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Abstract. In this paper, we are extending Payne model with stochastic source term. The new model differs

from that of Payne’s in such a way that the traffic pressure and hysteresis are formulate with driver decision. The

traditional traffic pressure and hysteresis depend respectively on the traffic density and drivers decision (aggressive-

timid, acceleration-deceleration). Our traffic is on an inclined road. In the context of a developing country where

the traffic is very heterogeneous and there is a lack of discipline on the highway, the new traffic pressure must take

care of the heterogeneity of the traffic. The road traffic hysteresis must take care of the dispersion of the vehicle

on the highway. Moreover, the anticipation term is a multi-valued function depending on the vehicle class. The

numerical solution of the problem was obtained using a wave analysis. The new model is a hyperbolic one in

which the traffic information travels faster than the traffic and the wave propagate downstream leading to a jam

formation.
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1. INTRODUCTION

The complexity of traffic nowadays yielded to the irrelevance of the past models. In-

deed many parameters such as the road structure, the traffic heterogeneity, the hysteresis have

changed the traffic flow modeling. But modeling the heterogeneity of traffic raises some chal-

lenges: capture the difference of vehicle in the flow, couple this with driver’s behaviors and take

consideration of the road structure itself. [1] proposed a non-lane based lattice model through

lane separation. The numerical computations and simulation proved that the lane separation

enhances the traffic condition. But in this work, the traffic was considered as homogeneous.

[2] introduces a new definition of area occupancy to take consideration of the heterogeneity of

traffic. His idea of area occupancy is based on the definition of occupancy in [3]. But his area

occupancy is limited by the non-consideration of vehicle length in the flow of traffic. Indeed

the driver behavior changes in front of a vehicle of different lengths and sizes. Then, the area

occupancy impacts the random behavior of drivers. The emergence of high order model such

as the one of Payne had corrected the inconsistency of LWR model but had revealed some in-

consistency such as its stability in a linear approximation of the stationary solution to smaller

perturbation of the traffic result on the formation of a phantom jam or stop and go waves. Thus

The traffic pressure was used to correct this inconsistency. Basically The traffic pressure is the

way the traffic reduces the speed of a driver. It is proportional to the variance in the traffic speed

distribution and is analogous to the gas pressure used in the modeling of gas dynamics.The

first traffic pressure was the one in [4] where it was expressed as the product of flow rate and

density-dependent speed variance. However, the Phillips traffic pressure was not numerically

robust.

The hysteresis is a property of a system to deviate from its original form because of exogenous

factors. It’s is one of the main parts of traffic oscillation. It can be observed that many of the

data points collected are not on the fundamental diagram. Some researchers have explained this

phenomenon by stochastic fluctuations but most of the research undertook was deterministic.

The impact of traffic hysteresis due to drivers behaviors has received little attention. Among

them, the TCI model([6] & [5]) are well known for their capability to explain driver’s decision

using two concepts: Task Demand and Driver Capability. In his conclusion [7] states that rather
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than describes traffic behavior in terms of accelerations and decelerations, like what has been

done by many researchers, aggressive and timid behavior exhibit better hysteresis feature as

conjectured by [8]. Thus traffic hysteresis has at least two branches in which the dispersion is

high in the second part of the diagram. But their relative positions in the fundamental diagram

depend on driver behavior. It can be noticed that although hysteresis has been widely studied

its scatter properties are still not well formulated.

Considering the criticism made by [9] whereby some macroscopic models for vehicular traf-

fic encounter difficulties showing nonphysical effects in certain situations.We bring a new for-

mulation of traffic pressure and traffic hysteresis. In that work, they showed that it’s more

desirable to have a macroscopic traffic model that can replicate the non-linear phenomenon and

their characteristic properties. [11] showed that it’s more desirable to have a macroscopic traffic

model that can replicate the non-linear phenomenon and their characteristic properties. Hence

a new traffic pressure from gas-kinetic will determine.

In this work, we are considering the road structure through the road inclination. It is in-

corporated in the anticipation term. This is because an incline on a multi-lane road is cap-

ture through the competition between Over Acceleration(OA) and Speed-Adaptation(SA) in-

troduced by [10]. When a faster vehicle catches up with a slower one and cannot overtakes, the

driver decelerates within the synchronization space gap G adapting the speed to the speed of the

preceding vehicle. This phenomenon is known as the SA. The vehicle SA lies in synchronized

flow and is strongly related to the driving condition. This SA within the synchronization gap

is associated with the 2D-region of steady states of synchronized flow. In contrary to the pre-

ceding case, a vehicle that moves in free flow on a multi-lane road approaches a slower moving

preceding vehicle and has the possibility to overtake. He will first adapt his speed to the leader

speed, change lane and accelerate. This phenomenon is known as OA.

The anticipation term is the way a driver adapt his speed to the traffic condition ahead. So we

derive the anticipation term from the process of braking and acceleration illustrate first in [12].

In this work, we are bringing a stochastic source term in which the driver’s decision is taken

care of. The following model is more closed to the real traffic since it expressed the impact of

driver’s random behavior on the whole traffic. The particular driver’s decision is figuring out
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through a poison process. A better understanding of this process can be found in [13]. Indeed

a traffic flow is composed of random variables. Some of them depend on the driver’s behavior,

hence there exist as many behaviors as drivers on the road. However, some other variables can

be classified as relating to their size.

2. PRELIMINARIES

2.1. Payne model. The first attempt using Gradient approach to derive a macroscopic traffic

flow model traced back to Payne [15][14]:

∂ρ

∂ t +
∂

∂xQ(x, t) = 0

Where the flow rate Q(x, t) is a function of the density ρ(x, t) and the average velocity V (x, t)

or the velocity flow: Q(x, t) = ρ(x, t)V (x, t).

Payne model is derived from the one of Newell [16]:

vi(t + τ) = vo(di(t))

Where the speed of each vehicle is calibrate with a delay of τ to some optical speed vo

depending on the distance between the vehicle and his leader formulate as: di = xi−1(t)−xi(t).

The corresponding macroscopic model was formulate as:

vi(t + τ)≈V (x, t)+V τ
∂V (x,t)

∂x + τ
∂V (x,t)

∂ t

Then he define the equilibrium velocity through:

Ve = vo(
1
ρ
) or Ve(

1
di
) = vo(di) Where:

1
di(t)

≈ ρ(x, t)+
1

2ρ

∂ (x, t)
∂x

Then a first Taylor approximation of the previous equation give us:

vo(di(t))≈Ve(ρ(x, t))+
dVe(ρ)

dρ

∂ρ(x,t)
∂x

We end up with the final Payne model:

∂V
∂ t +V ∂V

∂x = 1
τ
[Ve(ρ)− D(ρ)

ρ

∂ρ

∂x −V (x, t)]
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2.2. Properties of Payne model. In Payne’s final model, the density-dependent diffusion

D(ρ) is:

D(ρ) =−dVe(ρ)
∂ρ

= 1
2 |

dVe(ρ)
dρ
|> 0

The transport term V ∂V/∂x stands for the velocity motion profile. The anticipation term−D(ρ)
ρ

describes the reaction of drivers to the traffic situation in front of them. The relaxation term

[Ve(ρ)−V ]/∆t describes the driver adaptation to the average velocity V (x, t) to the density-

dependent equilibrium velocity with a delay τ .

One weakness of the gradient expansion approach is that its validity implicitly requires small

gradients. However, it is well-known that many microscopic and macroscopic traffic equations

give rise to emergent traffic jams, which are related with steep gradients. That calls for the con-

sideration of higher-order terms and leads to macroscopic traffic equations that are not anymore

simple and well tractable (even numerically).

3. EXTENDED MODEL

The extended model is different from the preceding in the way the traffic pressure and antic-

ipation are formulated. The road structure, the heterogeneous feature and the driver’s behavior

are better to represent.

3.1. The multi-valued anticipation term. The anticipation term is the way a driver adapt

his speed to the traffic condition ahead. So we derive the anticipation term from the process

of braking and acceleration. To adequately describe the braking and acceleration of cars and

trucks on the multi-lane road, we derive the macroscopic traffic flow model for cars from the

kinetic model of multi-lane traffic flow which uses distribution function. In the remaining of

this paper, we consider a highway with 3lanes denoted by α such that Xα = 0,1,2, ...,N and

Xα = 3 denoted the outer lane.

In this paper, we will only focus on the Gain and Loss due to braking and acceleration in

[12]. We will also notice that the anticipation term is based on the one developed in [17] but

differ with the inclusion of multi-lane aspect and road inclination:

(1) ∂t fα + v∂x fα = C̃+
α ( f 2

1 , ..., f 2
N , f1, ..., fN)
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where:

C̃+
α ( f 2

1 , ..., f 2
N , f1, ..., fN) = (G+

B −L+
B )( fα−1, f 2

α , fα+1)+(G+
A −L+

A )( f 2
α)

+[G+
L ( fα−1, f 2

α)−L+
R ( fα−1, f 2

α , fα+1)]+ [G+
R ( fα , f 2

α+1, , fα+2)−L+
L ( f 2

α , fα+1)]

The gain and loss terms due to braking ie G+
B , L+

B are given by:

G+
B ( fα−1, fα , fα+1)

=
∫∫

v̂>v̂+ PB(v̂, v̂+, fα−1(x+HB(v), fα+1(x)))|v̂− v̂+|σB(v, v̂+) f 2
α(x, v̂,HB(v̂),v+)dv̂dv̂+

(2)

L+
B ( fα−1, fα , fα+1) =

∫
v̂>v̂+ PB(v̂, v̂+, fα−1(x+HB(v), fα+1(x)))|v̂− v̂+| f 2

α(x, v̂,hB(v̂), v̂+)dv̂+

(3)

The gain and loss term due to acceleration ie G+
A , L+

A are given by:

(4) G+
A ( fα) =

∫∫
v̂<v̂+ |v̂− v̂+|σA(v, v̂+) f 2

α(x, v̂,x+HA(v̂, v̂+))dv̂dv̂+

(5) L+
A ( fα) =

∫
v<v̂+ |v− v̂−| f 2

α(x,v,x+HA(v), v̂+)dv̂+

Where:

f 2
α(x, v̂,HB(v̂), v̂+)∼ qB(HB(v̂); v̂, fα(x, v̂))Fα(v̂+;HB(v̂), v̂,x) fα(x, v̂)(6)

Next we determine the closure relation of the distribution function fα(x,v, t), as follow:

(7) fα(x,v, t) = ραFα(x,v, t) = ραδuα(v)

where δ (v−uα(x, t)) = δuα(v) is the Dirac delta function and equation 7 is when all the vehicle

have the same average velocity uα at instantaneous time t.

We replace f 2
α(x, v̂,HB(v̂), v̂+) in 2 and 3 by its approximation in 6, subtract the two preceding

and integrate over [0,w] to get:

∫ w
0 vk(GB−LB)( fα−1, fα , fα+1)dv = PB(uα ,u+α ,ρ

+
α−1,ρα+1)|uα −u+α |qB(HB(uα);uα ,ρα)

ρα

∫Vmax
0 vkσB(v, v̂)dv−PB(uα ,u+α ,ρ

+
α−1,ρα+1)|uα −u+α |qB(HB(uα);uα ,ρα)ραuk

(8)
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Then ∫ w
0 vk(GB−LB)( f )dv

= PB(uα ,u+α ,ρ
+
α−1,ρα+1)|uα −u+α |qB(HB(uα);uα ,ρα)[ρα

∫Vmax
0 vkσB(v, v̂)dv−uk]

(9)

using the following approximation,from [18]:

σB(v,u)'
χ[βu,u](v)
u(1−β )

Where σB(v,u) is a probability distribution denoting the imperfect adaptation of the faster ve-

hicle with speed uα to the speed u+α of the leader and x is the road cross section where the

probability of interactions occurring is high. We obtain:∫ w
0 vk(GB−LB)( f )dv

' PB(uα ,u+α ,ρ
+
α−1,ρα+1)|uα −u+α |qB(HB(uα);uα ,ρα)∗ρα [

1
u(1−β )

∫ u
βu vkdv−uk]

(10)

Considering that u+α (x) = uα(x+HB) a braking occurs if uα > u+α , |uα −u+α |=−(uα −u+α )

We obtain: ∫ w
0 vk(GB−LB)( f )dv

'−PB(uα ,u+α ,ρ
+
α−1,ρα+1)(u+α −uα)qB(HB(uα);uα ,ρα)∗ρα [

uk+1
α −βuk+1

α

(k+1)(uα−βuα )
−uk

α ]
(11)

Equation 11 will vanish for k = 0 but not for k = 1. We have define below u+α (x) = uα(x+HB)

thus u+α (x) = uα(x)+HBu
′
α(x). For the ease of writing HB is approximate here by h and u

′
α(x) =

∂xuα leading to (u+α −uα)' h∂xuα . We obtain at the end:∫ w
0 vk(GB−LB)( fα−1, fα , fα+1)dv = PB(uα ,u+α ,ρα−1,ρα+1)

ραqB(hB,ρα)ρα
1−β

2 uα∂xuα

(12)

With the same process we derived the balance equation from equation 4 and 5 to obtain:

(13)
∫ w

0 vk(GA−LA) fαdv = ραqA(HA(uα),ρα)[
γ−1

2 ]uα∂xuα

The function qX = (HX(uα ,ρα)) denotes the distribution of leading vehicles at distance h for

a vehicle with velocity v under the assumption that the velocities of the vehicles are distributed

according to the distribution function ρα [18]. Thus the distribution is some increasing function

which is derived from the speed adaptation term in section 1.3. Moreover we use a suitable

ansatz:

qB(H(uα),ρα) = qA(H(uα),ρα) =
db(ρα )

dρα
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Such that

(14) b(ρα) =−ln(1−ρα)

we obtain:

∫ w

0
vkC+( f )dv≈


ρα

db(ρα )
dρα

ϕB(uα ,u+α ,ρα−1,ρα+1)uα∂x(uα), ∂xuα < 0

ρα
db(ρα )

dρα
ϕA(uα)uα∂x(uα), ∂xuα > 0

where ϕB(uα ,u+α ,ρα−1,ρα+1) = PB(uα ,u+α ,ρα−1,ρα+1)
1−β

2 uα and ϕA(uα) =
α−1

2 uα

The impact of road inclination can be introduced through the parameters ϕB and ϕA. We will

introduce the parameter θ such that if there is no inclination(θ = 0), we have the value C and if

θ 6= 0, we have D(vm)>C. Thus a(ρα ,θ) is the anticipation term describes as:

(15) a(ρα ,θ) = ce−vm(ρα ,θ) ρα

1−ρα

The anticipation is a decreasing function depending on the road inclination θ and density ρα .

More explicitly, the more the road inclination, the more the density and the anticipation term

decrease as shown in figure 1

FIGURE 1. Anticipation curve due to road inclination θ and velocity of moving bottleneck
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3.2. Heterogeneity of the traffic. Within a congested road section, a driver attempts to fill

the space gap available by moving forward or changing lane. The driver’s decision is modeled

through a binomial function depending on whether the driver will move forward or change lane

to a surrounding one, denoted εi. Furthermore, the area covered by a single vehicle on lane α ,

namely Aα
i is an integral function defined by:

Aα
i =

∫ βi
0 lidx =⇒ Aα

i = liβ α
i

where l is the vehicle width and β α
i is the vehicle i length.

It yields to the following equation:

(16) AO = 1
WT L ∑

m
α=1 ∑

n
i=1 tα

i Aα
i εi

Where:

Ai : The road section on lane α occupied by vehicle i of class u during time ti in m2 will be

defined later.

tα
i,u : The time during which a single section on a lane α is covered by vehicle i of class u.

T : The total observation.

L : The whole road stretch.

In real conditions it has been observed that drivers don’t respect lane when there are some

small width vehicle. so we will first use a multi-lane model numbered α with α = 1,2,3. εi is

defined as the ith driver’s decision. The set of drivers is a set of random variables. So εi is a

probabilistic decision determined from the stationary renewal process. To a better understanding

of this process, we refer to [13]. Indeed when a driver is willing to change lane for one of the

adjacent lanes, he will consider the density of the adjacent lane. If at time t = t0 the space gap

between him and his follower after an interaction is acceptable meaning his velocity after an

interaction is sufficiently large, he will initiate the lane change otherwise he will wait and try

again a time t = t0. These operations are assimilated to the renewal process and for modeling,

we will use the Poisson process to approximate this drivers decision function.
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The Poisson process is a random counting process of points used in queuing theory to model

random events. Using the renewal Poisson process we can take its pdf as our εi:

(17) εi = e−ρiCo

Thus the explicit equation of AO becomes:

(18) AO = 1
WT L ∑

m
α=1 ∑

n
i=1 tα

i liβ α
i e−ρnCo

3.3. Traffic pressure. We use the idea of [19] with our new Area Occupancy developed in

the previous section. We derive our traffic pressure from a gas-kinetic parameter to which we

apply the momentum method to get the macroscopic parameter. That is:

∫+∞

0 gas− kinetic→ macroscopic

Instead of using the classical density, we will use A.O for specific lane: Let s(|x′ − x|) =

s(x
′− x) = s(x− x

′
) a smooth function such that his normalization is

∫+∞

−∞
dx
′
s(x− x

′
) = 1 and

we define the local density:

(19) ρ(x, t) =
∫+∞

−∞
dx
′
s(x− x

′
) 1

T L ∑
m
α ∑

n
i tα

i Aα
i,uεn

We differentiate the local density with respect to time and applied the chain-rule:

(20) ∂ρ(x,t)
∂ t = 1

T L
∫+∞

−∞
dx
′
∑

n
i (−

dxi
dt )[

∂

∂x′ ∑
m
α tα

i Aα
i,uεn]s(x− x

′
)

We reformulate the parameters and applied the partial integration to the R.H.S of the previous

result:

(21)
∫+∞

−∞
dx
′
[∂x′u(x

′
)]v(x

′
) = [u(x)v(x)]+∞

−∞−
∫+∞

−∞
u(x

′
)[∂x′v(x

′
)]dx

′

In the previous equation [u(x)v(x)] vanishes at the boundary, thus:

(22) ∂ρ(x,t)
∂ t =− 1

T L
∂

∂ t
∫+∞

−∞ ∑
m
i vi ∑

m
α ∑

n
i tα

i Aα
i,uεns(x− x

′
)dx

′

We use the symmetry of the smoothing function to obtain:

(23) ∂

∂ t ρ(x, t) =− 1
T L

∂

∂ t
∫+∞

0 ∑
m
i vi ∑

m
α ∑

n
i tα

i Aα
i,uεns(x− x

′
)dx

′

(24) ∂

∂ t ρ(x, t) =− 1
T L

∂

∂ t [ρ(x, t)V (x, t)]
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We derive the velocity variance from the derivative with respect to time:

(25) [ρ(x, t)V (x, t)] = ∑
m
α ∑

n
i vi

1
T Ltα

i Aα
i,uεn

To get:

∂

∂ t [ρ(x, t)V (x, t)] = ∑
m
α ∑

n
i

1
T L

dvi(t)
dt tα

i Aα
i,uεn +∑

m
α ∑

n
i

1
T Lvi(t)

dtα
i

dt Aα
i,uεn+

∑
m
α ∑

n
i

1
T Lvi(t)tα

i
dAα

i,u
dxi

dxi
dt εn

(26)

∂

∂ t [ρ(x, t)V (x, t)] = ∑
m
α ∑

n
i

1
T Lai(t)tα

i Aα
i,uεn+

∑
m
α ∑

n
i

1
T Lvi(t)Aα

i,uεn +∑
m
α ∑

n
i

1
T L [vi(t)]2(t)tα

i
∂Aα

i,u
∂ t εn

(27)

Thus the velocity variance takes the form:

θ(x, t) =
∫+∞

−∞
dx
′
∑

m
i=1[vi(t)−V (x,t)]2δ (x

′−xi(t))s(x−x
′
)∫+∞

−∞
dx′ ∑m

i=1 δ (x′−xi(t))s(x−x′)

θ(x, t) = ∑
m
i=1[vi(t)−V (x,t)]2s(x−x

′
)

∑
m
i=1 s(x−x′)

θ(x, t) = ∑
m
i=1[δvi(t)]2s(x−x

′
)

ρ(x,t)

At the end, we obtain the traffic pressure as:

(28) P(x, t) = 1
WT L ∑

m
α=1 ∑

n
i=1 tα

i liβ α
i e−ρnCoθ(x, t)+ vo−ve(ρ)

2τ

Thus

(29) P(x, t) = AO.θ(x, t)+ vo−ve(ρ)
2τ

Scatter properties of the second part of the fundamental diagram illustrated in [20] can be

explained in the context of the new formulation of our traffic pressure as the heterogeneity of

traffic. Indeed the simulation of equation 29 yields to some particles taking random direction

over time as illustrate by figure 2 as predicted in [21].

Conversely, when we are trying to reduce the range value of vehicle size and drivers decision

randomness we obtain a smooth increasing traffic pressure yielding to an ideal traffic like the

one on figure 3



HETEROGENEOUS TRAFFIC FLOW MODELING 991

FIGURE 2. Stochastics traffic pressure

FIGURE 3. homogeneous traffic pressure

3.4. Hysteresis of the traffic. In this section, we will improve the fundamental diagram based

on the scattered properties. Analyzing the one-minute empirical flow-density relationship of

freeway M25 in England:
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FIGURE 4. One-minute empirical flow-density relationships of freeway M25 in England

The graph show that the first part of the curve is parabolic and the second part which consti-

tute scattered point will be modeled with the Brownian motion:

(30) Q(ρ) =


vmaxρ− vmax−vcrit

ρcrit
ρ2, i f ρ < ρcrit

q(ρ), i f ρ > ρcrit

We construct q(ρ) with the Bachelier-Kolmogorov method. We consider a set of finite vehicle

in which each driver has a particular decision to make, depending on the vehicle around. So we

have some Gaussian random variables. At different times to = 0 < t1 < .... < tn , t j ∈ I and all

the borel sets A1, ...An ∈B the finite dimensional distributions. Hence Pt1 , ...,Ptn(A1× ...×An) =

P(Bt1 ∈ A1, ...,Btn ∈ An) are mean-zero normal with covariance matrix C = (t j∧ tk) j,k=1,..,n

Theorem Cf [22] A one-dimensional Brownian motion is a Gaussian process (Bt)t ≥ 0. For

t0 := 0 < t1 < ... < tn, n≥ 1, the vector Γ := (Bt1, ...,Btn)
T is a Gaussian random variable with

a strictly positive definite, symmetric covariance matrix C = (t j ∧ tk) j,k=1,..,n and mean vector

m = 0 ∈ Rn:

(31) Eei〈ξ ,Γ〉 = e−
1
2<ξ ,Cξ>

Moreover, the probability distribution of Γ is given by:

(32) P(Γ) = 1
(2π)n/2

√
Πn

j=1(t j−t j−1)

∫
exp(−1

2 ∑
n
j=1

(x j−x j−1)
2

(t j−t j−1)
)dx
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From the previous theorem, the hysteresis can be formulate as:

(33) Pt1,...,t2(A1× ...×An) =
1

(2π)n/2
√

Πn
j=1(t j−t j−1)

∫
exp(−1

2 ∑
n
j=1

(x j−x j−1)
2

t j−t j−1)
dx

3.5. The new model. The R.H.S of our model is determined from the one developed in [17].

We will not expose the whole process but for a better understanding, we refer to that work.

In the original microscopic model equation containing the density ρ and his inverse τ , we

will approximate the following parameters:

τ ∼ t and ∂xu ∼ vi+1−vi
H

We remain with:

(34)
∂T t−∂X u = 0

∂T u−a(1
τ
)u = 0

Considering the first equation in the system 34, a variable separation leads to:

(35) ∂tτ(∂T t)+∂xτ(∂T x)−∂xu(∂X x)−∂tu(∂X t) = 0

Reducing the equation and multiplying through by −ρ2, we obtained:

(36) ∂tρ +u∂xρ +ρ∂xu = 0

The same process used for the second equation of the system 34 leads to:

(37) [ρ∂tu+u∂tρ]+ [2ρu∂xu+u2∂xρ]−a(ρ)∂xu = 0

Combining equations 36 and 37:

(38)
∂tρ +∂x(ρu) = 0

∂t(ρu)+∂x(ρu2)−a(ρ,θ)∂xu = 0

Combining the system 38 with the source term constitute of the traffic pressure 29 and the

hysteresis 33 we obtain:

(39)

∂tρ +∂x(ρu) = 0

∂t(ρu)+∂x(ρu2)−a(ρ,θ)∂xu

= AO.θ(x, t)+ vo−ve(ρ)
2τ

+ 1
(2π)n/2

√
Πn

j=1(t j−t j−1)

∫
exp(−1

2 ∑
n
j=1

(x j−x j−1)
2

t j−t j−1)
dx
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which can be recast in its quasi-linear form:

(40)

∂tρ +∂x(ρu) = 0

∂t(u)+∂x(u2− a(ρ,θ)
ρ

u) = AO.θ(x, t)+ vo−ve(ρ)
2τ

+

1
(2π)n/2

√
Πn

j=1(t j−t j−1)

∫
exp(−1

2 ∑
n
j=1

(x j−x j−1)
2

t j−t j−1)
dx

4. NUMERICAL ANALYSIS

The feature of traffic flow model is given by the eigenvalue and eigenvector of the RHS of

the system. Thus we will first focus on the RHS of the system. The system 40 can be expressed

in the following form:

(41) ∂tU +∂xF(u) = S(u)

Where:

U =

 ρ

u


and

F(u) =

 ρu

u− a(ρ)
ρ


4.1. Riemann Variables. The quasi-linear form of the model give us:

(42)


∂U
∂ t + j(u)∂U

∂ t = S(u)

U(x,0) =


UL i f x < 0

UR i f x > 0

Where j(u) = ∂F(U)
∂U and

j(u) =

 u ρ

0 u− a(ρ)
ρ


det| j(u)−λ I|= 0 =⇒ λ1 = u− a(ρ)

ρ
and λ2 = u

For λ1 = u− a(ρ)
ρ

,

E1 =

 1

−a(ρ)
ρ2


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For λ2 = u,

E2 =

 1

0


λ1 < λ2 implies that the macroscopic traffic flow model is hyperbolic. Moreover, the anisotropic

character of the model is preserved because the traffic information travels faster than the traffic.

We determine the nature of the wave through the dot product ∇λiRi.

∂ρλ1

∂uλ1

 .

 1

−a(ρ)
ρ2

=

−∂ρ(
a(ρ)
ρ2 )

1

 1

−a(ρ)
ρ2


∂ρλ1

∂uλ1

 .

 1

−a(ρ)
ρ2

=−∂ρ(
a(ρ)
ρ2 )− a(ρ)

ρ2 6= 0

and ∂ρλ2

∂uλ2

 .

1

0

= 0

Thus The 1st characteristic associate to λ1 is genuinely non-linear and the 2nd characteristic

related to λ2 field is linearly degenerate. Therefore we end up with a hyperbolic system where

the 1st characteristic is shock wave and the 2nd is a contact discontinuity. Let r denotes the

so-called Riemann variable and δU a variation of U(either δU/δ t or δU/δx), we define δ r =

M−1δU and δU = Mδ r. Thus we obtain M ∂ r
∂ t =

∂U
∂ t and M ∂ r

∂x =
∂U
∂x . The define matrix of the

eigenvector ε is:

M =

 1 1

−a(ρ)
ρ2 0


with

M−1 =

0 − ρ2

a(ρ)

1 ρ2

a(ρ)


We use these matrices in 42 to get:

(43) M−1M ∂ r
∂ t +M−1 j(u)M ∂ r

∂x = S̃

Thus Equation 43 becomes:

(44) ∂ r
∂ t +V ∂ r

∂x = S̃
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where S̃ = ε−1S and

V =

λ1 0

0 λ2

 =⇒ V =

u− a(ρ)
ρ

0

0 u


If we consider the definition of the Riemann (or characteristic) variables, we obtain:

(45) δ r1 = δu− a(ρ)
ρ

δρ

and

(46) δ r2 = δu

A simple integration give us:

(47) r1 = u−a(ρ)ln(ρ) and r2 = u

4.2. Stability of the model. The aim of this section is to prove that the model prevents ve-

hicles from moving backwards. For this sake we will use the HLLE scheme. The outline of

the scheme can been found in many literature but we refer to [24]. The HLLE scheme is a

numerical scheme for high order model based on the the approximated Riemann solution and

Godunov scheme.

The approximation of the traffic variable at each cell i to the mean value of the exact solution

U of system 41:

(48) Ui(k) = 1
∆x

∫+∞

−∞
U(x, t)dx

And solving the Riemann problem at cell interfaces couple with the theory of divergence gives:

(49) d
dt
∫ xi+1/2

xi−1/2 U(x, t)dx+ F(U(xi+1/2,t))−F(U(xi−1/2,t))
∆x = 0

Where F(U(xi + 1/2, t)) is the flux at each time step and each cell interface. The solution of

the Riemann problem is given by:

(50) Ũi+1/2(
x−xi+1/2

t ) =


Ui i f x− xi+1/2 < xl

i+1/2t

Ui+1/2 i f xl
i+1/2t < x− xi+1/2 < xr

i+1/2t

Ui+1 i f x− xi+1/2 > xr
i+1/2t
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Where: χr(i+1/2,k) = max(χmax(i+1/2,k),χmax(i+1,k)) and χ l(i+1/2,k) = min(χmin(i+

1/2,k),χmin(i,k)) are respectively the maximum and the minimum of the eigenvalue of the

system.

However the average intermediate state of equation 50 must satisfies the following conserva-

tion law:

(51)
∫+∆x/2
−∆x/2 Ũi+1/2(x/t)dx =

∫+∆x/2
−∆x/2 Ũ(x/t)dx

Hence:

(52)
U(i+1/2,k) = χr(i+1/2,k)U(i+1,k)−χ l(i+1/2,k)U(i,k)

χr(i+1/2,k)−χ l(i+1/2,k) −
F(i+1,k)−F(i,k)

χr(i+1/2,k)−χ l(i+1/2,k)

And the fluxes are determine by:

(53)
F(i+1/2,k) = χ+(i+1/2,k)F(i,k)−χ−(i+1/2,k)F(i+1,k)

χ+(i+1/2,k)−χ−(i+1/2,k) −
χ+(i+1/2,k)χ−(i+1/2,k)

χ+(i+1/2,k)−χ−(i+1/2,k)(U(i+1/2,k)−U(i,k))

Where χ+(i+ 1/2,k) = max(χr(i+ 1/2,k),0) and χ−(i+ 1/2,k) = min(χ l(i+ 1/2,k),0) are

respectively largest and smallest wave speed.

Applying the above method to the system 41 we obtained:

(54) u(i,k+1) = u(i,k)− ∆t
∆x(ρ(i+1/2,k)−ρ(i−1/2,k))

(55)
ρ(i,k+1) = ρ(i,k)− ∆t

∆x [(u−
a(ρ)

ρ
)(i+1/2,k)−

(u− a(ρ)
ρ

)(i−1/2,k)]+Hyst(i,k)+T P(i,k)

Where Hyst(i,k) is the hysteresis and T P(i,k) is the Traffic pressure.

Analyzing of the scheme in two extreme cases: upstream congested/downstream free flow

and upstream free flow/downstream congested.

• Upstream free flow/downstream congested:

In this case U(i,k)→ 0 at t = k∆t:

(56) ∂u
∂ t =

1
∆x(ρ(i+1/2,k)−ρ(i−1/2,k)
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Where:

(57) ρ(i+1/2,k) = −χ−(i+1/2,k)U(i+1,k)
χ+(i+1/2,k)−χ−(i+1/2,k) [u− (u− a(ρ)

ρ
)]> 0

(58) ρ(i−1/2,k) = χ+(i+1/2,k)ρ(i−1,k)
χ+(i+1/2,k)−χ−(i+1/2,k) +

−χ+(i−1/2,k)χ−(i−1,k)U(i−1,k)
χ+(i+1/2,k)−χ−(i+1/2,k) > 0

We replace the different parameters by theirs values in the Riemann problem resolution

to end up with:

(59) ρ(i+1/2,k) = (u−a(ρ)/ρ)U (i+1,k)
a(ρ)/ρ

> 0

Thus ∂U/∂ t ≥ 0 =⇒ at every time t ≥ to. Since we are in free flow at cell i, ∂ρ/∂ t

has the same sign as ∂u/∂ t. Hence ∂ρ/∂ t ≥ 0 =⇒ ρ(x, t)≥ 0 at every time t > to

• Downstream free flow/upstream congested:

For this case, in cell i ρ(i,k)→ ρmax at to = ∆t

(60) ∂ (ρ)(i,k+1)
∂ t = 1

∆x [(u−
a(ρ)

ρ
)(i+1/2,k)− (u− a(ρ)

ρ
)(i−1/2,k)]+Hyst(i,k)+T P(i,k)

Where

(u− a(ρ)
ρ

)(i+1/2,k) = −χ−(i+1/2,k)U2(i+1,k)
χ+(i+1/2,k)−χ−(i+1/2,k) [u

2(i+1,k)+

(a(ρ)
ρ

)2(i+1/2,k)−χ+(i+1/2,k)a(ρ)
ρ

(i+1,k)]
(61)

(62)
(u− a(ρ)

ρ
)(i−1/2,k) = χ+(i−1/2,k)

χ+(i+1/2,k)−χ−(i−1/2,k)(u−
a(ρ)

ρ
)(i−1,k)+

−χ+(i−1/2,k)χ−(i−1/2,k)
χ+(i+1/2,k)−χ−(i−1/2,k)(ρ)(i−1,k)> 0

We use of equation to get:

(63)
(u− a(ρ)

ρ
)(i+1/2,k) = −u(i+1/2,k)U2(i+1,k)

a(ρ)
ρ

(i+1/2,k)
[u2(i+1,k)+(a(ρ)

ρ
)2

(i+1/2,k)−u(i+1/2,k)a(ρ)
ρ

(i+1,k)]6 0

Thus ∂ρ(i,k+ 1)/∂ t > 0 =⇒ ρ(x, t) > 0 at every time t > to. Since traffic in cell i

is congested ∂ρ/∂ t has the opposite sign, meaning ∂u/∂ t 6 0 =⇒ ρ(x, t) < ρmax at

every time t > to

In conclusion, it was found that the vehicles do not move backward and the traffic is

anisotropic(from downstream to upstream). Moreover it has been proven in [23] that the HLLE

scheme is stable and accurate over time.
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4.3. Propagation of disturbance. We decoupled including the eigenvalues to get:

(64)
∂ r1
∂ t +λ1

∂ r1
∂x = S̃1

∂ r2
∂ t +λ2

∂ r2
∂x = S̃2

Regarding the system, the Riemann variable propagates along the corresponding characteristic

curve with speed λ1,λ2. The corresponding characteristics curves are C+ : dx = λ2dt and C− :

dx = λ1dt. Let P(x, t) be a point in the space, we determine the speed and the density from

r2,r1 transported with speed λ2,λ1 along the curve C−,C+:

(65)
(r1)p = u = (r1)p+

(r2)p = u−a(ρ)ln(ρ) = (r1)p−

The maximal wave speed corresponding to λ2 travel faster than the traffic itself. Thus propa-

gates downstream leading to the formation of the jam

5. SIMULATION

The data used for the simulation have been collected on Autoroute du nord, axe Adjame-

Yopougon

Model parameters

Max speed(km/h) 108

critical speed(km/h) 86.4

jam density(km/h) 0.14veh/m

critical density(km/h) 0.019veh/m

Maximum vehicle length(m) 30

Simulation duration(s) 1800

Cfl number 0.999

Highway characteristics

Length(m) 7600

Width 3.3

Inclination 0.3



1000 N’GOLO KONATE, DAVID MWANGI THEURI, JOHANA K. SIGEY

We will apply the above parameters to the Godunov method to confirm what has been found

numerically. The simulation will give us the flow, density and speed. For the ease of simula-

tion the heterogeneity of the traffic is fixed and extended to fundamental diagram whereby the

vehicles are taking a value between the shortest vehicle and the longest one.

FIGURE 5. Vehicle flow

FIGURE 6. vehicle-speed

The figures 5 & 6 shows the evolution of traffic on the highway. We brought a model de-

scribing Kerner’s features of traffic name F→ S→ J. Then the stop and go waves are also well

represented. The figure 7 show up one of the principle in traffic flow which states that the traffic

jam is alway an inverse function of the flow.

6. RESULT AND DISCUSSION

In this paper, we have shown the road inclination decrease drastically the speed of trucks.

Since the velocity of the flow is more relate to the speed of the trucks all the traffic slow down



HETEROGENEOUS TRAFFIC FLOW MODELING 1001

FIGURE 7. jam-density

depending on the average of trucks on the highway so the anticipation term decrease. The

stochasticity of the traffic heterogeneity is an improvement of the former one. The traffic pres-

sure has shown that the drivers decision depend on the size of the vehicle around. The more the

traffic becomes homogeneous the more the speed of the speed of the and the drivers decision

become less random. The new model yields to the three-phase theory traffic as it is an extension

of Payne model. Among the usual traffic properties, the new model is hyperbolic, stable and we

observe the shock and rarefaction. The rarefaction describe the discontinuity on the highway

leading to stop and go waves in real condition

But the lack of microscopic data for this particular traffic prevented us to well calibrate the

source term accurately. Also the correlation between the heterogeneity and the drivers decision

must be deeply investigate to prescribe better recommendation on the road management. More-

over he calibration can give us better recommendation about the percentage of trucks which

must be allowed to avoid huge jam through the traffic pressure.
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