of probability over the same interval on which a law of fuzziness

had been defined sounds illogical anyway. Trying to infer a law of probability from a

law of fuzziness is meaningless. As no consistency between probability and fuzziness was

reflected by that principle, two more Probability-Possibility Consistency Principles were

forwarded thereafter by others. Had it been logical to link the two concepts in that

manner, there should have been just one such principle and not three different principles

anyway.

Didier Dubois and Henry Prade took a positive step towards defining the membership

function of a normal fuzzy number. They defined the membership function in terms of

two different functions in two intervals: the left reference function and the right reference

function. However, they did not pursue any further to find out how their definition comes

up. They were correct in understanding that fuzzy membership must be expressed in

terms of two different functions. Had anyone tried to explain initially why we need two
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independent functions to define a fuzzy number, the theory of fuzzy sets would have been

altogether different from what it currently looks like. That unfortunately did not happen.

It was soon observed that not all postulates required to define a measure were followed

by the fuzzy sets. This was the unfortunate outcome because the workers did not try to

look into the matters using the Dubois-Prade functions independently. Instead of trying

to understand that the classical theory of measure should naturally have enveloped the

matters of fuzziness, the workers went forward to define a fuzzy measure which is some-

thing entirely different from a classical measure.

Indeed, yet another blunder entered into the definition of fuzziness right in the begin-

ning. It was declared that the intersection of a fuzzy set and its complement is not the

null set. Further, it was declared that the union of a fuzzy set and its complement is not

the universal set. The workers should have tried to see that there can not be anything

common between a statement and its complement. At least someone should have been

able to understand that perhaps the definition of complement of a fuzzy set was defec-

tive. That too unfortunately did not happen. Instead of thinking that peculiar sort of a

conclusion had been arrived at, the workers went forward to establish more results based

on that wrong definition. It is obvious that the results thus found were weird. But with

a mindset that fuzzy sets are unearthly already, in the sense that they do not follow the

formalisms of both measure theory and field theory, the workers have meanwhile ended

up making the mathematics of fuzziness look totally unnatural.

Thousands of articles and hundreds of books on theory and applications of fuzziness

have in the meanwhile appeared the world over, and the process of publication has been

going on in full swing in a very fast pace. It is now next to impossible to convince those

who have published some work in this field to look into the matters from our standpoint.

Instead of agreeing that something might have gone wrong nearly half a century ago,

they would invariably choose to defend their findings, and anyone who comes forward to

challenge their findings would possibly be ridiculed.

Mathematics should be firmly rooted at logic; it must not be based on some popular

beliefs. If something is logical, then it can possibly be given a mathematical shape. On



AN INTRODUCTION TO THE THEORY OF IMPRECISE SETS: THE MATHEMATICS... 113

the contrary, the process of working out some belief based mathematics first, and then

trying to impose some weird logic on it, violates the very philosophy of mathematics. The

mathematics of fuzziness is to our knowledge the only branch of mathematics in which

a huge amount of results devoid of any logic whatsoever have come up, and now for the

workers concerned it is impossible to come out of the symbolic mirage they have created,

no physical significance of which should ever be possible. The workers in fuzziness would

not agree with us for obvious reasons. They have followed the earlier workers to generalize

and to modify results without ever sincerely trying to understand anything of what they

are doing. Mathematics must never progress in this way. Instead of trying to see whether

the idea of transforming a law fuzziness into a law of probability was logical or not, people

went forward to define things like upper probability and such other things! Such things

are not rooted at considering fuzzy membership in terms of two different Dubois-Prade

functions, and that is why they are incorrect. In such things, some sort of symbolic ex-

pressions have been found first, and then the workers concerned have started to impose

some sort of logic therein. All sorts of such results on fuzzy measure have been published.

In the process, the theory of probability was misinterpreted in all possible ways.

At the same time, new definitions in topological matters have appeared in the literature

based on the wrong definition of the complement of a fuzzy set. Software based on fuzzy

logic that in turn includes that definition was built, and conclusions using such software

in connection with application of fuzziness have been made in all sorts of fields.

Due to wrong interpretation of the membership function, classical measure theoretic

formalisms were found to be insufficient to explain certain matters. Instead of trying

to see that something must have gone wrong in the interpretation of the membership

function, workers redefined the theory of measure itself. In a similar manner, instead of

trying to see that the conclusion that the fuzzy sets do not form a field was a wrong one,

the workers have gone forward to redefine the concept of field itself. Unfortunately, the

workers of the mathematics of fuzziness have formed a cult already, and it would perhaps

be impossible to make them see reason at this point of time at least.
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Here then is an appropriate example in which a comment of Henry Bessemer on pre-

conceived knowledge being a hindrance sometimes becomes very meaningful1. Indeed,

knowledge is needed to develop it further. That is how knowledge has been growing. But

if a theory is defective, developing it further hardly makes any sense.

Therefore Bessemer commented that for new thoughts to come up, one should probably

be free from any biased ideas existing from earlier times. In the case of the mathematics

of fuzziness, the initial definition of a fuzzy set was very correctly forwarded. The arith-

metic of fuzziness using the method of α-cuts is absolutely correct. Hence in applications

in various fields as long as the users remained within using the arithmetic of fuzziness,

things were totally correct. But as soon as people started to try to find a relationship

between fuzziness and probability in the sense that one fuzzy space can be transformed

into one probability space, things went absolutely wrong. In the findings in which the

incorrect definition of complement of a fuzzy set was used, things went further wrong.

Trying to establish a law of probability from a law of fuzziness is in our eyes equivalent

to going back to the days of alchemy in search of a philosopher’s stone. Similarly, first

defining the complement of a fuzzy set in a weird manner, and then building up an entire

theory based on that, is perhaps comparable to preach for a geocentric solar system all

over again.

Our objective is a simple one. Instead of saying (see e.g. [1], [2], [3]) that the theory

of fuzzy sets has been incorrectly explained, it is better that we start the whole process

anew naming the theory differently. We are now going to introduce the theory of imprecise

sets, which might initially look similar to the theory of fuzzy sets. But other than just

one initial definition, the things are altogether different in the two theories. This is a

battle between belief and truth. Those who would like to continue believing in the earlier

notions on fuzziness will perhaps continue to do so. Those who would like to see reason

can come forward to start building up a new theory. A scientific truth does not depend

on popular votes. On the contrary, an illogical belief remains illogical even though it may

1 ‘I had an immense advantage over many others dealing with the problem inasmuch as I had no fixed

ideas derived from long established practice to control and bias my mind, and did not suffer from the

general belief that whatever is, is right.’ - Sir Henry Bessemer.
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possibly be supported by millions.

To look into the matters from our standpoint, we would need two specific things. First,

we would need to define a set operation that we have named superimposition. When we

overwrite, the overwritten portion looks darker due to superimposition. Similarly, um-

bra and penumbra are formed due to superimposition when an opaque body is placed in

front of a source of light. Secondly, we would need a very classical theorem, known as

the Glivenko-Cantelli Theorem, on order statistics to make our conclusions. Unless one

looks through the spectacles of set superimposition, and unless we understand how order

statistics comes into play to infer a theoretical distribution function from an empirical

distribution function based on observed data, we would be unable to explore the exact

nature of the membership function of a fuzzy number.

The idea of defining the complement of an imprecise set as we are now going to define is

based on a rather simple logic. Not everything can be counted from the zero level. When

a glass is partially full of water, depth of the empty portion has to be counted not from

the zero level but from the level upto which there is water. If we express this simple logic

in symbols, we immediately get the definition of complement of a fuzzy set which we are

going to call an imprecise set hencefrom.

Our observations and the explanations are our own. We have not rested on the def-

inition of fuzziness which was already in existence, and we were not influenced by any

preconceived knowledge on fuzziness. We now proceed to mention a few definitions based

on which our proposed theory of imprecise sets would stand.

2. Definitions and Notations

Defination 2.1. An imprecise number [α, β, γ] is an interval around the real number β

with the elements in the interval being partially present.

Defination 2.2. Partial presence of an element in an imprecise real number [α, β, γ] is

described by the presence level indicator function p(x) which is counted from the reference

function r(x) such that the presence level for any x, α ≤ x ≤ γ , is (p(x)− r(x)), where

0 ≤ r(x) ≤ p(x) ≤ 1.
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Defination 2.3. A normal imprecise number N = [α, β, γ] is associated with a presence

level indicator function µN(x), where

µN(x) =


Ψ1(x), if α ≤ x ≤ β

Ψ2(x), if β ≤ x ≤ γ

0, otherwise,

with a constant reference function 0 in the entire real line. Here Ψ1(x) is continuous and

non-decreasing in the interval [α, β], and Ψ2(x) is continuous and non-increasing in the

interval [β, γ], with

Ψ1(α) = Ψ2(γ) = 0,

Ψ1(β) = Ψ2(β) = 1.

Here, the imprecise number would be characterized by {x, µN(x), 0 : xεR}, R being the

real line.

Definition 2.1 is indeed used to define a fuzzy number. In Definition 2.2, we have devi-

ated from the definition of a fuzzy number. We are using a reference function in our case.

We would need this definition later to define the complement of an imprecise number. In

fact, if the reference function is zero, we actually get a fuzzy number. In Definition 2.3,

we have used the reference function as zero, and therefore this is indeed the definition of

the normal fuzzy number. In the Dubois-Prade nomenclature, for a fuzzy number with

fuzzy membership function µN(x), Ψ1(x) is called the Left Reference Function, and Ψ2(x)

is called the Right Reference Function of the normal fuzzy number. We are now coming

to two more definitions.

Defination 2.4. For a normal imprecise number N = [α, β, γ] with presence level indi-

cator function

µN(x) =


Ψ1(x), if α ≤ x ≤ β

Ψ2(x), if β ≤ x ≤ γ

0, otherwise
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such that

Ψ1(α) = Ψ2(γ) = 0,

Ψ1(β) = Ψ2(β) = 1,

with constant reference function equal to 0, Ψ1(x) is the distribution function of a ran-

dom variable defined in the interval [α, β], and Ψ2(x) is the complementary distribution

function of another random variable defined in the interval [β, γ].

We are using the term random variable here in the broader measure theoretic sense

which does not require that the notion of probability need to appear in defining random-

ness.

Defination 2.5. For a normal imprecise number N = {x, µN(x), 0 : xεR} as defined

above, the complement NC = {x, 1, µN(x) : xεR} will have constant presence level indi-

cator function equal to 1, the reference function being µN(x) for −∞ < x <∞.

In Definition 2.4, we have stated that the Dubois-Prade functions are in fact rooted at

two different laws of randomness. Therefore studies to infer one single law of randomness

from a given law of fuzziness have consistently failed since the beginning. In Definition

2.5, we have in fact stated that fuzzy membership function and fuzzy membership value

are two different things. In the Zadehian definition, these two things were taken to be the

same, and that was the root of all troubles. Indeed, we would need the reference function

to define an imprecise set only when we talk about the complement of an imprecise set.

In all other cases, the reference function assumes the constant value equal to zero.

In what follows, we are going to explain how Definitions 2.4 and 2.5 come up logically

and therefore mathematically.

3. The Mathematics of Partial Presence

We now proceed to describe our standpoint. We defined (see e. g. [3]) the operation

of superimposition of two real intervals [a1, b1] and [a2, b2] as

[a1, b1](S)[a2, b2] = [a(1), a(2)] ∪ [a(2), b(1)]
(2) ∪ [b(1), b(2)]



118 HEMANTA K. BARUAH∗

where a(1) = min(a1, a2), a(2) = max(a1, a2), b(1) = min(b1, b2), and b(2) = max(b1, b2).

Here we have assumed without loss of any generality that [a1, b1] ∩ [a2, b2] is not void, or

in other words that max(ai) ≤ min(bi), i = 1, 2.

If we increase the number of intervals, with partial presence level of every element for

every interval being equal to the inverse of the number of intervals, we shall see that two

laws of randomness lead to one law of impreciseness. We can see that formalisms of order

statistics would now come into play automatically, and to deal with empirical probability

distribution functions we already have the Glivenko-Cantelli theorem, application of which

should now lead to the conclusion that superimposition of an infinite number of intervals,

with level of partial presence of the elements in every interval tending to zero, would

define an imprecise number.

Consider now two probability spaces (Ω1, A1,Π1) and (Ω2, A2,Π2) where Ω1 and Ω2

are real intervals [α, β] and [β, γ] respectively. Let x1, x2, . . . xn, and y1, y2, . . . , yn, be

realizations in [α, β] and [β, γ] respectively. So for n intervals

[x1, y1]
(1/n), [x2, y2]

(1/n), . . . , [xn, yn](1/n)

all with elements with a constant presence level equal to 1/n, we shall have

[x1, y1]
(1/n)(S)[x2, y2]

(1/n)(S) . . . (S)[xn, yn](1/n) = [x(1), x(2)]
(1/n) ∪ [x(2), x(3)]

(2/n) ∪ . . .

∪[x(n−1), x(n)]
((n−1)/n) ∪ [x(n), y(1)]

(1) ∪ [y(1), y(2)]
((n−1)/n) ∪ . . . ∪ [y(n−2), y(n−1)]

(2/n)∪

[y(n−1), y(n)]
(1/n),

where, for example, [y(1), y(2)]
((n−1)/n) represents the interval [y(1), y(2)] with presence lev-

el ((n − 1)/n) for all elements in the entire interval, x(1), x(2), . . . , x(n) being values of

x1, x2, . . . xn arranged in increasing order of magnitude, and y(1), y(2), . . . , y(n) being val-

ues of y1, y2, . . . , yn arranged in increasing order of magnitude again.

Define now

Φn(x) =


0, if x < x(1)

r−1
n
, if x(r−1) ≤ x ≤ x(r), r = 2, 3, . . . , n

1, if x ≥ x(n).
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Φn(x) here can be seen to be an empirical distribution function for which the underlying

theoretical distribution function is Φ(x), say. Now the Glivenko-Cantelli theorem states

that Φn(x) converges to Φ(x) uniformly in x. This means,

sup|Φn(x)− Φ(x)| −→ 0

Application of this theorem on the intervals [α, β] and [β, γ] separately gives us Definition-

2.4 stated above.

Our standpoint of defining a normal imprecise number does not defy the Dubois-Prade

nomenclature of defining a normal fuzzy number. It is known that a distribution function

of a random variable is non-decreasing, and that a complementary distribution function

of a random variable is non-increasing. The functions are continuous and differentiable.

Observe that integration of a distribution function does not make any logical sense, hence

trying to infer anything out of integration of such a function is meaningless. In other

words, finding the area under the curve µN(x) is of no logical meaning whatsoever. On the

other hand, differentiation of Ψ1(x) and (1−Ψ2(x)) would give us two density functions.

This means, we need two laws of randomness, one in the interval [α, β] and the other in

[β, γ], to construct a normal imprecise number [α, β, γ]. For a triangular imprecise number,

differentiation of Ψ1(x) and (1− Ψ2(x)) would give us two uniform density functions. It

is well known that the uniform law of randomness is the simplest of all probability laws.

Thus two uniform laws of randomness lead to the simplest imprecise number. Simplicity

of the triangular imprecise number is thus rooted at the simplicity of two uniform laws of

randomness.

Accordingly, for a normal imprecise number of the type N = [α, β, γ] with presence

level indicator function

µN(x) =


Ψ1(x), if α ≤ x ≤ β

Ψ2(x), if β ≤ x ≤ γ

0, otherwise,

with Ψ1(α) = Ψ2(γ) = 0, Ψ1(β) = Ψ2(β) = 1, where the reference function assumes a

constant value equal to zero, the partial presence of a value x of the variable X in the
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interval [α, γ] is expressible as

µN(x) = θΨ1(x) + (1− θ)Ψ2(x)

with

θ =


1 if α ≤ x ≤ β

0, if β ≤ x ≤ γ.

In other words, the presence level indicator function is either a distribution function de-

fined with reference to a random variable, or a complementary distribution function de-

fined with reference to another random variable, with randomness defined in the broader

measure theoretic sense. This indeed may be named the randomness-impreciseness consis-

tency principle. We assure the readers that unlike the existence of a number of probability-

possibility consistency principles, there simply can not be a second randomness-impreciseness

consistency principle. We are not proposing this principle; we have established it.

In other words, the presence level indicator function explaining an imprecise variable

taking a particular value is either the distribution function of a random event or the com-

plementary distribution function of another random event. Hence, partial presence of an

element in an imprecise set can actually be expressed either as a distribution function or

as a complementary distribution function.

As an application of this principle, consider an imprecise number X = [a, b, c]. Let a

function of X, f(X) = [f(a), f(b), f(c)] be another imprecise number. Let the density

functions with respect to the distribution functions Ψ1(x) and (1−Ψ2(x)) be ϕ1(x) and

ϕ2(x) . If y = f(x) can be written as x = g(y), let dx/dy = ζ(y). Now replacing x by

g(y) in ϕ1(x) and ϕ2(x) we can obtain ϕ1(x) = ψ1(y) and ϕ2(x) = ψ2(y), say. Then the

presence level indicator function of f(X) would be given by

µf(X)(x) =



∫ x

f(a)
{ψ1(y)ζ(y)}dy, if f(a) ≤ x ≤ f(b)

1−
∫ x

f(b)
{ψ2(y)ζ(y)}dy, if f(b) ≤ x ≤ f(c)

0, otherwise.

We have verified that this method returns the same presence level indicator function

which can be found by using the standard method of α-cuts available in the literature on
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fuzziness. What we mean is that if we define a normal fuzzy number with reference to two

laws of randomness, then our procedure of finding fuzzy membership function returns the

same result that would be returned by the method of α-cuts . We have further verified

that all sorts of imprecise arithmetic can easily be done using our definitions.

4. The Complement of an Imprecise Set

According to the Zadehian definition, if a normal fuzzy number N = [α, β, γ] is associ-

ated with a membership function µN(x), where

µN(x) =


Ψ1(x), if α ≤ x ≤ β

Ψ2(x), if β ≤ x ≤ γ

0, otherwise,

the complement NC will have the membership function µNC (x), where

µNC (x) =


1−Ψ1(x), if α ≤ x ≤ β

1−Ψ2(x), if β ≤ x ≤ γ

1, otherwise.

This definition defies logic, because this leads to a meaningless inference that the inter-

section of a fuzzy set and its complement is not the null set. In fact, if a normal imprecise

number N = [α, β, γ] is defined with a presence level indicator function µN(x), where

µN(x) =


Ψ1(x), if α ≤ x ≤ β

Ψ2(x), if β ≤ x ≤ γ

0, otherwise,

with

Ψ1(α) = Ψ2(γ) = 0,

Ψ1(β) = Ψ2(β) = 1,
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the complement NC should have the presence level indicator function µNC (x), with

µNC (x) = 1,−∞ < x <∞,

where µNC (x) is to be counted from Ψ1(x), if α ≤ x ≤ β, from Ψ2(x), if β ≤ x ≤ γ, and

from 0, otherwise. This leads to Definition 2.5 in Section 2.

We are proposing this definition. It can also be taken as a postulate. Indeed, we have

already explained the logic behind this definition. It can be verified diagrammatically that

a normal imprecise number and its complement do complement each other, a necessity

that leads to the conclusion that imprecise sets do form a field. Similarly, it can also be

verified that the union of a normal imprecise number and its complement is the real line.

5. Discussions

We have seen that the two Dubois-Prade reference functions are to be defined on t-

wo probability spaces, the left reference function being a distribution function and the

right reference function being a complementary distribution function. In other words, the

left reference function is already a function defining an area under a density function.

Integrating a function that already defines an area does not make sense. A similar ex-

planation can be forwarded about the right reference function too. Accordingly, the area

under a fuzzy membership function µ(x) from one value of x to another value can hardly

be related to a probability law. People have blindly followed what the originator has

preached without trying to understand what they are following. In the process, to justify

the suggested links between fuzziness and probability, the theory of probability has been

misinterpreted by the workers in fuzziness in all possible ways.

Defining a fuzzy measure just for the sake of doing some mathematics was not neces-

sary, particularly because the fuzzy membership function of a normal fuzzy number can

be defined in terms of two probability measures already. The workers should have tried to

understand that mathematics should follow logic, and that it should never be the other

way around. Unfortunately, based on a belief that a law of probability can be defined on

the same interval on which a law of fuzziness has already been defined such that these
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two laws could have some kind of consistency between them led to all sorts of unwanted

growth related to the theory of probability in particular and measure theory in general.

Further, the definition of complement of a fuzzy set has led to enough of unearthly

mathematics already. Indeed, as the negation of a fuzzy statement was wrongly defined,

fuzzy logic itself was baseless right from the beginning. Later on, when software based

on fuzzy logic was made available, the applications of such software must have led to all

sorts of meaningless results. By now, the things have come to such a pass that we are

sure about our voice falling into deaf ears.

Could there really be any physical interpretation of most of the results established so

far in the world of the mathematics of fuzziness? Beyond the method of α-cuts, or in

other words beyond the arithmetic of fuzziness, results established are hardly correct. Ac-

cordingly, application of the arithmetic of fuzziness to analyse data, are correct. However,

wherever the definition of the complement of a fuzzy set was used, things went wrong.

We would like to cite an example at this point. In the case of the matters related to

fuzzy randomness, as soon as the question of statistical testing of rejectability of a null

hypothesis regarding a fuzzy parameter came up, the alternative hypothesis invariably

used the definition of complement of the fuzzy null hypothesis. In our eyes, immediately

the conclusions went wrong because wrong alternative hypotheses were stated.

It is not just very difficult, indeed it is next to impossible to make the workers see

reason now. Hence we have decided to restart the whole process by using a different

nomenclature to explain partial presence of an element in a set. Perhaps this will lead to

correct mathematical propositions regarding imprecise sets in course of time. Continuing

to do mathematics just for the sake of doing it, does not really make any sense. In no

other branch of mathematics, such preposterous results are to be found. We need to do

the amends before it is too late.

Many more such things would come up if we look into the matters from our perspective.

It has been continuously said that probability and fuzziness are complementary concepts.

This is not true. Probability and fuzziness are not complementary concepts. Every law

of fuzziness, and therefore every law of impreciseness, is rooted at two independent laws
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of randomness, with randomness defined as in measure theory. We have to keep in mind

that probability does not have to come into picture while defining randomness in the mea-

sure theoretic sense which actually means that anything probabilistic must necessarily be

random, but not everything random is probabilistic.
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