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Abstract. In this paper, we explore path cospectral graphs and obtain some result concerning to these graphs.

Also, we give nonisomorphic path cospectral graphs on 5 ≤ n ≤ 6 vertices and 3 ≤ m ≤ 10 edges. Further, we

define path signless Laplacian matrix of a graph and investigate its properties.
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1. INTRODUCTION

Let G be a graph with V (G) = {1, ...,n} and E(G) = {e1, ...,en}. The adjacency matrix of G,

denoted by A(G), is the n×n matrix defined as follows. The rows and the columns of A(G) are

indexed by V (G). If i 6= j then the (i, j)-entry of A(G) is 0 for vertices i and j non-adjacent,

and the (i, j)-entry is 1 for i and j adjacent. If G is simple, the (i, i)-entry of A(G) is 0 for

i = 1, . . . ,n. We often denoted A(G) simply by A. The eigenvalues of a matrix A are called as

the eigenvalues of the graph G. The spectrum of a finite graph G is its set of eigenvalues together

with their multiplicities. Several properties of eigenvalues of graphs and their applications have
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been explored in [3,4].

We define a new matrix, called the path matrix [1,2] of a graph, in the following way.

Definition 1.1. Let G be a simple graph with vertex set V (G) = {v1,v2, ...,vn}. Define the

matrix P = (pi j) of size n×n such that pi j is equal to the maximum number of vertex disjoint

paths from vi to v j if i 6= j, and pi j = 0 if i = j .

We call P = P(G) as the path matrix of the graph G. By definition, P is a real and symmetric

matrix. Therefore its eigenvalues are real. We call the eigenvalues of P the path eigenvalues

of G, forming its path spectrum SpecP(G). For convenience, the eigenvalues of the adjacency

matrix of G will be refereed to as the ordinary eigenvalues of G, forming its ordinary spectrum

Spec(G).

Example 1.2. Consider the graph G as shown in the following figure and its path matrix P.u u
uu

u
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4

G

P =



0 2 2 1 1

2 0 2 1 1

2 2 0 2 2

1 1 2 0 2

1 1 2 2 0


.

The characteristic polynomial of P is = CP(x) = |P− xI| = −x(x + 2)2(x2− 4x− 16). The

path eigenvalues of G are 6.472, 0, −2, −2 and −2.472. The ordinary eigenvalues of G are

2.562, 1, −1, −1 and−1.562. For terminology in graph theory, we refer [3,4,6] and for matrix

theory, we refer [5].

2. PATH COSPECTRAL GRAPHS

Proposition 2.1. All trees on n vertices are path cospectral.
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Proof. Let T1 and T2 be two trees on n vertices. Then P(T1) = P(T2) because the maxi-

mum number of vertex disjoint paths between any two vertices of Ti is 1, for i = 1,2. Thus,

SpecP(T1) = SpecP(T2). �

Proposition 2.2. All graphs on n vertices each of which has exactly one cycle of length k, where

k is fixed and 3≤ k ≤ n are cospectral.

Proof. Let G1 and G2 be two graphs on n vertives each of which has exactly one cycle of length

k, where k is fixed and 3≤ k≤ n. After a relabeling of vertices (rows and columns) of G1 and G2

if necessary, we arrive at a situation where P(G1) =P(G2). Thus, SpecP(G1) = SpecP(G2). �

Definition 2.3. A graph G of order n is called a bicyclic graph if G is connected and the

number of edges of G is n+1. Any bicyclic graph on n vertices has minimum two cycles and

maximum three cycles.

Let G be a bicyclic graph on n vertices without pendent vertices, then there are three types of

such bicyclic graphs.

(1) G has two vertex disjoint cycles, joined by a path.

(2) G has two cycles with one vertex in common.

(3) G has two cycles with more than one vertex in common.

These three types of bicyclic graphs without pendent vertices are depicted in the following

figure:
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Fig. Types of bicyclic graphs
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Note that B(1) (a,b,c) possesses a+b+c vertices, B(2) (a,b) possesses a+b−1 vertices, and

B(3) (a,b,c) possesses a+b− c−2 vertices, and that a,b≥ 3,c≥ 0.

For i = 1,2,3, denote by B(i) the set of all connected bicyclic graphs without pendant vertices,

of type B(i).

Denote by Bn the set of connected bicyclic graphs with n vertices.

Proposition 2.4. Let G1 and G2 be two bicyclic graphs on n vertices. Suppose that G1 and G2

have same cycle structure and the corresponding cycles have same length. Then G1 and G2 are

path cospectral.

Proof. We make the following three cases to prove the proposition.

case 1. G1 and G2 have exactly two vertex disjoint cycles. i.e. G1,G2 ∈ B(1).

Let C1 and C2 be two cycles in Gi (i = 1,2) of lengths n1 and n2, respectively and k be the

number of vertices which are not on any of the cycles C1 and C2. Label the verices of C1 as

1,2, ...,n1, label the verices of C2 as n1+1,n1+2, ...,n1+n2 and label the remaining vertices as

n1+n2+1,n1+n2+2, ...,n1+n2+k = n. Then the path matrix P(Gi) (i = 1,2) can be writeen

as

P(Gi) =



0 2 2 ... 2 1 1 ... 1 1 1 ... 1 1

2 0 2 ... 2 1 1 ... 1 1 1 ... 1 1

2 2 0 ... 2 1 1 ... 1 1 1 ... 1 1
...

...
... . . . ...

...
...

...
...

...
...

...
...

...

2 2 2 ... 0 1 1 ... 1 1 1 ... 1 1

1 1 1 ... 1 0 2 ... 2 1 1 ... 1 1

1 1 1 ... 1 2 0 ... 2 1 1 ... 1 1
...

...
...

...
...

...
... . . . ...

...
...

...
...

...

1 1 1 ... 1 2 2 ... 0 1 1 ... 1 1

1 1 1 ... 1 1 1 ... 1 0 1 ... 1 1

1 1 1 ... 1 1 1 ... 1 1 0 ... 1 1
...

...
...

...
...

...
...

...
...

...
... . . . ...

...

1 1 1 ... 1 1 1 ... 1 1 1 ... 0 1

1 1 1 ... 1 1 1 ... 1 1 1 ... 1 0



.
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case 2. G1 and G2 have two cycles with one vertex in common. i.e. G1,G2 ∈ B(2).

Let C1 and C2 be two cycles in Gi (i = 1,2) of lengths n1 and n2, respectively. Let v ∈V (C1)∩

V (C2). Label v as 1, label the remaining (other than v1) verices of C1 as 2,3, ...,n1, label the

remaing vertices of C2 as n1+1,n1+2, ...,n1+n2−1= n. Then the path matrix P(Gi) (i= 1,2)

is given by

P(Gi) =



0 2 2 ... 2 2 2 ... 2 2

2 0 2 ... 2 1 1 ... 1 1

2 2 0 ... 2 1 1 ... 1 1
...

...
...

. . .
...

...
...

...
...

...

2 2 2 ... 0 1 1 ... 1 1

2 1 1 ... 1 0 2 ... 2 2

2 1 1 ... 1 2 0 ... 2 2
...

...
...

...
...

...
...

. . .
...

...

2 1 1 ... 1 2 2 ... 0 2

2 1 1 ... 1 2 2 ... 2 0



.

case 3. G1 and G2 have two cycles C1 and C2 of lengths n1 and n2, respectively having k

vertices common. i.e. G1,G2 ∈ B(3).

Label the vertices of C1 as 1,2, ...,k,k + 1, ...,k + (n1− k) = n1, label the vertices of C2 as

1,2, ...,k,k+(n1− k+ 1), ...,k+(n2− k) = n2. Then the path matrix P(Gi) (i = 1,2) has the

form

P(Gi) =



0 2 ... 3 2 ... 2 2 ... 2

2 0 ... 2 2 ... 2 2 ... 2

... ...
. . . ... ... ... ... ... ... ...

3 2 ... 0 2 ... 2 2 ... 2

2 2 ... 2 0 ... 2 2 ... 2

... ... ... ... ...
. . . ... ... ... ...

2 2 ... 2 2 ... 0 2 ... 2

2 2 ... 2 2 ... 2 0 ... 2

... ... ... ... ... ... ... ...
. . . ...

2 2 ... 2 2 ... 2 2 ... 0



.

In all the three cases, we can see that the path matrices of P(G1) and P(G2) are same. Hence

G1 and G2 are path cospectral. �
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Now, we draw nonisomorphic path cospectral graphs on 5 ≤ n ≤ 6 vertices and 3 ≤ m ≤ 10

edges.

2.5. Pairs of Nonisomorphic Path Cospectral Graphs on 5≤ n≤ 6 Vertices and 5≤m≤ 10

Edges

i. n = 5,m = 5

u
u u
u
u u
u u
u u

u
u u
u u

i. n = 5,m = 6

u
u u
u
u u
u u
u u

ii. n = 5,m = 6

u
u u
u
u u
u u
u u

i. n = 5,m = 7

u
u u
u
u u
u u
u u

�
�
�

��
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i. n = 6,m = 6

u u u
u u u
u u u
u u u
u u uu u u�

��

ii. n = 6,m = 6

u u u u u u uu u u u u u uu u u u u u v
u u u u u u uu u u u u u uu u u u u u uZZ @@

�
�

i. n = 6,m = 7

u u uu u uu u u
u u uu u uu u uZZ @@

%
%
% %%

ii. n = 6,m = 7

u u u uu u u uu u u u
u u u uu u u uu u u uZZ @@

u u uu u uu u u
u u uu u uu u u@@

iii. n = 6,m = 7

u u u u uu u u u uu u u u u
u u u u uu u u u uu u u u uZZ @@

�
�

H
HH

�� ��
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iv. n = 6,m = 7

u uu uu u
u uu uu u@@

i. n = 6,m = 8

u uu uu u
u uu uu u@@JJJ

ii. m = 6,n = 8

u uu uu u
u uu uu u@@JJJ

iii. n = 6,m = 8

u u uu u uu u u
u u uu u uu u u@@ @@

J
J
J

iv. m = 6,n = 8

u u uu u uu u u
u u uu u uu u u@@ @@








v. n = 6,m = 8

u uu uu u
u uu uu u@@�

��

vi. n = 6,m = 8

u u uu u uu u u
u u uu u uu u u@@ @@
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vii. n = 6,m = 8

u uu uu u
u uu uu u@@

viii. m = 6,n = 8

u uu uu u
u uu uu u@@

i. n = 6,m = 9

u uu uu u
u uu uu u@@

ii. n = 6,m = 9

u u u uu u u uu u u u
u u u uu u u uu u u u@@ @@ @@!!
!

H
HH

��
�

iii. n = 6,m = 9

u uu uu u
u uu uu u@@

iv. n = 6,m = 9

u u uu u uu u u
u u uu u uu u u@@ @@

v. n = 6,m = 9

u uu uu u
u uu uu u@@
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i. n = 6,m = 10

u uu uu u
u uu uu u@@

ii. n = 6,m = 10

u uu uu u
u uu uu u@@

3. PATH SIGNLESS LAPLACIAN MATRIX

The ordinary signless Laplacian matrix [7, 8] of the graph G is defined by SL(G) = D(G)+

A(G), where A(G) is the adjacency matrix of a graph G and D(G) is the diagonal matrix of

vertex degrees of the graph G.

Definition 3.1. The path signless Laplacian matrix of a graph G is defined as D+P, where D is

the diagonal matrix of vertex degrees and P is the path matrix of G. We denote the path signless

Laplacian matrix of G by PSL(G).

Example 3.2. Consider the following graph G

u
u u
u
u u

u

\
\\#
##

1

2
3

4

5

6

7

G

Then the path signless laplacian matrix of G is

PSL(G) =



2 2 2 1 1 1 1

2 2 2 1 1 1 1

2 2 4 2 2 2 1

1 1 2 4 3 2 1

1 1 2 3 3 2 1

1 1 2 2 2 2 1

1 1 1 1 1 1 1


.
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The eigenvalues of PSL(G) are 12.080,3.437,1.251,0.735,0.343,0.153 and 0. The signless

Laplacian matrix of G, SL(G) is given by

SL(G) =



2 1 1 0 0 0 0

1 2 1 0 0 0 0

1 1 4 1 1 0 0

0 0 1 4 1 1 1

0 0 1 1 3 1 0

0 0 0 1 1 2 0

0 0 0 1 0 0 1


.

The eigenvalues of SL(G) are 6.318,4.269,2.681,2,1.160,1,0.572.

Proposition 3.3. Let G be a r-regular, r-connected graph with n vertices. Then the eigenvalues

of path signless Laplacian matrix of a graph G are rn with multiplicity 1 and 0 with multiplicity

n−1.

Proof. The path signless Laplacian matrix of a graph G is D+P = rJn. The eigenvalues of Jn

are n with multiplicity 1 and 0 with multiplicity n− 1. Hence the eigenvalues of path signless

Laplacian matrix of a graph G are rn with multiplicity 1 and 0 with multiplicity n−1. �

Proposition 3.4. All eigenvalues of path signless Laplacian matrix of a connected graph G are

non negative.

Proof. We prove that the path signless Laplacian matrix D+P of G is a positive semidefinite

matrix. Let D+P = (ai j) and let x ∈ Rn.

xT (D+ P)x = ∑
n
i=1 aiix2

i + 2[a12x1x2 + a13x1x3 + ...+ a1nx1xn + a23x2x3 + ...+ an−1nxn−1xn].

Let k = min{ai j} ≥ 0. Thus xT (D+P)x ≥ k[∑n
i=1 x2

i + 2[x1x2 + x1x3 + ...+ x1xn + x2x3 + ...+

xn−1xn]] = k(x1 + x2 + ...+ xn)
2 ≥ 0. D+P is positive semidefinite. Hence all eigenvalues of

path signless Laplacian matrix are non negative. �

The following Theorem is known.

Theorem 3.5. Let A,B ∈ Mn be symmetric where B is positive semidefinite. Let λ1(A) ≥

λ2(A)≥ ...≥ λn(A) and λ1(A+B)≥ λ2(A+B)≥ ...≥ λn(A+B) be the eigenvalues of A and

A+B, respectively. Then λk(A)≤ λk(A+B), for k = 1,2, ...,n.
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We have the following result.

Proposition 3.6. Let G be a connected graph on n vertices with path matrix P and let D be the

diagonal matrix of vertex degrees. Then λk(P)≤ λk(D+P), for k = 1,2, ...,n.

Proof. We show that D is positive semidefinite. Let x = (x1,x2, ...,xn) ∈ Rn and D =

[d1 d2 ... dn]. Then xT Dx = d1x2
1 + d2x2

2 + ...+ dnx2
n ≥ 0 since di > 0, for i = 1,2, ...,n. This

implies that D is positive semidefinite. By Theorem 3, λk(P)≤ λk(D+P), for k = 1,2, ...,n. �

In the following Theorem, we obtain a lower bound for the largest eigenvalue of PSL(G).

Theorem 3.7. Let G be a simple connected graph with n vertices and PSL(G) be its path

signless Laplacian matrix. Let ∆(G) = maxi di and λ1(G) be the largest eigenvalue of PSL(G).

Then ∆(G)≤ λ1(G). Equality holds for a star graph Sn.

Proof. Let PSL = (ai j) be the path signless Laplacian matrix of G and x = (x1,x2, ...,xn) be an

eigenvector of G corresponding to the eigenvalue λ1(G). Then PSLx = λ1x. This implies that

λ1xi = ai1x1+ai2x2+ ...+ainxn. Now, all ai j ≥ 0 and since λ1 > 0, by Perron-Frobenius theory,

x > 0. Therefore, λ1xi ≥ x1 + x2 + ...+ xn. We can write this as λ1xi ≥ ∑
n
j=1 x j, i = 1,2, ...,n.

λ1x1+λ1x2+ ...+λ1xn≥ n∑
n
j=1 x j. Thus λ1 ∑

n
i=1 xi≥ n∑

n
j=1 x j and λ1≥ n≥ n−1. In a simple

graph G, ∆≤ n−1. Hence λ1(G)≥ ∆(G).

Now, if G = Sn, then λ1(Sn) = n−1 = ∆(Sn). �

Theorem 3.8. Let A and B be two symmetric matrices of size n. Then for any 1≤ k ≤ n,

∑
k
i=1 λi(A+B)≤ ∑

k
i=1 λi(A)+∑

k
i=1 λi(B)

where, for a matrix M, λi(M) denotes the largest ith eigenvalue of M.

Corollary 3.9. Let G be a graph with n vertices, m edges and PSL(G) be its path signless

Laplacian matrix. Then 1≤ k ≤ n,

k

∑
i=1

λi(PSL(G))≤ 2m.

Proof. We know that, ∑
n
i=1 λi(P) = 0, ∑

n
i=1 λi(D) = ∑

n
i=1 di = 2m. By Theorem 3,

∑
k
i=1 λi(PSL(G)) = ∑

k
i=1 λi(P + D) ≤ ∑

k
i=1 λi(P) + ∑

k
i=1 λi(D) ≤ ∑

n
i=1 λi(P) + ∑

n
i=1 λi(D) =

0+∑
n
i=1 λi(D) = 2m. �
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The proof of the following result for the path signless Laplacian matrix is along the lines of

the proof of Perron-Frobenius theorem.

Theorem 3.10. Let G be a connected graph with n≥ 2 vertices, and let P be the corresponding

path matrix and let D be a diagonal matrix of vertex degrees. Then the following statements

hold:

(1) D+P has an eigenvalue λ > 0 and an associated eigenvector x > 0. This eigenvalue

will be referred to as the Perron eigenvalue of D+P.

(2) for any eigenvalue µ 6= λ of D+P, −λ ≤ µ ≤ λ .

(3) if u is an eigenvector of D+P for the eigenvalue λ , then u = αx for some α .

Theorem 3.11. Let G be a connected graph with n vertices and let P be the corresponding path

matrix. Let D be a diagonal matrix of vertex degrees and let τ1≤ τ2≤ ...≤ τn be the eigenvalues

of D−P. Then the algebraic multiplicity of τ1 is 1 and there is a positive eigenvector of D−P

corresponding to τ1.

Proof. Let A= kI−(D−P), where k > 0 is sufficiently large so that kI−D≥ 0. The eigenvalues

of A are k− τ1 ≥ k− τ2 ≥ ... ≥ k− τn. Since A = (kI−D)+P, by Theorem 3, k− τ1, which

is the Perron eigenvalue of A, has algebraic multiplicity 1 and there is a positive eigenvector

corresponding to this eigenvalue. It follows that τ1, as an eigenvalue of D−P, has algebraic

multiplicity 1 with an associated positive eigenvector. �

Conclusion. In the present paper, the concepts of path cospectral graphs and path signless

laplacian matrix of graphs are given and studied.
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