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Abstract. In this paper, we explore path cospectral graphs and obtain some result concerning to these graphs.
Also, we give nonisomorphic path cospectral graphs on 5 < n < 6 vertices and 3 < m < 10 edges. Further, we

define path signless Laplacian matrix of a graph and investigate its properties.
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1. INTRODUCTION

Let G be a graph with V(G) = {1,...,n} and E(G) = {ey,...,e,}. The adjacency matrix of G,
denoted by A(G), is the n x n matrix defined as follows. The rows and the columns of A(G) are
indexed by V(G). If i # j then the (i, j)-entry of A(G) is O for vertices i and j non-adjacent,
and the (i, j)-entry is 1 for i and j adjacent. If G is simple, the (i,i)-entry of A(G) is O for
i=1,...,n. We often denoted A(G) simply by A. The eigenvalues of a matrix A are called as
the eigenvalues of the graph G. The spectrum of a finite graph G is its set of eigenvalues together
with their multiplicities. Several properties of eigenvalues of graphs and their applications have
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been explored in [3,4].
We define a new matrix, called the path matrix [1,2] of a graph, in the following way.
Definition 1.1. Let G be a simple graph with vertex set V(G) = {vy,vy,...,v,}. Define the
matrix P = (p;;) of size n x n such that p;; is equal to the maximum number of vertex disjoint
paths from v; tov; if i # j,and p;; =0 ifi = j .

We call P = P(G) as the path matrix of the graph G. By definition, P is a real and symmetric
matrix. Therefore its eigenvalues are real. We call the eigenvalues of P the path eigenvalues
of G, forming its path spectrum Specp(G). For convenience, the eigenvalues of the adjacency
matrix of G will be refereed to as the ordinary eigenvalues of G, forming its ordinary spectrum
Spec(G).

Example 1.2. Consider the graph G as shown in the following figure and its path matrix P.

4
3
2
G 5
(0221 1]
202 1 1
P=|220 22
11202
11220

The characteristic polynomial of P is = Cp(x) = |P — xI| = —x(x +2)*(x* — 4x — 16). The
path eigenvalues of G are 6.472, 0, —2, —2 and —2.472. The ordinary eigenvalues of G are
2.562, 1, —1, —1 and —1.562. For terminology in graph theory, we refer [3,4, 6] and for matrix

theory, we refer [5].

2. PATH COSPECTRAL GRAPHS

Proposition 2.1. All trees on n vertices are path cospectral.
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Proof. Let T} and T, be two trees on n vertices. Then P(T;) = P(T>) because the maxi-

mum number of vertex disjoint paths between any two vertices of 7; is 1, for i = 1,2. Thus,

Specp(T1) = Specp(T). O

Proposition 2.2. All graphs on n vertices each of which has exactly one cycle of length k, where

k is fixed and 3 < k < n are cospectral.

Proof. Let G and G, be two graphs on n vertives each of which has exactly one cycle of length
k, where k 1s fixed and 3 < k < n. After arelabeling of vertices (rows and columns) of G| and G,

if necessary, we arrive at a situation where P(G) = P(G,). Thus, Specp(G}) = Specp(G,). O

Definition 2.3. A graph G of order n is called a bicyclic graph if G is connected and the
number of edges of G is n+ 1. Any bicyclic graph on n vertices has minimum two cycles and

maximum three cycles.

Let G be a bicyclic graph on n vertices without pendent vertices, then there are three types of

such bicyclic graphs.

(1) G has two vertex disjoint cycles, joined by a path.
(2) G has two cycles with one vertex in common.

(3) G has two cycles with more than one vertex in common.

These three types of bicyclic graphs without pendent vertices are depicted in the following

()

figure:

B (a,b,¢) B® (a,b)  BY)(a,b,c)

Fig. Types of bicyclic graphs
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Note that BU (a, b, c) possesses a+ b+ c vertices, B?) (a, b) possesses a+b— 1 vertices, and
B® (a,b,c) possesses a+ b — ¢ — 2 vertices, and that a,b > 3,¢ > 0.
For i =1,2,3, denote by B() the set of all connected bicyclic graphs without pendant vertices,
of type B().
Denote by B,, the set of connected bicyclic graphs with n vertices.
Proposition 2.4. Let G| and G; be two bicyclic graphs on n vertices. Suppose that G| and G,
have same cycle structure and the corresponding cycles have same length. Then G| and G, are

path cospectral.

Proof. We make the following three cases to prove the proposition.

case 1. G| and G, have exactly two vertex disjoint cycles. i.e. G1,G, € B,

Let C; and C; be two cycles in G; (i = 1,2) of lengths n; and ny, respectively and k be the
number of vertices which are not on any of the cycles C; and C,. Label the verices of C; as
1,2,...,n1, label the verices of C; as n; + 1,n1 + 2, ...,n; +n, and label the remaining vertices as

ny+ny+1,n+n+2,....,n1 +ny+k = n. Then the path matrix P(G;) (i = 1,2) can be writeen

as
[0 2 2 21 1 111 1 1]
20 2 201 1 111 11
2 2 0 201 1 111 11
22 2 01 1 111 11
111 1 0 2 21 1 11
111 120 21 1 11
P(Gi) =
111 122 01 1 11
111 111 101 11
111 111 110 11
111 111 111 0 1
11 111 111 10|
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case 2. G| and G, have two cycles with one vertex in common. i.e. G1,G, € B2,
Let C; and C; be two cycles in G; (i = 1,2) of lengths n; and ny, respectively. Let v € V(Cy) N
V(Cy). Label v as 1, label the remaining (other than vy) verices of C; as 2,3, ...,ny, label the

remaing vertices of C; as ny + 1,n;+2,...,ny +ny — 1 = n. Then the path matrix P(G;) (i=1,2)

is given by ) )
02 2 2 2 2 2 2
2 0 2 2 11 11
220 2 11 11
2 2 2 011 11
P(Gi) =
2 1 1 1 0 2 2 2
2 11 1 20 2 2
211 ...122 ... 02
211 ... 122 .. 20

case 3. G and G; have two cycles C; and C; of lengths n; and n,, respectively having k
vertices common. i.e. G1,G; € BG).

Label the vertices of C as 1,2,....k,k+1,....,k+ (n; — k) = ny, label the vertices of C; as
1,2,....,k,k+ (ny —k+1),....,k+ (np — k) = np. Then the path matrix P(G;) (i = 1,2) has the

form -~ -
0 2 3 2 2 2 2
2 0 2 2 2 2 2
3 2 0o 2 2 2 2
2 2 2 0 2 2 2
P(Gj) =
2 2 2 2 0o 2 2
2 2 2 2 2 0 2
2 2 .02 2 .2 2 .0

In all the three cases, we can see that the path matrices of P(G;) and P(G;) are same. Hence

G1 and G; are path cospectral. U
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Now, we draw nonisomorphic path cospectral graphs on 5 <n < 6 vertices and 3 <m < 10
edges.

2.5. Pairs of Nonisomorphic Path Cospectral Graphs on 5 < < 6 Verticesand 5 <m < 10
Edges

in=5m=>5
°
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/
/
/
/
/
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vii.n=6m=28
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i.n=6m=10
ii.n=6m=10

S

3. PATH SIGNLESS LAPLACIAN MATRIX
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The ordinary signless Laplacian matrix [7, 8] of the graph G is defined by SL(G) = D(G) +

A(G), where A(G) is the adjacency matrix of a graph G and D(G) is the diagonal matrix of

vertex degrees of the graph G.

Definition 3.1. The path signless Laplacian matrix of a graph G is defined as D + P, where D is

the diagonal matrix of vertex degrees and P is the path matrix of G. We denote the path signless

Laplacian matrix of G by PSL(G).

Example 3.2. Consider the following graph G

Then the path signless laplacian matrix of G is

PSL(G) =

2
2
2

2
2
2

[\ S S R T A" V)

N W RN

[\ UV R US B \)

(NS ST SR\
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The eigenvalues of PSL(G) are 12.080,3.437,1.251,0.735,0.343,0.153 and 0. The signless

Laplacian matrix of G, SL(G) is given by

(21 10000)
1210000
1141100
SL(G)=|0 014111
0011310
0001120
0001001

The eigenvalues of SL(G) are 6.318,4.269,2.681,2,1.160,1,0.572.
Proposition 3.3. Let G be a r-regular, r-connected graph with n vertices. Then the eigenvalues
of path signless Laplacian matrix of a graph G are rn with multiplicity 1 and 0 with multiplicity

n—1.

Proof. The path signless Laplacian matrix of a graph G is D 4 P = rJ,,. The eigenvalues of J,
are n with multiplicity 1 and O with multiplicity n — 1. Hence the eigenvalues of path signless

Laplacian matrix of a graph G are rn with multiplicity 1 and O with multiplicity n — 1. 0

Proposition 3.4. All eigenvalues of path signless Laplacian matrix of a connected graph G are

non negative.

Proof. We prove that the path signless Laplacian matrix D 4 P of G is a positive semidefinite
matrix. Let D+ P = (a;;) and let x € R".

xI'(D+P)x =YY", a,pcl2 + 2[apx1xy + a3x1x3 + ... + appX1 X, + a23x2%3 + .. 4 Ay 1pXn—1%n)-
Let k = min{a;;} > 0. Thus xT(D+P)x > k| l’f:lxl-2 +2[x1x0 +x1%3 + ... + XX, FX0x3 + .+
Xn—1%n)] = k(x1 +x2+ ... +xn)2 > 0. D+ P is positive semidefinite. Hence all eigenvalues of

path signless Laplacian matrix are non negative. 0J

The following Theorem is known.
Theorem 3.5. Let A,B € M, be symmetric where B is positive semidefinite. Let A;(A) >
M(A) > ...> 2 (A) and A; (A+B) > 22(A+B) > ... > A,(A + B) be the eigenvalues of A and
A+ B, respectively. Then 4 (A) < 4 (A+B), fork=1,2,...,n.
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We have the following result.
Proposition 3.6. Let G be a connected graph on n vertices with path matrix P and let D be the

diagonal matrix of vertex degrees. Then A (P) < 4(D+P), fork=1,2,...,n.

Proof. We show that D is positive semidefinite. Let x = (x1,x2,...,x,) € R" and D =
[di dy ... dy]. Then xI'Dx = dlx% +d2x% + ... —l—dnx% > 0 since d; > 0, fori = 1,2,...,n. This
implies that D is positive semidefinite. By Theorem 3, Ay (P) < A, (D+P), fork=1,2,....n. O

In the following Theorem, we obtain a lower bound for the largest eigenvalue of PSL(G).
Theorem 3.7. Let G be a simple connected graph with n vertices and PSL(G) be its path
signless Laplacian matrix. Let A(G) = max;d; and A;(G) be the largest eigenvalue of PSL(G).
Then A(G) < 41(G). Equality holds for a star graph S,,.

Proof. Let PSL = (a;;) be the path signless Laplacian matrix of G and X = (x,x2,...,X,) be an
eigenvector of G corresponding to the eigenvalue A;(G). Then PSLx = A;x. This implies that
Mx; = aj1x1 +apx> + ... +aijpx,. Now, all ¢;; > 0 and since A; > 0, by Perron-Frobenius theory,
x > 0. Therefore, A1x; > x1 +x2 + ... +x,. We can write this as A;x; > Z;?:lxj, i=1,2,...,n.
Mxp+Ax0 + . A, > nZ?:] xj. Thus Ay Y7 x; > ’lZ'}:1 xjand Ay >n>n—1. Inasimple
graph G, A <n— 1. Hence 4;(G) > A(G).

Now, if G = S, then A1 (S,) =n—1 = A(S,,). O

Theorem 3.8. Let A and B be two symmetric matrices of size n. Then for any 1 < k < n,

i A(A+B) < X5 24(A) + X Ai(B)

where, for a matrix M, A;(M) denotes the largest ith eigenvalue of M.

Corollary 3.9. Let G be a graph with n vertices, m edges and PSL(G) be its path signless

Laplacian matrix. Then 1 <k <n,

f A(PSL(G)) < 2m.

i=1
Proof. We know that, "  Ai(P) =0, Y A(D) =Y ,di =2m. By Theorem 3,
Yi A(PSL(G)) = XL (P + D) < L Ai(P) + Xiy A(D) < Xy Ai(P) + Xy Ai(D) =
0+Y" , (D) =2m. O
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The proof of the following result for the path signless Laplacian matrix is along the lines of
the proof of Perron-Frobenius theorem.
Theorem 3.10. Let G be a connected graph with n > 2 vertices, and let P be the corresponding
path matrix and let D be a diagonal matrix of vertex degrees. Then the following statements

hold:

(1) D+ P has an eigenvalue A > 0 and an associated eigenvector x > 0. This eigenvalue
will be referred to as the Perron eigenvalue of D + P.
(2) for any eigenvalue u #A of D+ P, —A < u <A.

(3) if u is an eigenvector of D + P for the eigenvalue A, then u = ax for some «.

Theorem 3.11. Let G be a connected graph with n vertices and let P be the corresponding path
matrix. Let D be a diagonal matrix of vertex degrees and let 7; < 7, < ... < 7, be the eigenvalues
of D — P. Then the algebraic multiplicity of 7] is 1 and there is a positive eigenvector of D — P

corresponding to Tj.

Proof. Let A =kI— (D— P), where k > 0 is sufficiently large so that kI — D > 0. The eigenvalues
ofAarek— 1 > k—1 > ... > k—1,. Since A= (kI — D)+ P, by Theorem 3, k — 7;, which
is the Perron eigenvalue of A, has algebraic multiplicity 1 and there is a positive eigenvector
corresponding to this eigenvalue. It follows that 7, as an eigenvalue of D — P, has algebraic

multiplicity 1 with an associated positive eigenvector. U

Conclusion. In the present paper, the concepts of path cospectral graphs and path signless

laplacian matrix of graphs are given and studied.
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